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TOM TAT

Trong bai béo nay, ching toi nghién cttu mot s6 diéu kien dé khong gian kiéu Zygmund Z,,,
v6i w 1a mot trong chuan tic trén hinh cau don vi B trong C”, tré thanh mot khong gian nhd, én
dinh bién va bat bién dudi cac tit ddng cau. Ching toi ap dung két qua nay dé phan tich méi quan

he gitta tinh bi chan va tinh compact ctia cac toan tit hgp lién tuc Wy, o, tit B, vao 2, va trén Z,,.

Tw khéa: Khong gian Bloch, khong gian Zygmund, todn ti hgp cé trong, tinh bi chdn, tinh
compact.
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ABSTRACT

In this paper, we examine the conditions under which a Zygmund-type space Z,, where w

is a normal weight on the unit ball B of C™, becomes a small space that is boundary regular

and invariant under automorphisms. These results are then applied to analyze the relationship

between the boundedness and compactness of weighted composition operators Wy, ,, defined by

fr—=1-(f o), acting from the Bloch-type space B, to the Zygmund-type space Z,, as well as

from Z,, into itself.
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1. INTRODUCTION

Given a natural number n, let us consider the
open unit ball B in C" and H(B) the space of
all holomorphic functions in B. The vectors
er = (1,0,...,0), ey = (0,1,0,...,0),...,
en = (0,...,0,1) form the standard basis for
Ccn.

Throughout this paper, for any z =
(21,...,2p) and w = (wy,...,wy) in C",
we use (z,w) = > p_ z,Wk, to denote their
standard inner product, and write |z|] =
Vi{z,2) = /212 + - + |zn|? for the corre-
sponding Euclidean norm.

For f € H(B), let

VI = (52 5 (2)

Rf(z) =(Vf(2),z), z€DB.

Let D denote the unit disk of C. If f €

H (D) satisfies sup,cp(1 — |2[2)]f"(2)] < o
then f is said to belong to the Zygmund
space. In this definition, 1 — |z|? acts as a
weight function, which was later generalized
to (1 — |2|?)® for all & > 0.

A positive continuous function w defined
on the interval [0,1) is said to be normal
if there exist constants 0 < § < 1 and
0 < a < b < oo such that

(1w_(tt))a is decreasing on [0, 1),
w(t) (")
im =0,
t—1 (1 —t)e
w( . :
1—tp is increasing on [6, 1),
(Wa)

im w?) =0
t—1 (1 — t)b

If we say that a function w : B — [0,00) is
normal, we also assume that it is radial, that



is, w(z) = w(|z|) for every z € B. Strictly pos-
itive continuous functions on B are referred to
as weights.

We  define
Zygmund-type space Z,, respectively, as fol-

Bloch-type space B,

lows:

B, ={feH®): |flw <o},

z, {f c HB) : ||fllsz, < oo},

where

1flls. = Sup w(2)|(Rf)(2)],

[fllsz., = sup w(z)|V(Rf)(2)]
ZEBn
are seminorms on B, and Z,, respectively.
The spaces B, Z, are endowed with Banach
space structures via the norm

1fll5, = [£O) + [ flls5.
1fllz = [FO] + £ ]lsz.-

The space Z, generalizes the classical
Zygmund space, which was introduced in @,

Define S(B) as the set of holomorphic
self-maps of B. Given ¢ € H(B) and ¢ €
S(B), the weighted composition operator
Wy, E — Fis defined by

Wyo(f) =1 (foyp), forfek,

where F and F' are Banach spaces consisting
of holomorphic functions on B. It may be re-
garded as a generalization of multiplication
and composition operators.

The theory of composition operators,
both weighted and unweighted, has its ori-
gins in the previous century. The bounded-
ness, compactness, essential norm, and spec-
tral properties are always the highlights of
research of composition operators. Book ¢ is
a good reference for studying the composition
operators on classical spaces of analytic func-
tions. Furthermore, the theory relies on the
theory of analytic functions on the unit disk,
which provides a convenient foundation.

Composition operators mapping into the
classical Zygmund were studied in B, Many
scholars have discussed similar problems (see

MOHTT etc.)

