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Trong bài báo này, chúng tôi trình bày kết quả về miền giải tích của hàm năng lượng tự do cho mô hình Ising,

trong đó mỗi spin chỉ tương tác với các spin lân cận của nó. Nghiên cứu của chúng tôi dựa trên khai triển cụm, một công

cụ mạnh mẽ trong vật lý thống kê, kết hợp những hiểu biết mới từ Fernandez và Procacci về tiêu chí hội tụ của nó.
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ABSTRACT

In this paper, we study the analytic domain of free energy function for Ising model, specifically for cases

where only neighboring spins interact. Our study comes from using cluster expansion, a powerful tool in statistical

physics, incorporating new insights from Fernandez and Procacci on its convergence criteria.
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1. INTRODUCTION

The Ising model is a mathematical representation

of ferromagnetism in statistical mechanics. It con-

sists of discrete variables that represent the magnetic

dipole moments of atomic “spins”, which can take on

one of two states: +1 or -1. These spins are arranged

in a graph, typically a crystal lattice, where the local

structure repeats periodically in all directions, allow-

ing each spin to interact with its neighbors. One area

of interest for mathematicians and physicists is the

analytical validity of the free energy function in the

Ising model. These issues can be referenced in Friedli

and Velenik’s book.1

The free energy function in mathematics and

physics is defined as the logarithm of the partition

function. Analyzing the properties of the free energy

function is crucial for understanding phase transi-

tions, particularly in the Isingmodel. This approach is

also applicable to more complex mathematical mod-

els in statistical mechanics, such as the Potts model,

Blume-Capel model, and Curie-Weiss model. To in-

vestigate the analytical properties of the free energy

function, we typically calculate its analytical domain.

One of the tools used to study the analytical prop-

erties of the free energy function is the cluster expan-

sion technique. The cluster expansion represents a

power series with respect to auxiliary parameters, of-

ten referred to as fugacity. The first application of the

cluster expansion was to examine the pressure func-

tion at equilibrium as a power series based on the den-

sity function derived from the empirical descriptions

of gases and liquids. In the theoretical framework of

fluids, these parameters correspond to pressures de-

termined respectively from the ideal gas law or the

pressure of certain suitable reference components.

This problem is discussed in various references.1,2

Cluster expansion has extensive applications in

various fields, including probability theory and im-

proving the bounds on colored graphs. These appli-

cations hinge on representing the partition function

specific to each problem, along with the associated

reference parameters for their characteristics. Further

insights into the applications of cluster expansion can

be found in references.1–4
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A common question that arises in these contexts

is when the free energy function behaves as an ana-

lytic function in relation to the identified parameters.

One method to improve the analytic range of the free

energy function in the Ising model involves in refin-

ing the convergence criteria of the cluster expansion.

Study on the convergence domain of cluster ex-

pansion began in the late sixties,5,6 but it did not re-

ceive significant attention until several decades later.

The convergence of cluster expansion has been ex-

amined using various methods, including Kirkwood-

Salzburg equation,5 tree-graph boundaries,7 induc-

tion methods,8 and partition schemes9 (for a com-

parison of these methods, see reference10). Among

these approaches, the partition scheme has yielded

the most promising results and has been the focus of

several applications and improvements in the paper.9

This work has been expanded upon in various stud-

ies, summarized in reference.2 Nevertheless, the ad-

vancements made by Fernandez-Procacci regarding

the convergence criteria remain the most promising

for practical applications.

This paper aims to explore the expansion of the

analytical domain of the free energy function for the

Ising model, building on the advancements made by

Fernandez-Procacci in the convergence domain of

the cluster expansion. Specifically, we will provide

the analytic domainwhen the external field is not zero

(in reference,1 this model is referred to as the Ising

model with a strong field).

2. ISING MODEL IN A STRONG FIELD

ANDMAIN RESULTS

To start this section, let us revisit the definition

of distances,

d(i, j) := ‖i− j‖∞ = max
1≤k≤d

|ik − jk| (1)

for i, j ∈ Zd, and

d(S, S′) := inf{d(κ, `) : κ ∈ S, ` ∈ S′}

for S, S′ ⊂ Zd.

