
 

1 

 

 
 
 

Hệ thống giám sát và cảnh báo lũ lụt thời gian thực dựa trên 
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TÓM TẮT 

Lũ lụt là một trong những thảm họa thiên nhiên gây thiệt hại nặng nề về người và kinh tế. Việc phát hiện sớm 

và đưa ra cảnh báo kịp thời đóng vai trò then chốt trong công tác quản lý lũ, đặc biệt tại các khu vực có điều kiện địa 

hình phức tạp. Bài báo này đề xuất một hệ thống giám sát lũ lụt dựa trên công nghệ IoT, tận dụng dữ liệu mực nước 

từ hai cảm biến đặt cách xa nhau để nâng cao độ chính xác trong dự báo rủi ro và phát cảnh báo kịp thời. Một thuật 

toán phân tích mực nước mới dựa trên cảm biến kép được giới thiệu, nhằm đánh giá nguy cơ lũ thông qua việc phân 

tích tốc độ dâng mực nước và chênh lệch mực nước giữa hai vị trí cảm biến. Hệ thống tích hợp Node.js cho xử lý 

phía máy chủ và Google Maps API cho trực quan hóa không gian, giúp giám sát và phân phối cảnh báo theo thời 

gian thực. Kết quả thực nghiệm cho thấy hệ thống đạt độ chính xác cao, 94.66% trong việc phát hiện rủi ro lũ, và độ 

trễ thấp, chỉ 10 giây trong quá trình phát cảnh báo, khẳng định tính khả thi của hệ thống trong các khu vực thường 

xuyên xảy ra lũ lụt, điển hình như lưu vực sông Côn, tỉnh Bình Định. 

Từ khóa: IoT, hệ thống cảnh báo lũ sớm, cảm biến kép, Node.js, Google Maps API. 
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ABSTRACT 

Flooding is a devastating natural disaster that causes significant loss of life and economic damage. Early 

detection and real-time alerts are essential for effective flood management, particularly in regions with challenging 

geographical conditions. This paper proposes an IoT-based flood monitoring system that leverages dual-sensor 

water level data for accurate risk prediction and timely alerts. A novel dual-sensor water level analysis algorithm is 

introduced to evaluate flood risks by analyzing the rate of water level increase and the differential between two 

sensor locations. The system integrates Node.js for backend processing and Google Maps API for spatial 

visualization, enabling real-time monitoring and alert dissemination. Experimental results demonstrate high 

accuracy of 94.66% in detecting flood risks and low latency of 10 seconds in generating alerts, proving the system's 

suitability for flood-prone areas like the Con River basin, Binh Dinh province. 

Keywords: IoT, early warning system, dual-sensor water level prediction, Node.js, Google Maps API 

1. INTRODUCTION 

Flooding is one of the most catastrophic natural 

disasters, causing widespread destruction, loss 

of life, and economic damage globally. 

According to the report from the World 

Meteorological Organization (WMO), floods 

account for approximately 44% of all natural 

disasters, affecting millions of people annually1. 

In developing countries, where infrastructure 

and disaster management systems are often 

underdeveloped, the impact of floods is 

particularly severe. Early detection and real-time 

alerts are critical for mitigating the adverse 

effects of floods, enabling communities and 

authorities to take proactive measures such as 

evacuations, resource allocation, and emergency 

response planning2. 

Traditional flood monitoring systems often rely 

on manual measurements or single-point 

sensors, which may lack spatial coverage, 

accuracy, and timeliness. Water level data 

collected manually at specific locations may not 

reflect the dynamic changes occurring across a 

river basin. Similarly, single-point sensor 

systems fail to capture spatial variations in water 

levels, leading to delayed or inaccurate flood 

predictions3. These limitations highlight the 

need for advanced, scalable, and cost-effective 

solutions that can provide real-time insights into 

flood risks. 

Recent advancements in Internet of Things (IoT) 

technologies have enabled the development of 

smart flood monitoring systems capable of 

collecting and processing environmental data in 

real time. IoT-based systems offer several 

advantages, including continuous data 

collection, wireless communication, and 

integration with cloud platforms for analysis and 

visualization4-5. However, most existing IoT-

based flood monitoring systems focus on single-

sensor data, which may not fully capture the 

complex dynamics of river systems. To address 

this gap, this paper proposes an IoT-based flood 

monitoring system that leverages dual-sensor 

water level data for enhanced flood risk 

prediction and timely alerts. 