However, for abstract normal weight es-
pecially in high dimensions, when investigat-
ing and using the properties (for example,
discussing weighted /unweighted composition
operator of the Zygmund type space, we of-
ten encounter some obstacles. This partly ex-
plains why the boundedness and compact-
ness criteria for Wy, , between Zygmund-type
spaces (normal weight cases) have not been
extensively investigated to date. In order to
overcome these obstacles, we need a variety
of means or techniques.

Motivated by the above-mentioned dis-
cussions and the previous investigations, the
purpose of this paper is to uncover additional
characteristics of Zygmund-type spaces and
serve them as technical tools to solve the
problem of the relationship between the
boundedness, compactness of weighted com-
position operators from a Bloch-type space
B, into the Zygmund-type space Z,, and from
Z,, into itself.

Section [2| provides a sufficient condition
on the normal weight w ensuring that 2, is
an automorphism invariant boundary regular
small space. A key motivation for this section
comes from a result of Shapiro ™ (and The-
orem 4.5 in 2, which asserts that ||¢||e < 1
is a necessary condition for C, to be com-
pact on any ‘“suitably small” Banach space.
According to®8, four axioms must be satisfied
for a space to qualify as appropriately small.
Among these, two axioms are fundamental,
concerning norm naturality and space non-
triviality, while the other two regulate the
size of the spaces. Specifically, the boundary
regularity axiom makes the spaces small by
ensuring continuous boundary extension, and
the automorphism-invariance axiom prevents
them from being excessively small. For fur-
ther details, refer to & or 2.



Building on the results obtained in the
previous section, Section [3] establishes the
connections between the boundedness and
compactness of weighted composition oper-
ators acting from B, to Z,, and those acting
on Z,, itself.

In this paper, we use the notation a < b
to denote that a < Cb, and a =< b to indi-
cate that C~'b < a < Cb, where C > 0 is
an inessential constant, with all quantities a
and b assumed to be non-negative.

2. A CHARACTERIZATION OF
ZYGMUND-TYPE SPACES

This section is devoted to the study of the
properties “small” and “automorphism in-
variant boundary regular” of the Zygmund-
type spaces which will be necessary in estab-
lishing one of our main result.

For a normal weight w on B we use there
certain quantities, which will be used in this
work:

) - IZ\ﬂ
IL(2) = /0 ot

2(2) = /0|Z (/Ot ;E;)dt, 2 eB.

Remark 2.1. Since w is positive and contin-

uous, it follows that my, 5 := minyp 5 w(t) >
0. In addition, by (W7), w is strictly decreas-
ing on [0, 1), so maxgjo 1y w(t) = M, < oo.
Consequently, one can easily verify that

M,
my,s

w(2)IL(2) < Ry =6 +1-0 <00 (2.1)

and, hence,
w(2)I2(2) < |2|R, < Ry < 00 (2.2)
for every z € B\ {0}.

Proposition 2.1 (IIZ|) For every normal
weight w on B we have

2, =28 ={f e H®): ||flz5 < oo}

=2Y = {f c HB): |flzy < oo}

and || - ||z, = || - lzz = || - | zy, where

2>§
£l zz == |£(0)] + sup w(2)|R®) f(2)],

z€B,,

1£llzy = 1£(0)] + sup w ()| VE f(2)],

ZE]Bn

RYf = R(Rf),

n

VO f(2)] = ( 3

4,j=1

0% f
82’2’82’3’

(2)

for every f € Z,,.

In this paper, let us write simply we de-
note Z,, for the complex (Z,, || - [[zz)-

Lemma 2.2. Let w be a normal weight on B.
Then there exists C' > 0 such that for every
f € Z,and every z € B,
|Rf(2)] < CLy(2)| fl 2.,
V) < OO+ DIz

and

fOI <O+ CLEOfllz, (2.4)

Proof. The estimate (2.3) follows from
which says there is C' > 0 such that for every
f € B, and for all z € B,

f(2)] < C(1+ 1(2)) I £ - (2.5)
Then by (2.3) and (2.5) again we obtain
2. O

Note that, in fact, by using (2.5) the es-
timate for |V f(2)| in (2.3)) can be replced by