We consider the set Ω = {−1, 1}Zd

. Configu-

rations denote by σ = (σx)x∈Zd . Let us consider a

finite set Λ ⊂ Zd, configurations σΛ ∈ {−1, 1}Λ :=

ΩΛ and Hamiltonians with free boundary condition

H∅
Λ;β,h(σΛ) := −β

∑
{i,j}∈Λ

f(i, j)σiσj − h
∑
i∈Λ

σi,

(2)

where β ∈ R≥0 is the inverse temperature, h ∈ R is

the external field, and the interaction f(·, ·) is defined
as

f(i, j) =

{
1 if ‖i− j‖∞ = 1

0 otherwise
. (3)

Consider a configurations σΛωΛc ∈ Ω and Hamilto-

nians

Hω
Λ;β,h(σΛωΛc) := H∅

Λ;β,h(σΛ)− β
∑
i∈Λ

j∈Λc

f(i, j)σiωj ,

(4)

where the interaction f(·, ·) is defined in (3), a con-

figuration σΛωΛc ∈ Ω includes two parts σΛ ∈
{−1, 1}Λ := ΩΛ, and ωΛc ∈ {−1, 1}Λc

which is

usually called a boundary of the system, or configu-

rations are frozen outside of the finite set Λ, and the

term

β
∑
i∈Λ

j∈Λc

f(i, j)σiωj ,

refers to the interaction between the internal and ex-

ternal components of the system.

The partition function with free boundary condi-

tion in Λ is

Z∅
Λ (β, h) :=

∑
σΛ∈ΩΛ

exp
(
−H∅

Λ;β,h(σΛ)
)
, (5)

the (finite-volume) free energy function (pressure

function) with free boundary condition is

P∅
Λ (β, h) :=

1

|Λ|
logZ∅

Λ (β, h). (6)

And the partition function with ω−boundary condi-

tion in Λ is

Zω
Λ (β, h) :=

∑
σΛ∈ΩΛ

exp
(
−Hω

Λ;β,h(σΛωΛc)
)
,

(7)
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the (finite-volume) free energy function with

ω−boundary condition in Λ is

Pω
Λ (β, h) :=

1

|Λ|
logZω

Λ (β, h). (8)

The thermodynamic free energy function p# is ob-

tained through the thermodynamic limit

p#(β, h) = lim
Λ↑Zd

P #
Λ(β, h) (9)

in Fisher sense, where # := ∅ or ω.

We utilize the fact that thermodynamic pressure

is independent of boundary conditions (for reference,

please take a look at Theorem 3.81) and, for the sake

of algebraic convenience, we will focus in this sec-

tion on “plus” boundary conditions: ωi = 1 for all

i 6∈ Λ. The interaction between the inside and outside

of the system can be described as the following term

β
∑

i∈Λ, j 6∈Λ
‖i−j‖∞=1

σiωj = β
∑

i∈Λ, j 6∈Λ
‖i−j‖∞=1

σi .

Note that from this point forward, we will use the

+ notation to represent the plus boundary condition

for all previously mentioned quantities. This includes

the free energy function in a finite domain, partition

functions, and the thermodynamic free energy func-

tion.

To get the presentation of partition function, we

add and subtract 1 to each term in this Hamiltonian

and for each σΛ ∈ ΩΛ, let us introduce the set

Λ−(σΛ) = {i ∈ Λ : σi = −1} . (10)

We obtain

H+
Λ;β,h(σΛ) =− β |EΛ| − h |Λ|+ 2β

∣∣∂eΛ−(σΛ)
∣∣

+ 2h
∣∣Λ−(σΛ)

∣∣ (11)

where

∂eΛ
−(σΛ) =

{
{i, j} : i ∈ Λ−(σΛ),

j /∈ Λ−(σΛ), ‖i− j‖∞ = 1
}

and

EΛ =
{
{i, j} ⊂ Zd : {i, j}∩Λ 6= ∅, ‖i−j‖∞ = 1

}
.

