Thiét ké bd quan sat 7, theo phwong phap chia
Iwéi cho hé Lorenz 63 str dung mé hinh dang phi
tuyén v&i tham sé thay déi

TOM TAT

Bai bao nay dé xuit mot phuong phap thiét ké b quan sat H o, bén vimg cho hé Lorenz 63 théng qua md
hinh hoa lai theo dang hé phi tuyén véi tham sé thay doi (NLPV). Bang cach st dung phuong phap chia luéi
theo khong gian trang thai va xay dung cac md hinh tuyén tinh cuc bg, chung toi thiét lap mot tap hop cac bat
déng thirc ma tran tuyén tinh (LMI) dé thiét ké bo quan sat tai moi diém ludi. Cac ma tran bd quan sat thu dugc
s€ duoc noi suy theo thoi gian thuc dua trén trang thai ciia b quan sat. Phuong phép nay cho phép udc lugng
chinh xac cac trang thai cta hé trong ca hai truong hop c6 nhidu va khong nhidu. Két qua mo phong va so sanh
v6i bo loc Kalman mé rong (EKF) xac nhan hiéu quéa cia phuong phap d& xuat thong qua céac chi sb danh gia
RMSE, NRMSE va hé s6 tvong quan R?

Tir khéa: Hé thong Lorenz, Bé quan sit Hy,, HE phi tuyén véi tham sé thay doéi (NLPV), Tiép cin LMI,
Phwong phap chia luoi



Gridding-Based 7, Observer Design for the

Lorenz 63 System Using an NLPV Reformulation

ABSTRACT

This paper presents a robust H, observer design for the Lorenz 63 system based on a Nonlinear Parameter-

Varying (NLPV) reformulation. The nonlinear dynamics are approximated by gridding the state space and constructing

local linear models. At each grid point, an observer gain is synthesized by solving a linear matrix inequality (LMI), with

a common Lyapunov function ensuring stability across the operating range. The observer gain is updated online through

barycentric interpolation based on the current estimated state. The approach enables real-time, robust state estimation in

the presence of model nonlinearities and disturbances. Simulation results under both noisy and noise-free conditions

and comparison with an Extended Kalman Filter (EKF) confirm the effectiveness of the proposed design. Quantitative

evaluations using RMSE, NRMSE, and R? demonstrate high estimation accuracy and robustness of the observer across

a range of dynamic behaviors in the Lorenz 63 system.

Keywords: Lorenz system, H o, observer, Nonlinear parameter-varying (NLPV), LMI approach, Gridding method.

1. INTRODUCTION

The Lorenz 63 system is a classical benchmark in
nonlinear dynamics and chaos theory."* Due to
its strong nonlinearities and sensitivity to initial
conditions, it provides an ideal platform for
testing observer design techniques. Designing
observers for such systems is challenging,
especially when dealing with unknown inputs,
external disturbances, and nonlinearities.**

Traditional methods like the EKF often
rely on linearization and statistical assumptions,
which may not provide robustness in chaotic
regimes.”!?

An alternative is the Hoo observer framework,
which focuses on worst-case disturbance
attenuation.'* However, applying Hoo methods
directly to nonlinear systems is difficult due to
non-convexity.'

To overcome this issue, the nonlinear
system can be reformulated into a NLPV
structure. The state space is discretized through
gridding, and LMIs are employed to design
observer gains at multiple linearization points.
During online execution, the observer gain is
interpolated in real-time based on the current
estimated state using barycentric weights.'

heproposed approachi is validated

using the Lorenz 63 system. Estimation
performance is evaluated under both noisy
and noise-free scenarios using standard
quantitative metrics, including Root Mean
Square Error (RMSE), Normalized RMSE
(NRMSE), and the coefficient of
determination ( R?). Results confirm the
robustness and effectiveness of the observer
design across a wide range of operating
conditions.

The main contributions of this paper are
summarized as follows:

e A deterministic NLPV reformulation of
the stochastic Lorenz 63 system using
expectation and It correction.

o A grid-based H, observer synthesis
procedure using LMIs and a common
Lyapunov function.

e A real-time gain scheduling strategy using
barycentric interpolation based on the observer
state.

e Simulation-based performance evaluation
under noisy and noise-free conditions using
RMSE, NRMSE, and R? metrics.