VIS (L+ 1) IVFO) + L) f 2,
(2.6)

Now, by Aut(B), we denote the auto-
morphism group of B that consists of all bi-
holomorphic mappings of B. It is well known
that a mapping ¢ € Aut(B) is a unitary
transformation of C™ if and only if ¢(0) =0
(see Z0). For any a € B\ {0}, we define

o — Pa(z) - SaQa(Z)

B
1—(z,a) y £E 5

(2.7)

Pa(z) =



where s, = /1 —|a|?, Py(2) = ﬂi’@a and

Qu(z)=2— <Z’a>a for all z € B.

|a]?
For o = 0, we simply set ¢p,(z) = —=z.

Clearly, each ¢, is holomorphic from B into
C". It is also well known that each ¢, is a
homeomorphism of B onto itself, and every
automorphism ¢ of B can be represented as
p = U, with U a unitary transformation
on C™.

Theorem 2.3. Let w be normal weight on B
such that I2(1) < oo. Then the space Z,, is
an automorphism invariant boundary regular
small space in the following sense:

(i) All functions in Z,, can be continuously
extended to B,

(ii) All polynomials are contained in Z,,,

(iii) Evaluation at every point in B defines
a bounded linear functional,

(iv) For any ¢ € Aut(B) and f € Z,, we
have fop e Z,.

Remark 2.2. Axioms (i) and (iii) ensure
that convergence in the Z,, norm implies con-
vergence in the sup norm; that is, the iden-
tity map from (Zu,| - 2,) t0 (Zu | - o)
is continuous by the closed graph theorem.
Furthermore, using the closed graph theorem
along with axiom (iii), one can show that ax-
iom (iv) ensures that C, is bounded on Z,
for any conformal automorphism ¢ of B.

Proof. It is straightforward from the defini-
tions to verify that (ii) and (iii) hold for Z,.
Under the condition I1(1) < co the space Z,
satisfies (i) (see D).

To verify that (iv) holds, we need to
show that for any conformal automorphism
v = U = (p1,...,9p) of B, if f € Z,,
then foy € Z,, where a is a point in B and
U is a unitary transformation of C"”. With-
out loss of generality, we can assume that
@ = g for some a € B. It follows from

(2.7) that ¢j € H(B) for each j = 1,...,n.

Consequently, R*)¢; is in H(B) and remains
bounded on B for any k € N. Thus,

M = sup |Re(z)| < oo,

ZEBn
(2.8
Mg) = s€11§ IR@p(2)| < . )

Let A € (0,1) be such that |[Rp(z)] <1
and [R@(2)| < 1 for |p(2)| < A There ex-
ists Dy > 0 such that

1< DoIL(N), 1< DeI2(N).  (2.9)

Then, thers exists D; > 0 such that
sup  w(p(2))[Re(2)|(1 + L5 (#(2)))

lp(2)|<A

< D1 sup w(p(2)||Re(2) 15 (0(2)),
lp(2)[<A

sup  w(p(2))| R o(2)| (1 + I(¢(2)))
[o(2)I<A

< Di sup w(p(2))|RPo(2)| 13 ((2))-
lp(z)|<A
(2.10)
Let D = max{Dy+1, D1 }. For every f € Z,,
by (2.1)—(2.4), (2.10)), and a standard calcu-

lation, we have

W()|RD(f 0 4)(2)]

< w(2)[|R? f(p(2))(2)]
T+ 2\RF(p(2) Re(2)]

)
o(2(2)
2R () Rel2)] + £ (0(2) RDp(2)]]

w(2)
< el
T Cul(2)) 2ARp(2)I(1 + I (2)))

+IR@p(2) (1 + Z2(e()] 1] 2.

w(z)
el
+CD sup w(p(2))2M) +M;2)]}\|fllzw
(=) 2
w(z)

= ooty [+ DR + MP ]2,
(2.11)

for every z € B.



(i) We begin by considering the case when
a = 0. In this situation, we have |p(z)| < ||
for all z € B. Denote

Bs:={ze€B:|p(z)] <}
Since p is decreasing on [0, 1) we have

w(2) w

M,
< , Z € Bg;
w(p(z)) = mus

w(2)
OJ(QO(Z)) <1, ZGB\B(;.