The proposed system integrates advanced 

technologies such as Node.js for backend 

processing and Google Maps API for spatial 

visualization, enabling real-time monitoring and 

alert dissemination. A novel dual-sensor water 

level analysis algorithm is introduced to predict 

flood risks by analyzing two key parameters: (i) 

the rate of water level increase at each sensor 

location and (ii) the differential between water 

levels measured by two sensors placed at 

different points along a river. This approach not 

only captures temporal changes in water levels 

but also accounts for spatial variations, 

providing a more comprehensive assessment of 

flood risks. 
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The remainder of this paper is organized as 

follows: Section II provides an overview of 

related work. Section III describes the system 

architecture and design. Section IV details the 

dual-sensor water level prediction algorithm. 

Section V presents the experimental results, 

including the field experiment conducted along 

the Con River. Finally, Section VI concludes the 

paper and discusses future work. 

2. RELATED WORK 

Flood monitoring and early warning systems 

have been extensively studied in recent years, 

driven by the increasing frequency and severity 

of floods due to climate change and 

urbanization. Existing research can be broadly 

categorized into three main areas: (i) IoT-based 

flood monitoring systems, (ii) data analysis and 

prediction algorithms, and (iii) visualization and 

alert dissemination platforms. This section 

reviews key contributions in these areas and 

highlights the gaps addressed by the proposed 

system.  

2.1. IoT-Based flood monitoring systems 

The advent of IoT technologies has 

revolutionized flood monitoring by enabling 

real-time data collection and remote sensing. 

Masoudimoghaddam et al. proposed an IoT-

based flood monitoring system using ultrasonic 

sensors to measure water levels in rivers6. The 

system transmitted sensor data to a cloud 

platform for analysis and visualization. While 

effective, this approach relied on single-point 

sensors, which may not capture spatial 

variations in water levels across a river basin. 

Similarly, a wireless sensor network for flood 

detection, focusing on energy-efficient 

communication protocols was developed7. 

However, the study did not incorporate 

advanced algorithms for flood risk prediction, 

limiting its ability to provide actionable insights. 

More recently, the researchers introduced a 

multi-sensor IoT system for flood monitoring, 

integrating rainfall, soil moisture, and water 

level data8. The system demonstrated improved 

accuracy in detecting flood risks compared to 

single-parameter approaches. Despite these 

advancements, most existing IoT-based systems 

lack the capability to analyze spatial 

relationships between multiple sensor locations, 

which is critical for understanding the dynamics 

of river systems. 

2.2. Data analysis and prediction algorithms 

Data analysis and prediction algorithms play a 

crucial role in flood risk assessment. Traditional 

approaches often rely on statistical models or 

hydrological simulations to predict flood events. 

A rainfall-runoff system was developed to 

estimate flood risks based on historical rainfall 

data9. While these systems are effective for 

long-term predictions, they may not be suitable 

for real-time monitoring due to their 

computational complexity. 

Machine learning (ML) techniques have gained 

popularity in recent years for flood prediction. A 

deep learning model was deployed to predict 

flood risks using satellite imagery and 

environmental data10. The model achieved high 

accuracy in detecting flood-prone areas but 

required extensive training data and 

computational resources. Similarly, a support 

vector machine (SVM) algorithm was employed 

to classify flood risks based on water level 

data11. However, these ML-based approaches are 

often resource-intensive and may not be feasible 

for deployment in resource-constrained 

environments. 

In contrast, rule-based algorithms have been 

explored as a lightweight alternative for real-

time flood prediction. A threshold-based 

algorithm was introduced to detect rapid 

increases in water levels using single-sensor 

data12. While simple and efficient, this approach 

did not account for spatial variations in water 

levels, which are essential for accurate flood risk 

assessment. 

2.3. Visualization and alert dissemination 

platforms 

Visualization and alert dissemination platforms 

are critical components of flood monitoring 

systems, enabling users to interpret sensor data 

and respond to flood risks effectively. Recent 

studies have highlighted the importance of 

integrating geographic information systems 

(GIS) for spatial visualization. The researchers 

developed a flood monitoring system that used 

Google Maps API to display sensor locations 

and flood risk zones on an interactive map13. 

The system provided intuitive visualization and 

real-time alerts, enhancing situational awareness 

for users. 

Other studies have explored mobile applications 

and web-based dashboards for alert 

dissemination. A smartphone app that delivered 

flood alerts via push notifications, SMS, and 

email was proposed14. While effective, the study 
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did not address the integration of advanced data 

analysis algorithms for flood risk prediction. 

