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ABSTRACT

In this paper, we study the analytic domain of free energy function for Ising model, specifically for cases

where only neighboring spins interact. Our study comes from using cluster expansion, a powerful tool in statistical

physics, incorporating new insights from Fernandez and Procacci on its convergence criteria.
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1. INTRODUCTION

The Ising model is a mathematical representation
of ferromagnetism in statistical mechanics. It con-
sists of discrete variables that represent the magnetic
dipole moments of atomic “spins”, which can take on
one of two states: +1 or -1. These spins are arranged
in a graph, typically a crystal lattice, where the local
structure repeats periodically in all directions, allow-
ing each spin to interact with its neighbors. One area
of interest for mathematicians and physicists is the
analytical validity of the free energy function in the
Ising model. These issues can be referenced in Friedli
and Velenik’s book. !

The free energy function in mathematics and
physics is defined as the logarithm of the partition
function. Analyzing the properties of the free energy
function is crucial for understanding phase transi-
tions, particularly in the Ising model. This approach is
also applicable to more complex mathematical mod-
els in statistical mechanics, such as the Potts model,
Blume-Capel model, and Curie-Weiss model. To in-
vestigate the analytical properties of the free energy

function, we typically calculate its analytical domain.

One of the tools used to study the analytical prop-
erties of the free energy function is the cluster expan-
sion technique. The cluster expansion represents a
power series with respect to auxiliary parameters, of-
ten referred to as fugacity. The first application of the
cluster expansion was to examine the pressure func-
tion at equilibrium as a power series based on the den-
sity function derived from the empirical descriptions
of gases and liquids. In the theoretical framework of
fluids, these parameters correspond to pressures de-
termined respectively from the ideal gas law or the
pressure of certain suitable reference components.

This problem is discussed in various references. >

Cluster expansion has extensive applications in
various fields, including probability theory and im-
proving the bounds on colored graphs. These appli-
cations hinge on representing the partition function
specific to each problem, along with the associated
reference parameters for their characteristics. Further
insights into the applications of cluster expansion can

be found in references. '™



A common question that arises in these contexts
is when the free energy function behaves as an ana-
lytic function in relation to the identified parameters.
One method to improve the analytic range of the free
energy function in the Ising model involves in refin-
ing the convergence criteria of the cluster expansion.

Study on the convergence domain of cluster ex-
pansion began in the late sixties, > but it did not re-
ceive significant attention until several decades later.
The convergence of cluster expansion has been ex-
amined using various methods, including Kirkwood-
Salzburg equation, tree-graph boundaries,” induc-
tion methods,® and partition schemes® (for a com-
parison of these methods, see reference!?). Among
these approaches, the partition scheme has yielded
the most promising results and has been the focus of
several applications and improvements in the paper.’
This work has been expanded upon in various stud-
ies, summarized in reference.? Nevertheless, the ad-
vancements made by Fernandez-Procacci regarding
the convergence criteria remain the most promising
for practical applications.

This paper aims to explore the expansion of the
analytical domain of the free energy function for the
Ising model, building on the advancements made by
Fernandez-Procacci in the convergence domain of
the cluster expansion. Specifically, we will provide
the analytic domain when the external field is not zero
(in reference,! this model is referred to as the Ising
model with a strong field).

2. ISING MODEL IN A STRONG FIELD
AND MAIN RESULTS

To start this section, let us revisit the definition
of distances,

d(i,j) = |li = jlloo = gﬂlggd\zk—yk! (1)

for i,j € Z%, and
d(S,8") := inf{d(k,l): k€ S, L €S}
for S, S’ C Z¢.