Therefore, it follows from (2.11)) that

sup w(z)[B?(f 0 ¢)(2)|

z€B,

< sup w(z)|RP(f o p)(2)]
2€B;

+ sup w(z)|RP(fop)(2)]
z€BL\Bs

M.,

<

_-(anﬁ +>1>

x (1+ CDR.2MY) + MP) )| £ 2. < o,
(2.12)

Hence, fop € Z,.

(ii) Now, we consider the case a # 0.
Take a v € Aut(B) such that v(0) = a. Then
n:= po~y € Aut(B) and n(0) = 0. By (i),
g == fon € Z,. Note that v~1 € Aut(B),
as the above, we have R%)~~1 is bounded
in B for any positive integer k. Then, since
fop = gony~!, as the estimate we
have

sup w(z)| R (f 0 ) (2)|

z€B,
= sup w(z)|RP (goy~1)(2)|

z€By,

(e
my.s

IN

+1)

X (1 + CDRW[QMS,)l + Mﬁ’l]) lgllz., < oo.

Consequently, foyp € Z,,. O

Remark 2.3. The condition I2(1) < oo can-
not be omitted. Indeed, consider the weight
function w(t) = (1 —t)? for ¢t € [0,1) which
satisfies 12(1) = oo. It is easy to see that

the function f(z) = In(1 — z), which belongs
to Z,,, does not admit a continuous extension
to D. This means that the condition (i) is not
true for Z,,.

3. A RELATION BETWEEN
WEIGHTED COMPOSITION OPER-
ATORS B, -+ Z, AND Z, = Z,

In order to conclude the paper we establishes
the relation between the boundedness, com-
pactness of weighted composition operators
from B, into Z, and from Z, into itself.
Before stating the theorem first let us
note that for each j = 1,...,n the func-
tion id; given by id;(z) := z; belongs to
Z,. Then, in the case ¢ € H*(B) with
|[Y]|oo <1 and Wy, : Z,, — 2, is compact,
Wy o(idj) = 1 - p; hence, 0 == - ¢; € Z,,

j=1,...,n. For each m > 1, put
m—1
0" = (07",....0;") == (wowk) o™,
k=0
where ¢ = id, and ¢* := @o---0¢p for
k times

k>1.
Theorem i) allows us to assume that
0™ are continuous on B for every m > 0.

Theorem 3.1. Let v € H>®B), ¢ =
(p1,...,n) € S(B) and v,w be normal
weights on B and I1(1) < oo Then the fol-
lowing are equivalent:

(1) Wy, : B, = 2, is compact;

(2) Wy, : B, = Z, is bounded;

(3) Wy, 24 — 2, is compact;

(4) ¥, Y- @; € Z, for every j =1,...,n and
[elloo < 1.

To establish the theorem, we first require
several lemmas.

Lemma 3.2. Assume that ¢(0) = 0 and
W, @ 2w — 2, is compact. Then [[0™ || —
0.



Proof. Without loss of generality we may as-
sume that ||| < 1. We have two cases to
consider:

(i) When |9(0)| = 1, it follows from The-
orem [2.3(i) and the maximum modulus prin-
ciple that v must be identically equal to 1.
Then Wy, , = C,, the composition operator
on Z,, and hence, the lemma follows from
Lemma 2.2 of &

(ii) Now we assume that [¢(0)] < 1.

We will prove that W, , has spectral ra-
dius o(Wy,,) < 1.

Let A # 0 be a spectral point of Wy, .
Since Wy, ., is compact, A must to be an eigen-
value. Let f € Z, be an eigenfunction of
Wy, corresponding to the eigenvalue A. Thus
Wyo(f) = Af and there is a point a € B
for which f(a) # 0. Denote B® := {z € B :
|z| < 1+TM} Note that, |¢(z)| < |z| for ev-
ery z € B, since otherwise, the composition
operator C, would be an isomorphism. Con-
sequently, by [[¥|lec < 1, (v-Cy)(Bz,) is not
relatively compact subset of the unit ball Bz
of Z,,. This means v-C,, is not a compact op-
erator. This contradicts the compactness of
Wy.- By the Schwarz Lemma, ¢(B?) is rela-
tively compact in B®. Applying the Schwarz
Lemma again to the appropriately normal-
ized restriction of ¢ on ¢(B?), and continuing
this argument, it follows that ¢™(a) — 0 as
m — 0.