Similarly, a web-based platform for flood 

monitoring was introduced15 but the platform's 

effectiveness is limited by the absence of real-

world validation during actual flood events, 

reducing its reliability in emergency scenarios. 

2.4. Gaps addressed by the proposed system 

Despite significant advancements in flood 

monitoring technologies, several gaps remain 

unaddressed in existing research. First, most 

IoT-based systems rely on single-point sensors 

or fail to analyze spatial relationships between 

multiple sensor locations. Second, many data 

analysis algorithms are either computationally 

intensive or lack the ability to capture both 

temporal and spatial variations in water levels. 

Third, while visualization platforms have 

improved user experience, they are often 

decoupled from robust prediction algorithms, 

limiting their effectiveness in providing 

actionable insights. 

The proposed system addresses these gaps by 

leveraging dual-sensor water level data for 

enhanced flood risk prediction. A novel dual-

sensor water level analysis algorithm is 

introduced to evaluate flood risks based on both 

the rate of water level increase and the 

differential between two sensor locations. The 

system integrates Node.js for efficient backend 

processing and Google Maps API for spatial 

visualization, enabling real-time monitoring and 

alert dissemination. Furthermore, the system is 

validated through a field experiment conducted 

along the Con River in Binh Dinh Province , 

demonstrating its suitability for real-world 

deployment in flood-prone areas. 

3. SYSTEM ARCHITECTURE AND 

DESIGN 

The architecture of the proposed IoT-based 

flood monitoring system is designed to provide 

real-time flood risk prediction and alert 

dissemination by leveraging dual-sensor water 

level data, Node.js for backend processing, and 

Google Maps API for spatial visualization. The 

system architecture is shown in Figure 1. The 

system follows a modular design that integrates 

hardware components for data collection, 

software components for processing and 

analysis, and a robust data flow mechanism to 

ensure seamless operation. 

MICROCONTROLLER 

UNIT

SIM MODULE

3G/4G

WATER LEVEL 

SENSOR

TEMP/HUMI

SENSOR

POWER

WEB SERVER

GOOGLE MAP

API

Internet

 Figure 1. System architecture overview 

At the core of the system are the hardware 

components responsible for collecting water 

level data from the field. Two ultrasonic sensors 

are strategically deployed at different locations 

along the river, one upstream and the other 

downstream, to capture spatial variations in 

water levels. The distance between the two 

measuring points is 24 km along the length of 

the river, as shown in Figure 2. These sensors 

are chosen for their accuracy and ability to 

withstand harsh environmental conditions. An 

ESP32 microcontroller with SIM module is used 

to collect data from the sensors and transmit it to 

the cloud via cellular network. The ESP32's low 

power consumption and wireless connectivity 

make it an ideal choice for remote deployments. 

To ensure reliable data transmission, a localhost 

acts as a gateway, aggregating sensor data from 

multiple locations and forwarding it to the 

Node.js server. 

On the software side, the system relies on 

Node.js for backend processing and Google 

Maps API for visualization. The Node.js 

backend is responsible for handling sensor data, 

executing the dual-sensor water level prediction 

algorithm, and generating real-time alerts.  The 

dual-sensor algorithm calculates the rate of 

water level increase and the differential between 

the two sensor locations to assess flood risks. If 

a high or medium risk is detected, the system 

generates alerts and sends them to users via 

Telegram app. Meanwhile, Google Maps API 

provides an intuitive interface for visualizing 
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Server

 Figure 2.  Two sensors are installed at two different 

locations on the river 

sensor locations, water level data at each 

measuring point in map. Additionally, The 

measured data is updated on the map in real time 

as new data becomes available, ensuring that 

users always have access to the latest 

information. The system also incorporates a 

MongoDB database to store historical sensor 

data for analysis and visualization. By storing 

data such as timestamps, sensor IDs, water 

levels, and flood risk levels, the system can 

generate insights into past flood events and help 

predict future risks. 

One of the key strengths of the proposed system 

is its ability to provide real-time monitoring 

while capturing spatial variations in water 

levels. By leveraging dual-sensor data, the 

system offers a more comprehensive assessment 

of flood risks compared to single-sensor 

approaches. Its scalability allows it to support 

multiple sensor pairs, making it suitable for 

deployment across larger river basins. 