We consider the set Q@ = {—1,1}%". Configu-
rations denote by & = (0y)eza. Let us consider a
finite set A C Z¢, configurations o € {—1,1}* :=
Qx and Hamiltonians with free boundary condition

= —f Z f’LjO'ZO'J—hZUZ,

{i,5}eA i€A
2

where 3 € R is the inverse temperature, h € R is

HABh O'A

the external field, and the interaction f (-, -) is defined

f(Z,]):{ !

as

iflli — 4 -1
1 “Z J”OO (3)

0 otherwise

Consider a configurations opwp. € ) and Hamilto-
nians

BZf/L.]O-’Lw]7

i€EA
JEAC

H‘/‘\’;@h(al\w,\c) = HAﬁh o\)

“4)
where the interaction f(-, ) is defined in (3), a con-
figuration opawpae € §Q includes two parts oy €
{—1,1}"* := Qu, and wpe € {—1,1} which is
usually called a boundary of the system, or configu-
rations are frozen outside of the finite set A, and the
term

B f(i,f)oiw,

ieA
jene

refers to the interaction between the internal and ex-
ternal components of the system.

The partition function with free boundary condi-
tion in A is
Z2B,0) = Y exp (<HEgu(00) s )
XS YN

the (finite-volume) free energy function (pressure
function) with free boundary condition is

PE(B.h) = logZ2(B,h).  (6)

Al
And the partition function with w—boundary condi-

tion in A is

ZR(B.h) = Y exp(-HRgp(oawne))
oAEQN
(7



the (finite-volume) free energy function with
w—boundary condition in A is

1

PR(8,H) =

log ZF (B, h). ®)
The thermodynamic free energy function p” is ob-
tained through the thermodynamic limit

P(8,h) = lim P{(8,h) ©)

in Fisher sense, where # := & or w.

We utilize the fact that thermodynamic pressure
is independent of boundary conditions (for reference,
please take a look at Theorem 3.81) and, for the sake
of algebraic convenience, we will focus in this sec-
tion on “plus” boundary conditions: w; = 1 for all
1 € A. The interaction between the inside and outside
of the system can be described as the following term

5 Y o8 Y o
i€, jEA €A, JEA
li—jlls=1 li=3lleo=1

Note that from this point forward, we will use the
+ notation to represent the plus boundary condition
for all previously mentioned quantities. This includes
the free energy function in a finite domain, partition
functions, and the thermodynamic free energy func-
tion.

To get the presentation of partition function, we
add and subtract 1 to each term in this Hamiltonian
and for each op € 5, let us introduce the set

A (op) = {i€eA: o;=—-1}. (10)
We obtain

Hy 5 (00) = = BIEA] = RIA| +28[0.A (o)
+2h [N (o)) (11)

where
BN~ (n) = {{z’,j}:ieA‘(aA),
j &A™ (@n), i = lle =1}

and

En={{i,j} CZ%: {i,j}nA # 2, |Ji—j|c = 1} .
Each o corresponds one-to-one to a term of devia-
tion from the ground state A~ (o5 ) (the configuration
with minimal energy), which is the “all +1” config-
uration. As a consequence, the partition function can

be expressed in terms of deviations from the ground
state:

Z{(B,h) = exp(BlEal + hIADZKT (B, 1), (12)
where the “large field” polymers partition function
Z5E (B, h) is given as

ZiF(B,h) == ) exp (—2B]0.A"| — 2h|A]) .
A-CA
From the definition of the distance in (1), let us
declare that two vertices ¢, ] € A~ are connected if
and only if d(i,j) < 1, and we can decompose A~

into maximally connected components (For example,
see Figure 1),

AT=5U..US,
with d(Sy, S) > 1 for £ # k.
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Figure 1. A configuration of the Ising model.
Each connected component of the shaded area
delimits one of the polymers Sy, . .., Sg



Before giving an alternative expression of large
field polymers partition function, let us introduce the
definitions of compatible and incompatible objects as
follows:

Definition 2.1. Let us define S, S’ to be compatible,
and denote S ~ S, if d(S,S’) > 2. Otherwise 5,
and S’ are incompatible and we denote S = S’.

Denote
N )1 if S~
C(S’S)_{o if Sowd

Since [0 A7) =D [0:Si|and |[A~| = >0 |Si],
then the expression of large field polymers partition
function can be rewritten in the following form

LF(B? ) =1

+Z > IT <sis) Hwﬁhsg

n>l (S, Sn)EPR 1<i<i<n
(13)
with
= {S C A: S isnon-empty and connected of A}
and
wgn(S) = exp(—2p|0.5| — 2h[S|). (14

Forn € N, let C[n] be the set of all connected graphs
on n vertices. For each graph G = (V(G), E(G)),
let V(G) denote the vertex set of the graph G and
E(G) denote the edge set of the graph G.