Each σΛ corresponds one-to-one to a term of devia-

tion from the ground stateΛ−(σΛ) (the configuration

with minimal energy), which is the “all +1” config-

uration. As a consequence, the partition function can

be expressed in terms of deviations from the ground

state:

Z+
Λ (β, h) = exp(β|EΛ|+ h|Λ|)ZLF

Λ (β, h), (12)

where the “large field” polymers partition function

ZLF
Λ (β, h) is given as

ZLF
Λ (β, h) :=

∑
Λ−⊂Λ

exp
(
−2β|∂eΛ−| − 2h|Λ−|

)
.

From the definition of the distance in (1), let us

declare that two vertices i, j ∈ Λ− are connected if

and only if d(i, j) ≤ 1, and we can decompose Λ−

into maximally connected components (For example,

see Figure 1),

Λ− = S1 ∪ ... ∪ Sn

with d(S`, Sk) > 1 for ` 6= k.
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Figure 1. A configuration of the Ising model.

Each connected component of the shaded area

delimits one of the polymers S1, . . . , S6
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Before giving an alternative expression of large

field polymers partition function, let us introduce the

definitions of compatible and incompatible objects as

follows:

Definition 2.1. Let us define S, S′ to be compatible,

and denote S ∼ S′, if d(S, S′) ≥ 2. Otherwise S,

and S′ are incompatible and we denote S � S′.

Denote

ζ(S, S′) =

{
1 if S ∼ S′

0 if S � S′ .

Since |∂eΛ−| =
∑n

i=1 |∂eSi| and |Λ−| =
∑n

i=1 |Si|,
then the expression of large field polymers partition

function can be rewritten in the following form

ZLF
Λ (β, h) = 1

+
∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

Λ

∏
1≤i<j≤n

ζ(Si, Sj)
n∏

`=1

wβ,h(S`),

(13)

with

PΛ = {S ⊂ Λ : S is non-empty and connected of Λ}

and

wβ,h(S) = exp(−2β|∂eS| − 2h|S|). (14)

For n ∈ N, let C[n] be the set of all connected graphs
on n vertices. For each graph G = (V (G), E(G)),

let V (G) denote the vertex set of the graph G and

E(G) denote the edge set of the graph G.

Theorem 2.1. The pressure with+-boundary condi-

tion in Λ can be expressed as the following form

P+
Λ (β, h) = β

|EΛ|
|Λ|

+ h+
1

|Λ|
logZLF

Λ (β, h), (15)

where

logZLF
Λ (β, h)

=
∞∑
n=1

1

n!

∑
(S1...Sn)∈Pn

Λ

aTn (S1, . . . , Sn)
n∏

i=1

wβ,h(Si),

(16)

with Ursell function ωT
n (·) defined as

aTn (S1, . . . , Sn) :=
∑

G∈C[n]

∏
{i,j}∈E(G)

[ζ(Si, Sj)− 1].

(17)

Expression (16) is well-known as cluster expansion.

Proof. Expression (13) serves as the partition func-

tion for a gas of polymers, which is comprised of sub-

sets of Λ, as discussed in Fernandez and al. paper.10

Consequently, we can apply the theory developed for

these systems to prove expression (15). For more de-

tails, see references.10,11

The next theorem establishes a sufficient con-

dition for the existence of the pressure function as

Λ → Zd in the thermodynamic limit and allows us to

verify the analytic domain of the pressure function.

Denote

PZd =
{
S ⊂ Zd : S 6= ∅ and connected of Zd

}
,

and PΛ → PZd as Λ → Zd.

Theorem 2.2. If there exists a > 0 such that

∞∑
k=1

|Ak| e−2dβ k(d−1)/dV (1)1/d−2h k+(2d+1)ak

≤ ea − 1 (18)

with

Ak := {S ∈ PZd : 0 ∈ S, |S| = k}, (19)

and V (1) denoting the volume of a d-dimensional

sphere of radius 1, then the following hold:

(i.) Consider wβ,h = {wβ,h(S)}S∈PZd
. For S ∈

PZd , the series |Γ|S (wβ,h) defined in (24) is conver-

gent. Furthermore,

|Γ|S (wβ,h) ≤ ea|S|.