Now, since limp, o0 [10(™ 1(a))] =
[£(0)] # 1, by using the fact that, if 0 <
am < 1 and {am }m>1 does not converge to 1
then []>°_; ay, = 0, we obtain

X" f(a) = Wy () (@)
= (T v(¢* @) - f&™ (@) = 0- £(0)
k=0

as m — o00. Because f(a) # 0 it therefore
must has [A| < 1. The compactness of Wy, ,
ensures that its spectrum consists of 0 along
with at most countably many eigenvalues ac-
cumulating only at 0. Thus, the spectral ra-
dius equals the largest eigenvalue in modulus,

which, as shown above, is strictly less than 1.
It then follows from the spectral radius for-
mula that

lim ||[Wy, ™|/ = o(Wye) <1,

m—0o0
so in particular, lim, oo [[[Wy,o]™| = 0.
Note that 07" = [Wy ,|"(id;) € Zu, j =
1,...,n. Then,

10511 2., = W™ (id;) 2.,
< Wy ™ llidjllz, — 0 as m — oo.

On the other hand, Theorem [2.3(i & iii)
shows that Z, has a topology stronger than
that of the sup norm. Hence, [|0™|~ tends
to zero as m — o0o. The lemma is thus
proved. ]

Lemma 3.3. Suppose ¢ € H(B), ¢ € S(B),
and p, v are normal weights on B. Let X = B,
or Z,. Then Wy, : X — Z, is compact if
and only if, whenever a bounded sequence f,,
in X converges to zero uniformly on compact
subsets of B, it follows that [|[Wy ,(fm)llz, —
0 as m — oo.

The lemma for the case X = B, has been
proven in E1 For the case X = Z,, it is sim-
ilar to that of X = BB, and will therefore be
omitted.

Lemma 3.4. Let v € H(B), ¢ =
(p1,...,n) € S(B) and p,v be normal
weights on B. Assume that Wy, : 2, — 2,
is bounded. Then

sup 1(2)| Ay (2)] < o,

ZE]Bn

sup 1(2)| By o(2)] < oo,

ZEBn

(3.1)

where
Ay p(2) = 2R (2) Rp(2) + 1 (2) R p(2),
Byo(2) == 0(2)(Re1(2))*, -, (Ren(2))?).
Proof. First, choosing fo(z) = 1 € Z,, the
boundedness of Wy, , implies that ¢ € Z,.
At the same time, for each j € {1,...,n},
by considering f;(z) = z; and g;(z) = z? for
every z = (21,...,2,) € B we can check that
¢'(Pja¢'()0? GZ,M-



Then, since

R [y(2)pj(2)]
= R®y(2)p;(2) + 2R (2) Rep; (2)
+9(2) R g;(2)
= R@9(2)i0(2) + Ay p, (2),
RO [(2)3(2)]
= 0;(2) (RP(2)p;(2) + ARy(2) Ry (2)
+20(2) R pj(2)) + 20(2) (Rp;(2))*
= 3(2) [2RP[(=)p5(2)] = RO(2)]

+ 231/,790]. (Z)
(3.2)

for every z € B and every j = 1,...,n we

have

sup 1(2)| Ay g, (2)]

ZEBn

<|[[¥-pjillz, + ¥z, < oo,
sup u(z)|By,p; (2)]

z€By

<oz, + 210 @jllz, + ¢z, < oo

for every j = 1,...,n. Consequently, (3.1 is
proved. O

Proof of Theorem[3.1. Theorem is trivial if
||lcc = 0. Without loss of generality we may

assume that 0 < ||9|lc < 1, since for orther-

wise we can consider the |¢||<!v instead of

.