Theorem 2.1. The pressure with +-boundary condi-
tion in A can be expressed as the following form

P8, h) = 6'm'+h+wlog 25 (8, h), (15)
where
log LF( h)
ni S (81, S0 [[wen(S)
n=1"" (8,..5,)EPs i=1

(16)

with Ursell function wl (-) defined as

ay(S1,...,8 > I ks sy) - 1.

GeC[n] {i,j}€E(G)
(17)
Expression (16) is well-known as cluster expansion.

Proof. Expression (13) serves as the partition func-
tion for a gas of polymers, which is comprised of sub-
sets of A, as discussed in Fernandez and al. paper. '°
Consequently, we can apply the theory developed for
these systems to prove expression (15). For more de-
tails, see references. '!! O

The next theorem establishes a sufficient con-
dition for the existence of the pressure function as
A — Z% in the thermodynamic limit and allows us to
verify the analytic domain of the pressure function.

Denote

Ppa = {S cz%: 8+ @ and connected of Zd} ,

and Py — Pgza as A — Z4.

Theorem 2.2. [fthere exists a > 0 such that

i | Ag| =248 KDV (1) =2 ke (2d+1)ak
k=1
<et—1 (18)
with
={Se€Pr:0c8 |S| =k}, (19

and V(1) denoting the volume of a d-dimensional
sphere of radius 1, then the following hold:

(i.) Consider wg , = {wpg n(S)}sep,,. For S €
Pya, the series |I'| g (wg,p,) defined in (24) is conver-
gent. Furthermore,

D) (ws,p) < e,

(ii.) The free energy function (15) converges ab-
solutely and uniformly in A, and

PER=Bd bt Y W(X), (Q0)
XCZd:X90’ ‘



where, for each X C 7%, U(-) is defined as follow:

U(X) 21)

=1
:Zy Z T(sy,...,8, Hw@

n=1 (sl,.,sn)epéL
S1U-USp=X
Proof. Part (i) of Theorem 2.2 follows from Lemma
4.2, which will be presented in Subsection 4.2 of this
paper.

Part (ii) of Theorem 2.2 is derived from the
Fernandez-Procacci Theorem.® We will omit the de-
tailed proof and refer readers to "»!! for further infor-
mation. O

The main purpose of this paper is to identify
the domain of inverse temperature S and the exter-
nal magnetic field i for which the pressure function
p(B, h) is analytic, as stated in the following theorem.

Theorem 2.3. The pressure function p(3, h) is ana-
Iytic in the domain D with

= {(B,h) ERXR:B>0; 2h > ¢1(a)}

where ¢ is defined in (47) and a in (50).

3. CLUSTER EXPANSION FOR SUBSET
GASES

Subset gases are specific types of polymer gases
that are frequently utilized in cluster expansion
within statistical mechanics. Their definition requires
a countable subset, denoted by, V (e.g. Z%) which acts
as an underlying “space”. Polymers are defined as fi-
nite, non-empty subsets of V, represented mathemat-
ically as

={SCV:0 < |5] < oo}

with compatibility relation, denoted by S ~ S’ de-
pending on the models we are working with. For in-
stance, in Section 2, we stated that S ~ S’ if and
only if d(S,S") > 2. In the work of Bissacot, Pro-
cacci and Fernandez, '° it is mentioned that S ~ S’

if and only if S NS" = &. Polymers can now be
measured through its cardinality, so it makes sense
to talk about large and small polymers. The defini-
tion of the gas is completed by a family of activities
z = {zg € C}gep,. Let us define the partition
function for gas polymers as follow

Z(z)=1 (22)
I 2 I dses) H
n>1 (S17 SSn)EPY 1<i<j<n

Using Mayer’s trick (which can be found in'!), we
can derive log Z(z) as the following form

log Z(z)
1 n
:ZE Z az:(Slw"aSn)HZSi,
n>1"" (84,...,5,)EPy i=1

(23)

where al (-) is defined in (17).