(ii.) The free energy function (15) converges ab-

solutely and uniformly in Λ, and

p+(β, h) = βd+ h+
∑

X⊂Zd:X30

1

|X|
Ψ(X), (20)
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where, for eachX ⊂ Zd, Ψ(·) is defined as follow:

Ψ(X) (21)

=

∞∑
n=1

1

n!

∑
(S1...Sn)∈Pn

Zd
S1∪···∪Sn=X

aTn (S1, . . . , Sn)

n∏
i=1

wβ,h(Si)

Proof. Part (i) of Theorem 2.2 follows from Lemma

4.2, which will be presented in Subsection 4.2 of this

paper.

Part (ii) of Theorem 2.2 is derived from the

Fernandez-Procacci Theorem.9 We will omit the de-

tailed proof and refer readers to1,11 for further infor-

mation.

The main purpose of this paper is to identify

the domain of inverse temperature β and the exter-

nal magnetic field h for which the pressure function

p(β, h) is analytic, as stated in the following theorem.

Theorem 2.3. The pressure function p(β, h) is ana-

lytic in the domain D with

D = {(β, h) ∈ R× R : β ≥ 0; 2h ≥ φ1(ā)}

where φ1 is defined in (47) and ā in (50).

3. CLUSTER EXPANSION FOR SUBSET

GASES

Subset gases are specific types of polymer gases

that are frequently utilized in cluster expansion

within statistical mechanics. Their definition requires

a countable subset, denoted by,V (e.g.Zd) which acts

as an underlying “space”. Polymers are defined as fi-

nite, non-empty subsets of V, represented mathemat-

ically as

PV = {S ⊂ V : 0 < |S| < ∞}.

with compatibility relation, denoted by S ∼ S′ de-

pending on the models we are working with. For in-

stance, in Section 2, we stated that S ∼ S′ if and

only if d(S, S′) ≥ 2. In the work of Bissacot, Pro-

cacci and Fernandez,10 it is mentioned that S ∼ S′

if and only if S ∩ S′ = ∅. Polymers can now be

measured through its cardinality, so it makes sense

to talk about large and small polymers. The defini-

tion of the gas is completed by a family of activities

z = {zS ∈ C}S∈PV . Let us define the partition

function for gas polymers as follow

Z(z) = 1 (22)

+
∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

V

∏
1≤i<j≤n

ζ(Si, Sj)

n∏
i=1

zSi
.

Using Mayer’s trick (which can be found in11), we

can derive logZ(z) as the following form

logZ(z)

=
∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

V

aTn (S1, . . . , Sn)

n∏
i=1

zSi
,

(23)

where aTn (·) is defined in (17).
To study the convergence of cluster expansion,

we typically examine it through the convergence con-

ditions of the formal power series in infinite vol-

ume as below (see9 for a full explanation): For each

S ∈ PV,

|Γ|S(ρ) = 1

+

∞∑
n=1

1

n!

∑
(S1,...,Sn)∈Pn

V

|aTn+1(S, . . . , Sn)|
n∏

i=1

ρSi

(24)

with ρ ∈ [0,∞)PV .

We will now examine some convergent condi-

tions of cluster expansion as given in equation (24).

As a consequence of Theorem 2.3.2,11 the cluster ex-

pansion is convergent under Fernandez-Procacci cri-

terion known as the best convergent condition, which

is given in the following theorem.

Theorem 3.1 (Fernández-Procacci criterion). Sup-

pose that for some ξ ∈ [0,∞)PV there exists µ ∈
[0,∞)PV such that

ξS0
ψFP
S0
(µ) ≤ µS0

, for each S0 ∈ PV (25)
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with

ψFP
S0
(µ) = 1 +

∑
n≥1

1

n!

∑
(S1,...,Sn)∈Pn

V
S0�Si, Si∼Sj, 1≤i,j≤n

n∏
i=1

µSi

(26)

Then the series |Γ|S (ξ) defined in (24) is convergent.

Furthermore, for each S ∈ PV,

ξS |Γ|S (ξ) ≤ µS .