The rest of this paper is organized as
follows. the NLPV
modeling of the Lorenz system. Section III
introduces the observer design approach via

Section II presents

2. MODELLING
REFORMULATION

AND NLPV

This section presents a systematic reformulation of
the original second-order Stochastic Differential
Equation (SDE) into a deterministic NLPV model.
This transformation facilitates tractable observer
synthesis using convex optimization techniques,
such as LML

2.1. Original Stochastic Model

The system under consideration is governed by a
nonlinear SDE of the form”’:

dy, = At + g(r)q2(O)dB, + Mhy ()R (8
[dz, + RY2(t)du, — 2h(y,)dt] (1)

where:
* y; € R™ denotes the state vector,
* f(-) is the nonlinear drift function,

« g()q'/?(t) represents the process diffusion
term,

* h(-) is a nonlinear measurement function,

M(t) € R™™ is the estimation covariance
matrix,

R(t) € RP*P is the measurement noise
covariance matrix,

* f3:,u; are standard Wiener processes.

The last term on the right-hand side
resembles the innovation update in ensemble-
based filters and includes both measurement
information and gain-based corrections.

2.2. Deterministic via

Expectation

Approximation

To obtain a tractable deterministic model, the
expectation of both sides of the SDE is
considered. Since the expected values of
increments the

Wiener process are zero,

stochastic terms vanish, yielding®'*:
dy 1
d_tt = IE[f(yt)] + EMfyy(yt)
+ Mh,(y, )R ()

gridding and LMlIs. Section IV provides
numerical simulations and evaluation. Section
V concludes the paper.

|2 — hG3) — 3 My, (1) 2)

Here, 9y, = E[y,] denotes the expected
state trajectory, and fy,,, h,, denote the second-
order derivatives (Hessians) of f and h,
respectively. The term involving %M fyy results

from Itd's correction.'®

2.3. NLPV Model Formulation

Let x(t): = y, represent the observer's estimated
state. Using first-order Taylor expansion, the
f(x) h(x) are

approximated by their Jacobians and higher-

nonlinear  function and

order residual terms. The system dynamics can
then be written as:

x(t) = A(p(0)x(t) + B(p()u(t) + frem (x(£))3)

where:

« A(p) =Vf(x) + %M fyy(x) : linearized drift

matrix with second-order correction,

* B(p) = Mhy(x)R_l(t): matrix

associated with measurement innovation,

input

* frem (x(t)): residual nonlinearities arising
from approximation errors,

« p(6) = {x(®), M), R(D)}:

parameter vector.

scheduling

The remainder term f,.,, (x(t)): captures the
higher-order nonlinear dynamics not explicitly
modeled in A(p) or B(p), and is assumed to satisfy
a Lipschitz condition:

”frem (xl) - ﬁ”em (x2)” < Lf”xl - x2” VX1, X, (4)

3. OBSERVER DESIGN VIA GRIDDING

This section presents the design of a robust state
observer for NLPV systems affected by both
process disturbances and nonlinear uncertainties.



The observer is synthesized using gridding
techniques and LMI conditions, ensuring an H,
performance level.

3.1. System Model with Nonlinearity and
Disturbance

Consider the nonlinear system with parameter-
varying structure:

x(t) = A(p(®)x(@®) + B(p(®))u(t) +
By (p(®))w(t) + frem(x(D));
y(@) = Cx(t) + Dy (p(O))w(t) (5)

where x(t) € R" is the system state, u(t) € R™ is
the control input, w(t) € R™ is the exogenous
disturbance, and f,., (x) is a nonlinear remainder
function satisfying a Lipschitz condition in (4).

3.2. Observer Structure

The structural form of the observer is presented as
follows:!”