To study the convergence of cluster expansion,
we typically examine it through the convergence con-
ditions of the formal power series in infinite vol-
ume as below (see’ for a full explanation): For each

o0
+ Z% Z |an1 (S

n=1 (51;-..,5.)€EPY

Sn)l H ps;
(24)

with p € [0, 00)”"

We will now examine some convergent condi-
tions of cluster expansion as given in equation (24).
As a consequence of Theorem 2.3.2,'! the cluster ex-
pansion is convergent under Fernandez-Procacci cri-
terion known as the best convergent condition, which
is given in the following theorem.

Theorem 3.1 (Ferndndez-Procacci criterion). Sup-
pose that for some & € [0,00)%" there exists p €
[0, 00)"" such that

Esobg (m) < ps,, foreach Sy € Py (25)



with

n
=1+ Y IIns
=1

n>1 (S1.-.-.5n)EPY
Sg® Sy, S;~S;, 1<i,j<n

(26)
Then the series |I'| g (§) defined in (24) is convergent.
Furthermore, for each S € Py,

£s|0g (&) < ps-

To apply the Fernandez-Procacci criterion, for

most of the models, we substitute p, = §We“|7|
to obtain
n
1+Z Z H{ieals"‘ < %l
n>1 {S1,-..,Sn}CPy =1

S0NS;#@, $;NS;=0, 1<i<j<n

27)

From the constraint in the sum, Sp N .S; # @, 5; N
S; = @, 1 < i < j < n, this means that each
of the polymers 51, ...,S, must intersect different
points in .Sy to avoid overlapping. Consequently, we
can conclude that: (i) n < |Sp|, and (ii) there are n
.U Sy. The
selection of these points can be done in ('S 0‘) ways.
Hence the left-hand side of (27) is less than or equal

to

different points in Sy touched by S; U .

[Sol

1+Z< )[sup > et ]

x€Sy SePy
Sol
] . (8)

S>x
This leads us to the following sufficient condition for
(27)

1+ sup Z §Se

TESy SePy
S>x

sup Z fse‘”s' < e*—1. (29)
TES) SePy
Sozx

This condition, in fact, coincides with the known (but

forgotten) Gruber-Kunz condition?

except that the
later involves a sharp inequality sign. The condition
is useful for numerous applications including con-
tour ensembles of low-temperature phases, geometri-

cal objects of high-temperature expansions, random

sets of the Fortuin-Kasteleyn representation of the
Potts model, ....

4. PROOFS

4.1. Alternative Gruber-Kunz condition

In this section, we will utilize the Fernandez-
Procacchi criterion given in Section 3 along with a
new compatible relation presented in Section 2 to
derive the improvement of Gruber-Kunz condition
which is presented in the following proposition.

Proposition 4.1. If there exists a > 0 such that

sup Z ’u)gh

T€ZT s
SeP

Shi < e 1 (30)
zd
with

[Sh = {jez’:d,9) <1}, (D
then |I'|g(wgyp) converges, for wgp =

{wpn(S)}sep,,. Furthermore, for every S € Pa,

Dl (ws,p) < e,

Proof. Let us start with following conclusion readily
from Theorem 3.1 that |I'| ¢ (p) converges if for each
SeP,

B X Tl < oo

n>1 (51, Sn)EP,
S%S;, S;~5; ,1<”<n

(32)
where we take 115 = wp ,(S)e?S). It is easy to see
that

S xS «—=d(S,8) <1 SN[ =
with [S]; defined in (31), and
S~8=dS,S)>1=5nS =02.