To apply the Fernández-Procacci criterion, for

most of the models, we substitute µγ = ξγe
a|γ|

to obtain

1+
∑
n≥1

∑
{S1,...,Sn}⊂PV

S0∩Si 6=∅, Si∩Sj=∅, 1≤i<j≤n

n∏
i=1

ξie
a|Si| ≤ ea|S0|.

(27)

From the constraint in the sum, S0 ∩ Si 6= ∅, Si ∩
Sj = ∅, 1 ≤ i < j ≤ n, this means that each

of the polymers S1, . . . , Sn must intersect different

points in S0 to avoid overlapping. Consequently, we

can conclude that: (i) n ≤ |S0|, and (ii) there are n

different points in S0 touched by S1 ∪ . . . ∪ Sn. The
selection of these points can be done in

(|S0|
n

)
ways.

Hence the left-hand side of (27) is less than or equal

to

1 +

|S0|∑
n=1

(
|S0|
n

)[
sup
x∈S0

∑
S∈PV
S3x

ξSe
a(S)

]n

=

[
1 + sup

x∈S0

∑
S∈PV
S3x

ξSe
a(S)

]|S0|

. (28)

This leads us to the following sufficient condition for

(27)

sup
x∈S0

∑
S∈PV
S3x

ξSe
a|S| ≤ ea − 1. (29)

This condition, in fact, coincides with the known (but

forgotten) Gruber-Kunz condition5 except that the

later involves a sharp inequality sign. The condition

is useful for numerous applications including con-

tour ensembles of low-temperature phases, geometri-

cal objects of high-temperature expansions, random

sets of the Fortuin-Kasteleyn representation of the

Potts model, ….

4. PROOFS

4.1. Alternative Gruber-Kunz condition

In this section, we will utilize the Fernandez-

Procacchi criterion given in Section 3 along with a

new compatible relation presented in Section 2 to

derive the improvement of Gruber-Kunz condition

which is presented in the following proposition.

Proposition 4.1. If there exists a > 0 such that

sup
x∈Zd

∑
x∈S

S∈PZd

wβ,h(S)e
a|[S]1| ≤ ea − 1 (30)

with

[S]1 := {j ∈ Zd : d(j, S) ≤ 1}, (31)

then |Γ|S (wβ,h) converges, for wβ,h =

{wβ,h(S)}S∈PZd
. Furthermore, for every S ∈ PZd ,

|Γ|S (wβ,h) ≤ ea|S|.

Proof. Let us start with following conclusion readily

from Theorem 3.1 that |Γ|S (ρ) converges if for each

S ∈ P ,

1+
∑
n≥1

∑
(S1,...,Sn)∈Pn

Zd
S�Si, Si∼Sj, 1≤i,j≤n

n∏
i=1

wβ,h(Si)e
a(Si) ≤ ea(S)

(32)

where we take µS = wβ,h(S)e
a(S). It is easy to see

that

S � S′ ⇐⇒ d(S, S′) ≤ 1 ⇐⇒ S ∩ [S′]1 = ∅

with [S]1 defined in (31), and

S ∼ S′ ⇒ d(S, S′) > 1 ⇒ S ∩ S′ = ∅.

It implies that the left-hand side of convergent condi-

tion (32) can be bounded by

1 +
∑
n≥1

∑
{S1,...,Sn}⊂PZd

[S]1∩Si 6=∅, Si∩Sj=∅, 1≤i,j≤n

n∏
i=1

wβ,h(Si)e
a(Si).

(33)
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Then we can replace the convergent condition (32)

by

1 +
∑
n≥1

∑
{S1,...,Sn}⊂PZd

[S]1∩Si 6=∅, Si∩Sj=∅, 1≤i,j≤n

n∏
i=1

wβ,h(Si)e
a|[Si]1|

≤ ea|[S]1|. (34)

By an argument analogous to that used to derive the

Gruber-Kunz condition (29), starting with the con-

straint in the sum, [S]1∩Si 6= ∅, Si∩Sj = ∅, 1 ≤
i < j ≤ n, this means that each of the polymers

S1, . . . , Sn must intersect different points in [S]1 to

avoid overlapping. Consequently, we can conclude

that: (i) n ≤ |[S]1|, and (ii) there are n different

points in [S]1 touched by S1∪ . . .∪Sn. The selection
of these points can be done in

(|[S]1|
n

)
ways. Hence the

left-hand side of (27) is less than or equal to

1 + sup
x∈Zd

∑
x∈S

S∈PZd

wβ,h(S)e
a|[S]1| ≤ ea. (35)

The proof has been completed.