2(t) = A(p(0)£(e) + B(p(£))u(t)
+fiem (2(®) + L(p () (y(®) = 9(@®));
y(t) = Cx(t)

(6)

Let e(t) = x(t) —x(t) denote the estimation

error. The error dynamics are derived as:
e(t) = (4(p(®) — L(p(D)C)e(®) + Af (1)
+(Buw (p(®)) = L(p(O)Dw (p(N)W(®)  (7)
where  Af(t) = frem (X(t)) = frem (X(2)) and
satisfies ||Af ()| < L¢lle(O)]l.
3.3. LMI Condition for ., Observer
w(t)

nonlinear uncertainties, a quadratic Lyapunov

To ensure robustness against and

function V(e) = e"Pe is considered, with P >
0. The following condition is imposed:

Vie)+z'z—y*w'w<0,z=Ce+D,w (8)
Calculate the derivative:

V(e)=e"(A—LC)"Pe+e ™ P(A—LC)e
+ 2e"P(B,, — LD,,)w + 2e " PAf 9)

Use the inequality'®!’:

1
2eTPAf < er||Af]1* + ;eTPZe
< ;12| e|? +§eTP2e (10)

Combined:
V(e)<eT((A—LO)TP+P(A—LC) + L2 )e

+2eTP(B, — LD,)w +—eTP%e  (11)
f

Create concatenation vector:

fz[fv], z=Ce+Dyw (12)
Apply the matrix inequality:
V+zz—y2wTw<&TWeE<0  (13)

Return to Standard LMI Form at each gridding
vertex:

Y=-PL=L=—Ply (14)
A; = A(py), Bw,; = By (p;), Dy = Dy (p;) (15)

Applying standard manipulations and bounding
Af(t) via the Lipschitz property, the inequality

reduces to the feasibility of the following LMI at
each grid point p;:

Ei+elfly @ CT

o/ —y?I D,;|<0  (16)
C D,; I
with definitions:
B, =AP+PAl +CTY +Y,C (17)
®; = PB,,; + Y;D,,; (18)

To ensure exponential convergence of the
estimation error, a decay rate condition is
embedded within the
Specifically, for a candidate Lyapunov function
V(e) =e " Pe, where P > 0, the derivative along the
estimation error dynamics is required to satisfy:

(19)

Lyapunov framework.

V(e) < —2BV(e)

This implies:



eT(A]P+PA))e < —2Be"Pe (20)
which leads to the matrix inequality:
ATP+PA; +2BP <0 1)

Here, the scalar f > 0 denotes a desired
minimum decay rate of the estimation error
dynamics, directly controlling the convergence
speed of the observer. The term 25P is therefore
incorporated into the LMI
guarantee that the estimation error decays at an

formulation to

exponential rate of at least f. This ensures a
desired performance level in transient response.

Accordingly, the main LMI condition at
each grid point p;: includes this term as follows:

AP +PA] +CTY;" +Y,C+ 2P +

€LfLy <0 (22)

The inclusion of 28P acts analogously to
pole placement in linear observer design, where
2 controls the speed of the eigenvalues of the
This the
shaping of observer convergence
through convex optimization. And LMI in (16) is

error dynamics. approach enables

systematic

rewritten:

Ei+ 2P +elfly @ CT
o] ~y?*l Dy;| <0
C Dy; —I

(23)

If feasible, the observer gains at the grid
point p;: is recovered as L; = —P~1Y;

3.4. Gridding and Barycentric Interpolation
Approach

To effectively design an observer for nonlinear
parameter-varying systems, the state-dependent
matrices A(p(t)), B(p(t))and L(p(t)) must be
approximated. Direct continuous-time synthesis
is generally intractable due to infinite-
dimensional dependency on the scheduling
parameter p(t). Therefore, a gridding approach

is adopted to discretize the state space.

The state space X < x(t) € R™ is
partitioned into a finite number of grid points
{x!I}_,, where a local LMI observer synthesis
is performed. At each grid point x[I an
observer gain LI is computed by solving the

corresponding LMI condition. These gains are
stored for online use.

To enable smooth gain variation and avoid
chattering between discrete observers, the gains
are interpolated during runtime using barycentric
weights. Let £(t) denote the current observer
state. The interpolated gain L(%(t)) is calculated
as:

L((D) = 2, 4, (R@) L, (24)

where 4,(+) are barycentric interpolation weights

satisfying YN, yi(ﬁ(t)) =1,and g, = 0.