It implies that the left-hand side of convergent condi-
tion (32) can be bounded by

1+ >

n>1 {51,580} CPyq
[5]1MS;#@, §;NS;=8, 1<i,j<n

H w@h(SZ)ea(S )
i=1

(33)



Then we can replace the convergent condition (32)
by

1+ >

n>1 {S1,-,8n}CPyq
[S11NS;#@, §;NS;=2, 1<i,j<n

<ellShl 34y

[T wsn(si)ett=h!
=1

By an argument analogous to that used to derive the
Gruber-Kunz condition (29), starting with the con-
straint in the sum, [S]; N S; # @, S;NS; =2, 1 <
1 < j < n, this means that each of the polymers
Si,..., S, must intersect different points in [S]; to
avoid overlapping. Consequently, we can conclude
that: (i) n < |[S]1|, and (ii) there are n different
points in [S]; touched by S1U...U.S,,. The selection
of these points can be done in (‘ [ﬂl ‘) ways. Hence the
left-hand side of (27) is less than or equal to

1+ sup Z wg,h(S)e“HSM < e (35)
T€Z s
SeP,q

The proof has been completed. U

4.2. Proof of Theorem 2.3

Before proceeding with further calculations, let
us establish a weaker condition for the convergence
of the power series |I'|s(-) in the following lemma.
This condition arises from a bound on the weight
wg ;(-)e?!11], as outlined in this lemma, along with
the Gruber-Kunz condition. This bound is particu-
larly useful for estimating the parameters S and h.

Lemma 4.2. For each S € Pya,

wgp(S) < e—BdVd(1)1/"’[|Sl](d*”/d—h\5\7 (36)

with V (1) denoting the volume of a sphere of radius

1, and
callSh < ea(2d+1)[S| (37)

Furthermore, if there exists a > 0 such that

o
_ (d—1)/d 1/d_
Z|Ak\e 2dB k V(1)1/4—2h k+(2d+1)ak

k=1

<e®—1 (38)
with

Ap = {SePu:0e8 |5 =k}, (39

then |I'|g (wg 1) converges and
IT|g (wgp) < e,
foreach S € Pya.
Proof. We observe that
S| < [[Shl < 2d+1)[S],  (40)

then the inequality (37) holds.

To prove the inequality (36), we begin with the
fact that the smallest ratio of area to volume is
achieved by a d-dimensional sphere. Denoting the
volume and surface area of a sphere of radius R, re-
spectively,

Va(R) = Va(1) R
S4(R) = dVy(1) R4!

we obtain

|0:5] > S4(R) = dVy (1) [Vy(R)] /4
= dVy()V4|s|@=/d (41)

As a consequence of inequalities (36), (37), and the
condition (38), we obtain

T€LY s

SeP,q

o0

< Z | Ay | e=28 k(d=D/dV (1)1/d_2h k+(2d+1)ak
k=1

<e'—1 (42)

with Ay, defined in (39). Thus, the alternative Gruber-
Kunz condition is satisfied, completing the proof as
a consequence of Proposition 4.1. O

The next two lemmas are crucial for determining
the number of elements in Aj,.



Lemma 4.3 (Lemma 3.60'). Let G be connected
graph with n edges. Starting from an arbitrary ver-
tex of G, there is a path in G crossing each edge of
G exactly twice and ending at the starting vertex.

Proof. The proof uses an induction argument. For
n = 1 the result is trivial. Assume that the claim
holds for kK = n — 1 and consider a connected graph
G with n-edges. Let ig be the starting vertex in G
and consider a vertex jo € V(G) such that {ig, jo} €
E(G). There are two possibilities for E(G)\ {70, jo }:

e Itequals F(G1) where G is a connected graph.
In this case, the desired path is obtained by concate-
nating {7, jo} with the path in G starting from jy
and satisfying the inductive hypothesis, followed by
the final step {io, jo}.

e [tequals F(G1)UE(G2) where G and G are
each connected but they are mutually disconnected.
The initial site 7 is a vertex of G1 and jj a vertex of
(G2. In this case the desired path is obtained by the fol-
lowing concatenation: First {ig, jo}, second the in-
ductive path in G5 starting and ending at jp, third
{40, jo} again, and fourth the inductive path in G
starting and ending at 7.