4.2. Proof of Theorem 2.3

Before proceeding with further calculations, let

us establish a weaker condition for the convergence

of the power series |Γ|S(·) in the following lemma.

This condition arises from a bound on the weight

wβ,h(·)ea|[S]1|, as outlined in this lemma, along with

the Gruber-Kunz condition. This bound is particu-

larly useful for estimating the parameters β and h.

Lemma 4.2. For each S ∈ PZd ,

wβ,h(S) ≤ e−βdVd(1)1/d[|S|](d−1)/d−h|S|, (36)

with V (1) denoting the volume of a sphere of radius

1, and

ea|[S]1| ≤ ea(2d+1)|S|. (37)

Furthermore, if there exists a > 0 such that

∞∑
k=1

|Ak| e−2dβ k(d−1)/dV (1)1/d−2h k+(2d+1)ak

≤ ea − 1 (38)

with

Ak := {S ∈ PZd : 0 ∈ S, |S| = k}, (39)

then |Γ|S (wβ,h) converges and

|Γ|S (wβ,h) ≤ ea|S|,

for each S ∈ PZd .

Proof. We observe that

|S| ≤ |[S]1| ≤ (2d+ 1) |S| , (40)

then the inequality (37) holds.

To prove the inequality (36), we begin with the

fact that the smallest ratio of area to volume is

achieved by a d-dimensional sphere. Denoting the

volume and surface area of a sphere of radius R, re-

spectively,

Vd(R) = Vd(1)R
d

Sd(R) = dVd(1)R
d−1

we obtain

|∂eS| ≥ Sd(R) = dVd(1)
1/d[Vd(R)]

(d−1)/d

= dVd(1)
1/d|S|(d−1)/d. (41)

As a consequence of inequalities (36), (37), and the

condition (38), we obtain

sup
x∈Zd

∑
x∈S

S∈PZd

e−2β|∂eS|−2h|S|+a|[S]1|

≤
∞∑
k=1

|Ak| e−2dβ k(d−1)/dV (1)1/d−2h k+(2d+1)ak

≤ ea − 1 (42)

withAk defined in (39). Thus, the alternative Gruber-

Kunz condition is satisfied, completing the proof as

a consequence of Proposition 4.1.

The next two lemmas are crucial for determining

the number of elements in Ak.
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Lemma 4.3 (Lemma 3.601). Let G be connected

graph with n edges. Starting from an arbitrary ver-

tex of G, there is a path in G crossing each edge of

G exactly twice and ending at the starting vertex.

Proof. The proof uses an induction argument. For

n = 1 the result is trivial. Assume that the claim

holds for k = n− 1 and consider a connected graph

G with n-edges. Let i0 be the starting vertex in G

and consider a vertex j0 ∈ V (G) such that {i0, j0} ∈
E(G). There are two possibilities forE(G)\{i0, j0}:

• It equalsE(G1)whereG1 is a connected graph.

In this case, the desired path is obtained by concate-

nating {i0, j0} with the path in G1 starting from j0
and satisfying the inductive hypothesis, followed by

the final step {i0, j0}.
• It equalsE(G1)∪E(G2)whereG1 andG2 are

each connected but they are mutually disconnected.

The initial site i0 is a vertex of G1 and j0 a vertex of

G2. In this case the desired path is obtained by the fol-

lowing concatenation: First {i0, j0}, second the in-

ductive path in G2 starting and ending at j0, third

{i0, j0} again, and fourth the inductive path in G1

starting and ending at i0.

In both cases, we obtain a path that starts and ends

at i0, with exactly two visits to each edge of G.