(1) = (2): It is obvious.
(2) = (3): Assume that {f,}m>1 is a

bounded sequence in Z, which converges

to zero uniformly on compact subsets of

B

. Then, by the Weierstrass theorem, both

{Rfm}m>1 and {R® f,,},,>1 converge uni-
formly to zero on compact subsets of B as

well. We will prove that ||fn|/s, converges

to zero. Given any ¢ > 0, since w(t) — 0

as t — 1, we can choose p € (§,1) so that

w

(]z]) < € whenever p < |z| < 1. In addition,

there exists an integer N such that for all
m > N, we have |f,(0)] < ¢, |Rfm(2)] < ¢,
and |[R® f,,(2)| < ¢ for all |z| < o. Therefore,

by (23),
[fmllB. < [fm(0)] + sup w(z)|Rfm(2)]

z€B,
< e+ sup w(2)|Rfm(z)|
|z|<e
+ sup w(z)|Rfm(2)|
o<]z|<1
z
SereMa+ sup w(a)|Rin (5
0<]z|<1 (2’Z‘>

1
+/ R@n@@@
1/(22]) t

<e+eM,+esup sup |Rfm,(w)]
m>1 |w|=1/2

o/|2|
+25/ IR f,,(t2)||z|dt
1/(2l2))

1
12 sup w(z) / RO f,, (t2)||2]dt
1%

o<lz|<1 /Il
<e+eM,+esup sup |Rfm(w)]
m2>1 jw|=1/2
o dt
+2elfnlz, [
1/2 w(t)
=l at
2 fullz, s we) [
o<lz|<1 s w(t)
<e+eM,+esup sup |Rfp(w)
m>1 |w|=1/2

2| fu / A el
miiZe 1/2 W(t) 2

<eK forallm> N.
Then, the boundedness of Wy, , implies that
Wolfllze S Ifmlls, — 0 as m — o,
Therefore, Wy, ,, is compact by Lemma [3.3]

(3) = (4): Without loss of generality, we
may assume that [[1]« < 1.

(i) We first consider the case where
©(0) = 0. Suppose, for the sake of contradic-
tion, that ||¢|lcc = 1. Then there is a rotation
¢, z — €z, such that % := ( o ¢ has a fixed
point z5 € B,,. We may choose ( such that
¥(z0) # 0. Put

b=—2
¥(20)

Then, for every m > 1 we obtain that

O = (nﬁli o (@) @)
k=0



has a fixed point zp, hence, [|(6)"|| > 1.
It follows from Lemma [3.2] that the operator
W{E,g’é’ and hence, Wy, 5 is cannot be compact.

Note that Wy, 5 = Wy, , o C¢ where the
composition operator C¢ is an isomorphism
of Z,. This implies that W, , is not com-
pact. This contradicts the hypothesis.

(ii) We now consider the case p(0) = a #
0. Let v be the conformal automorphism of
B,, taking a to 0, and set n = v o ¢. It fol-
lows from Theorem [2.3{iv & iii) that C, is
a bounded operator on Z,, hence, Wy, is
compact on 2, because Wy, , = Wy, ,0C,. Fi-
nally, it follows from the case (i) that ||n]|. <
1, and hence, ||¢]|o < 1.

(4) = (1): Suppose { fm }m>1 is a bounded
sequence in B, converging uniformly to zero
on compact subsets of B. Using the Cauchy
integral formula again, we see that

sup  |Ry(z) fm(0(2))] — 0,
lor(2)|<A

sup \Vf()z)fm(cp(z))\ —-0 asm — oo.

ok (2)[<A

with A = [|¢|lec < 1, Then, by ¢ € Z,, (3.1)
and a standard calculation, we have

Wy o(fm)l 2.,

< | fm(0)] + w() RP [ ()]l fin ()]
+w(2)[ Ay, ()[R fm(#(2))]
+w(2)| By,p(2)|R® fin(0(2))]

< |fmO) + 10z, sup  |fin(e(2))]
le()I<lielloo

+ sup w(2)[App(2)]  sup  |Rfm(p(2))]

z€By le(2)|<elloo

+ sup w(z)[By,(2)|  sup
2€Bn, le(2)|<]l¢lloo

—0

as m — oo. By Lemma Wy, is com-
pact. ]
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