In both cases, we obtain a path that starts and ends
at g, with exactly two visits to each edge of G. [

Lemma 4.4. Fork > 1,
|Ak| < (2d)%F2 (43)
where Ay, is defined in (39).

Proof. For each set S € Pza such that 0 € S and
|S| = k, there exists a spanning tree that contains
k—1 edges. Consequently, by applying Lemma (4.3),
the number of connected sets with k elements that in-
clude 0O is bounded above by the number of paths of
length 2k — 2 starting from 0. This quantity is cer-
tainly less than (2d)%+~2, O

We now start with the proof of our main result in
this paper. The infinite volume free energy p(/3, h)
inherits the analyticity of the positive series |I'|s(+)

(for more details, see references’!"). Thus we can
confirm that all values of the external field h that
meet the condition (38) are sufficient for the analyt-

icity of p(3, h).

Proof of Theorem 2.3. We start with the condition
(38), and apply Lemma 4.4 to obtain
oo

Z Ay o248V (1)/ 4k D/4—2hk+(2d+1)ak

k=1

< Z(Qd)2k—2e[—2h+(2d+l)a]k
k=1

o(2d+1)a—2h
T 1— (2d)2edha-2n’ (44)

for h > 0 satisfying
4d2€(2d+1)a—2h < 1. (45)

Inequality (44) implies that (38) is valid for h when-
ever there exists a constant @ > 0 such that
2d+1)a—2h

(
€ a
1= (2d)2eCd+Da—2h se -1 (46)

It is equivalent to
2h >1In[1+4d*(e® — 1)] —In(e” — 1) + 2da + a
= ¢1(a) (47)
and from the condition (45), we have
2h > 21n(2d) + 2da + a = ¢2(a).
Then, for each a > 0,
2h > max[¢1(a), p2(a)] = ¢1(a).  (48)
For a > 0, we have
In[1+ 4d* (e — D] —In(e*—1) > In(4d?).

Thus, for each a > 0, as a consequence of the in-
equality (48), to optimize the domain for the field A,

we can take
> mi .
2h 2 min ¢, (a) (49)
Elementary analysis shows that ¢ (a) has a unique
minimum at
2d+1)(8d% — 1) + 1+ VA
o | 24D )+ 1+VA (50)

8d2(2d + 1) ’



with

VA = [(2d+1)(8d%—1)+1]2—16(2d+1)? (4d* —d?).

Hence,

2h > ¢ (). (51)

The proof of Theorem 2.3 is completed. O

4.3. Comparison with Friedli and Velenik re-
sult.

In the last part, we compare our estimations with
the results provided in Friedli and Velenik’s book'
which is one of the newest result on this topic. To
describe the latter, let us denote

o0

7,’(h7 d) _ Z(2d)2ke(2d+1*2h)k‘
k=1
H" = {h:Reh>h} (52)

with
h:=inf{h : n(h,d) < 1,h > 0}.

Friedli and Velenik state that if h € HT, then the
cluster expansion in the equation (16) converges ab-
solutely. By performing a simple computation, we
can estimate that

2h = In(8d?) + 2d + 1. (53)

As a consequence of inequality (49), plugina = In2
into the function ¢1(a), we have

2h = In(8d*) +2d + 1
>1In(4d® +1) +d2In2 +1n2 > min 61 (a).
a>
(54)
Inequality (54) shows that our estimate is lower than
Friedli and Velenik’s bound! (for more details, see

Figure 2). Let us examine the ratio between our
bound and Friedli and Velenik’s bound!, as defined

below 41(a)
d) := 19
) = ) + 20 1 1

10

where ¢; is defined in (47) and @ in (50). In Figure
3, we observe that the rate R decays exponentially,
approaching zero as d tends to infinity.

h-lower bound

L reersosnmsesenemosereod

T T T
0 2 4 6

8 10 lzd-;?me:sé‘onIS 20 22 24 26 28 30
Figure 2. A comparison with Friedli and
Velenik result (green line presented for Friedli
and Velenik’s result and red line presented for
our result)
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d-dimension

Figure 3. The rate between our bound and
Friedli and Velenik bound
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