Lemma 4.4. For k ≥ 1,

|Ak| ≤ (2d)2k−2. (43)

where Ak is defined in (39).

Proof. For each set S ∈ PZd such that 0 ∈ S and

|S| = k, there exists a spanning tree that contains

k−1 edges. Consequently, by applying Lemma (4.3),

the number of connected sets with k elements that in-

clude 0 is bounded above by the number of paths of

length 2k − 2 starting from 0. This quantity is cer-

tainly less than (2d)2k−2.

We now start with the proof of our main result in

this paper. The infinite volume free energy p(β, h)

inherits the analyticity of the positive series |Γ|S(·)

(for more details, see references1,11). Thus we can

confirm that all values of the external field h that

meet the condition (38) are sufficient for the analyt-

icity of p(β, h).

Proof of Theorem 2.3. We start with the condition

(38), and apply Lemma 4.4 to obtain

∞∑
k=1

|Ak| e−2dβV (1)1/dk(d−1)/d−2hk+(2d+1)ak

≤
∞∑
k=1

(2d)2k−2e[−2h+(2d+1)a]k

=
e(2d+1)a−2h

1− (2d)2e(2d+1)a−2h
, (44)

for h > 0 satisfying

4d2e(2d+1)a−2h < 1. (45)

Inequality (44) implies that (38) is valid for h when-

ever there exists a constant a > 0 such that

e(2d+1)a−2h

1− (2d)2e(2d+1)a−2h
≤ ea − 1 (46)

It is equivalent to

2h ≥ ln
[
1 + 4d2(ea − 1)

]
− ln(ea − 1) + 2da+ a

:= φ1(a) (47)

and from the condition (45), we have

2h > 2 ln(2d) + 2da+ a := φ2(a).

Then, for each a > 0,

2h ≥ max[φ1(a), φ2(a)] = φ1(a). (48)

For a > 0, we have

ln
[
1 + 4d2(ea − 1)

]
− ln(ea − 1) ≥ ln(4d2).

Thus, for each a > 0, as a consequence of the in-

equality (48), to optimize the domain for the field h,

we can take

2h ≥ min
a>0

φ1(a). (49)

Elementary analysis shows that φ1(a) has a unique

minimum at

ā = ln

[
(2d+ 1)(8d2 − 1) + 1 +

√
∆

8d2(2d+ 1)

]
, (50)
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with

√
∆ = [(2d+1)(8d2−1)+1]2−16(2d+1)2(4d4−d2).

Hence,

2h ≥ φ1(ā). (51)

The proof of Theorem 2.3 is completed.

4.3. Comparison with Friedli and Velenik re-

sult.

In the last part, we compare our estimations with

the results provided in Friedli and Velenik’s book1

which is one of the newest result on this topic. To

describe the latter, let us denote

η(h, d) =
∞∑
k=1

(2d)2ke(2d+1−2h)k

H+ = {h : Reh ≥ h̄} (52)

with

h̄ := inf{h : η(h, d) < 1, h > 0}.

Friedli and Velenik state that if h ∈ H+, then the

cluster expansion in the equation (16) converges ab-

solutely. By performing a simple computation, we

can estimate that

2h̄ = ln(8d2) + 2d+ 1. (53)

As a consequence of inequality (49), plug in a = ln 2

into the function φ1(a), we have

2h̄ = ln(8d2) + 2d+ 1

≥ ln(4d2 + 1) + d2 ln 2 + ln 2 ≥ min
a>0

φ1(a).

(54)

Inequality (54) shows that our estimate is lower than

Friedli and Velenik’s bound1 (for more details, see

Figure 2). Let us examine the ratio between our

bound and Friedli and Velenik’s bound1, as defined

below

r(d) :=
φ1(ā)

log(8d2) + 2d+ 1
,

where φ1 is defined in (47) and ā in (50). In Figure

3, we observe that the rate R decays exponentially,

approaching zero as d tends to infinity.

Figure 2. A comparison with Friedli and

Velenik result (green line presented for Friedli

and Velenik’s result and red line presented for

our result)

Figure 3. The rate between our bound and

Friedli and Velenik bound
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