4. NUMERICAL SIMULATION

This section validates the proposed gridding-
based H,, observer on the chaotic Lorenz 63
system under both noisy and noise-free
conditions. Performance is evaluated using

standard error metrics.

4.1. System Setup

The Lorenz 63 system is a well-known nonlinear

chaotic system governed by the following
differential equations:
() = Byw(t) + f(x(1)), 25)

y(t) = Cx(t) + Dy, w(t)

where  x(t) = [xq, X2,x3] T € R3%is the system
state, w(t) € R3denotes external disturbances, and
the measurement output is y(t) € R .The matrices
are defined as:

y()=Cx(t), C=[1 0 0] (26)
The nonlinear vector field f(x) is given by
o(xz — x1)
fx(@®) = |x1(p —x3) — x5 (27)
X1Xz — Bx3
with  parameters o = 10,p = 28,8 = g. To
facilitate  observer  design  using  convex

optimization tools, we reformulate the nonlinear
system into an NLPV structure by approximating
the dynamics through local linearizations.



The nonlinear vector field f(x) is linearized
around multiple grid points {x(i)}il within a

bounded region D c R3. At each point x(, the
Jacobian matrix is computed as:

AD; = J(x®) = g_f;

@ (28)
This results in a set of locally linearized
models:

x(t) = ADx(t) + Byw(t) + frem(x)  (29)

where fiom (X):= f(x) — A®x is the residual
nonlinearity. Assuming that f(x) is Lipschitz
continuous over D, the residual satisfies:

”frem (X) - frem (5&)” < Lf”x - 5&”’ Vx,fc € D(3O)

for some constant Ly > 0. To express the system in

NLPV form, we introduce a parameter trajectory
p(t) = x(t), leading to:

x() = A(p(@)x(t) + Byw(t) + frem (x) 31)
y(t) = Cx(t) + Dyw(t)

The matrix A(p(t)) is obtained via online
interpolation  of {A(i)} using barycentric
weights:

Alp®) =T w(p®)A®,  (32)

where }; p, = 1,1, 20

4

This interpolation ensures a smooth and

accurate approximation of the nonlinear

dynamics across the grid.
4.2. Lipschitz Constant Estimation

The observer gains are designed at grid points
uniformly sampled over [—20,20]3. At each
grid point, the local Jacobian is computed and
used to define A(p;).

The nonlinear drift term f(x) of the Lorenz 63
system is defined in equation (27). To facilitate
observer

design with Lipschitz-type

nonlinearities, the Lipschitz constant L is
required. A vector field f(x) is said to be
Lipschitz continuous over domain D c R" if
there exists a scalar Ly > 0 which satisfies the

equation (30).

A sufficient condition to obtain Lf is to evaluate

the spectral norm of the Jacobian matrix J(x):

Ly = sup|[J(x)ll2 (33)
X€D
where J(x) = 6];—55) is the Jacobian matrix

of the drift function.

For the Lorenz system, the Jacobian is
computed as:

—0 o 0
J() = Vf(x) = [p—xs -1 —x1] (34)
X2 X, —B

The spectral norm |[J(x)]||, is the largest
singular value of J(x), which can be numerically
evaluated over a bounded region D. In this work,

the domain is chosen as D = [-20,20]3,
covering the typical range of Lorenz state
trajectories.

A grid-based scan of J(x) across D yields
an upper bound: Ly ~ 56.6092

Fig. 1 describes the distribution of [|J(x)]|,
over a bounded domain in (xq,X;,x3). It is
observed that the
significantly,

spectral norm  varies

reaching values above Ly =
56.6092 in lower regions of the state space (i.e.,
x3< 0), while staying below 25 in upper regions
(i.e., x3 >10). This spatial variability reflects the
strong local nonlinearity of the Lorenz system,
which motivates the use of a gridding-based
observer design. By selecting local Lipschitz
bounds within each grid cell, the observer gain
can be adapted more accurately to the system's
local dynamics, avoiding conservatism associated

with a global Lipschitz constant.

This bound is used in the LMI formulation
to handle the nonlinear remainder term using
Lipschitz inequalities, ensuring robust estimation
even in the presence of nonlinear uncertainties.

Using CVX
programming (SDP)¥, a set of LMI conditions is
solved to obtain observer gains {L;}. At runtime,

toolbox and semidefinite

the gain L(X) is interpolated using barycentric
weights based on proximity to the grid centers.



The standard Jacobian distribution ||.J(z)||; in state space
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Figure 1. A graph representation of the Jacobian
[IJ(x)]|, in the state space.

Specifically, for each grid point i €{l,
2,..., 4} of the NLPV system in equation (24),
the LMI condition in equation (23) is solved to
synthesize a robust H,, observer.

The CVX toolbox in MATLAB is
employed to solve the optimization problem
and compute the observer gain matrices L;
corresponding to each value of the scheduling
parameter p, using the system matrices defined
in section 3.4.

The optimization yields a disturbance
attenuation level of 7y, = 0.0023. The
resulting observer gain L(X) of the four grid
points of p are as follows:

L(®) =[519.9294; —17.1069; 6.3601]”

4.3. Simulation Scenarios and Discussion

To evaluate and compare the performance of
the proposed H,, observer and the EKF?,
numerical simulations are carried out on the
Lorenz 63 chaotic system. The initial state of
the system is set as x(0) = [-5,—5,—5]7, and
both observers are initialized at the origin
[0,0,0]7. The EKF is implemented using a
first-order  prediction-correction  structure,
where the time-varying Jacobian matrix of the
Lorenz system is used in the prediction step.
The initial covariance matrix is selected as Py =
2 - I3 to ensure sufficient initial uncertainty for
the EKF. In contrast, the H,, observer uses a
gridding structure interpolated via barycentric
weights over a predefined grid of the state

space.

To provide a comprehensive performance
analysis, two sets of simulation conditions are
examined:

e Noise-Free Scenario: The system evolves
without any disturbances to establish a baseline.

Figure 2 illustrates the comparison between
the actual states x4 to x3 and their corresponding
estimated values X; to X5. In the plots, the solid
green line represents the true system states, the
red dashed line indicates the estimates from the
proposed H,, observer, while the blue dash-dot
line corresponds to the estimates obtained using
the EKF.
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Figure 2. Comparison of system states with noise-free

It is evident from the Fig. 2 plots that both
H o observer and the EKF closely track the true
system states. The estimation errors are
negligible for all state variables, reflecting
excellent accuracy in the absence of noise.
Notably:

In x;, both observers almost overlap with
the ground truth across the entire time span, with
only very slight divergence in highly dynamic



segments. The inset zoomed plots confirm sub-
millisecond response agreement.

In x,, the estimations remain aligned even

during sharp transient oscillations. This
highlights the observers’ ability to capture rapid

nonlinear dynamics.

In x3, where chaotic oscillations dominate,
both X3 and Xpgp accurately replicate the

system evolution.

The detailed zoom-in windows emphasize
that the grid-based H,
par with EKF under ideal conditions, while

observer performs on

offering the added benefit of robustness in the
presence of modeling uncertainties, which is
discussed further in the noisy scenarios.

e Noisy Scenario: Both process and
measurement noise are activated.

The state dynamics are subjected to an
additive zero-mean Gaussian process noise
w() ~N(0,Q0) and measurement noise
v(t) ~ N (0,R), where the covariance matrices
are chosen as follows:

Q=05-I;;R=1 (39)

The process noise w(t) is generated at
each time step as:

Wi = /Q - g, w ~ N(0,15) (36)
while the measurement noise is:
Ve = VR - Vi, i ~ N(0, 1) (37

Figure 3 compares the actual states x; to
x5 and their corresponding estimated values X;
to X3, in the presence of noise as described
above. The figures demonstrate that both
observers track the system well, but the
performance diverges during fast transients and
in regions of strong nonlinear coupling.

During sharp state transitions (e.g., t = 5.2s
and t = 17.7s), the EKF estimator shows
noticeable deviations from the ground truth,
especially in x; and x, (see zoomed-in insets).
This is attributed to the EKF’s reliance on local
linearization, which becomes inaccurate under
high system curvature.

The proposed H,, observer, designed via
gridding and interpolation of locally optimized
observer gains {L;}, exhibits uniform tracking
accuracy even under noise. This robustness
stems from its design via LMI constraints

incorporating Lipschitz bounds, which explicitly
account for nonlinear uncertainty in the
estimation error dynamics.
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Figure 3. Comparison of system states with noise

Tables 1-3 present the state estimation
performance indices - including Root Mean
Square Error (RMSE), Normalized RMSE
(NRMSE) and the Coefficient of Determination
(R?) - for both the EKF and the proposed Ho
observer, under noise-free and noisy conditions,
respectively.

e Root Mean Square Error (RMSE):

RMSE; = J%Z’,Ll (k) — % (k)2 (38)

e Normalized RMSE (NRMSE):
RMSE;

NRMSE; = max(x;)—min(x;) (39)
e Coefficient of Determination (R?) :
R' — 1 2 (xl. l) (40)

2 (xi—x;)?



Table 1. RMSE index of states
RMSE

With noise-free With Noise
EKF H,, EKF H,

X1 0.04042 0.00197

0.25921 0.00313

Xy 0.06177 0.15654 | 0.33442 0.16664

X3 0.07490 0.16884 | 0.27328 0.17989

Table 2. NRMSE index of states
N With noise-free With Noise

RMSE | EkF ., EKF .,
x; | 0.00114 5.62e-05 | 0.00757 9.14¢-05

X 0.00131 0.00336 | 0.00743 0.00370

0.00679 0.00447

X3 0.00197 0.00455

Table 3. R? index of states
R? With noise-free

EKF He | EKF He

X1 0.99996 1.00000 | 0.99896 0.99999
Xy 0.99995 0.99968 | 0.99857 0.99964
X3 0.99991 0.99955 | 0.99872 0.99944

With Noise

The simulation results demonstrate a
comprehensive between  the
proposed H, observer and the EKF under both
noise-free and noisy conditions. As presented in
Tables 1-3, the H,, The observer exhibits

superior robustness, especially in the presence

comparison

of process and measurement noise.

In the noise-free scenario, EKF achieves
slightly better RMSE values for x, and xs,
while the H, observer delivers the best
accuracy for x4, achieving an RMSE of only
0.00197 and a coefficient of determination R? =
1.0000. However, in the noisy case, the
performance of EKF significantly degrades
across all states. For instance, the RMSE for x;
increases to 0.25921 under EKF, whereas the
proposed observer maintains a remarkably low
RMSE of 0.00313.

The NRMSE analysis further supports

these  findings, with the H, observer
consistently achieves lower normalized errors
under noisy conditions. Specifically, for x;, the

NRMSE of the H,, observer remains as low as
9.14x107°, compared to 7.57x10 for EKF.

In terms of the coefficient of determination,
the H,, observer consistently attains higher R?
values in both scenarios, indicating a better
match between estimated and actual states.
Notably, the observer preserves an R? of over
0.9999 for all states even in the presence of
noise, whereas EKF drops to 0.9985 or lower.

Overall, these results validate the robustness
and estimation accuracy of the proposed
H, observer design. The gridding-based LMI
synthesis, combined with barycentric
interpolation of the observer gain, enables the
observer to maintain high precision under strong
nonlinearities and measurement uncertainties. In
contrast, EKF performance is more sensitive to
noise and model mismatch, highlighting the
conservative yet effective design philosophy of

the H o, approach.

5. CONCLUSIONS

This paper presented an H, observer design for
the Lorenz 63 chaotic system using a NLPV
framework combined with a Lipschitz-based
approach. By leveraging gridding techniques and
convex optimization via semidefinite
programming, the

synthesized at predefined grid points and

observer gains  were

interpolated in real time based on barycentric
weights.

Simulation results demonstrated that the
proposed H, observer provides superior
estimation accuracy and robustness compared to
the EKF, particularly under process noise
conditions. Quantitative metrics such as RMSE,
NRMSE, and RZ?confirmed the consistent
performance improvements of the proposed
method.



This framework offers a practical and
scalable solution for state estimation in
nonlinear systems with strong local dynamics.
Future work will explore extensions to output-
feedback control, observer-based
synchronization of chaotic systems, and
application to more complex NLPV systems
such as robotic manipulators or fluid dynamics.
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