Furthermore, the user-friendly interface powered 

by Google Maps API ensures that even non-

technical users can easily interpret the data and 

take appropriate actions. These features 

collectively enhance the system's effectiveness 

in mitigating the impact of floods, particularly in 

regions like the Con River basin in Binh Dinh 

Province, where rapid water flow and wide 

floodplains pose significant challenges. 

4. DUAL-SENSOR WATER LEVEL 

PREDICTION ALGORITHM 

The proposed dual-sensor water level prediction 

algorithm is a key component of the flood 

monitoring system, enabling accurate and timely 

flood risk assessment. This section provides a 

detailed description of the algorithm, including 

its operational principles, risk classification 

mechanism, and alert generation process. 

4.1. Algorithm 

The dual-sensor water level prediction algorithm 

analyzes two critical parameters to evaluate 

flood risks: (i) the rate of water level increase at 

each sensor location and (ii) the differential 

between water levels measured by the two 

sensors. These parameters are derived from real-

time data collected by ultrasonic sensors 

deployed upstream and downstream along the 

river. To calculate the rate of water level 

increase, the algorithm computes the difference 

between the current water level and the previous 

water level for each sensor, divided by the time 

interval between measurements. 

Mathematically, this is expressed as: 

        (1) 

          (2) 

where  and  represent the 

current water levels at Sensor A and Sensor B, 

respectively,  and  

represent the previous water levels, and  is the 

time interval between consecutive 

measurements. The water level differential is 

calculated as the absolute difference between the 

water levels at the two sensor locations: 

Delta=∣ − ∣          (3)        

This parameter captures spatial variations in 

water levels, which are essential for 

understanding the dynamics of river systems. 

For instance, a significant differential may 

indicate uneven water flow or potential 

blockages between the two sensor locations. By 

combining these two parameters, the algorithm 

provides a comprehensive assessment of flood 

risks, accounting for both temporal changes and 

spatial relationships in water levels. 

4.2. Risk Classification 

Based on the calculated parameters, the 
algorithm classifies flood risks into three levels: 
low, medium, and high. The classification is 
determined by comparing the computed values 
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with predefined thresholds, denoted as 
 for the rate of water level increase 

and  for the water level differential. 
These thresholds are established based on 
historical data and expert knowledge specific to 
the monitored river basin. The use of dual 
thresholds ensures that the algorithm can adapt to 
varying environmental conditions and provide 
reliable flood risk predictions. The algorithm of 
alert generation is shown in Algorithm 1. 

Algorithm 1: Alert Generation Process 

Initialize: RiskLevel=Low 

1. Retrieve the computed values of , 
, and Delta from the dual-sensor algorithm. 

2. Compare  and  with , : 

• If >  and 
> , set RiskLevel=High. 

3. Check the water level differential (Delta) 
against , : 

• If Delta> , set 
RiskLevel=High. 

4. Evaluate medium-risk conditions: 

• If > , or 
> , and Delta< , set 
RiskLevel=Medium. 

5. Confirm low-risk conditions: 

• If ≤ , ≤ , 
and Delta< , set 
RiskLevel=Low. 

6. Generate alerts based on RiskLevel: 

• If RiskLevel=High: 

• Send SMS and push notifications to 
emergency teams and authorities. 

• Highlight affected areas on Google 
Maps API with color-coded 
overlays. 

• If RiskLevel=Medium: 

• Send SMS and push notifications to 
users with precautionary messages. 

• If RiskLevel=Low: 

• No alerts generated; continue 
monitoring. 

4.3. Alert Generation 

Once the flood risk level is determined, the 

system generates real-time alerts to inform 

stakeholders of potential flood threats. The alert 

generation process is triggered automatically 

when a medium or high-risk condition is 

detected. For high-risk conditions, the system 

prioritizes immediate alerts to emergency 

response teams and local authorities. The alerts 

include detailed information such as the sensor 

locations, current water levels, and predicted 

flood zones. Additionally, the Google Maps API 

interface highlights the affected areas on an 

interactive map, providing users with a visual 

representation of the flood risk zones. 

For medium-risk conditions, the system sends 

precautionary alerts to users, advising them to 

monitor the situation closely and prepare for 

potential evacuations. These alerts are less 

urgent but still emphasize the importance of 

proactive measures to mitigate flood impacts. 

The integration of automated alert generation 

with real-time visualization ensures that the 

system not only detects flood risks but also 

facilitates effective communication and 

decision-making. By leveraging Node.js for 

backend processing, the system achieves low-

latency alert generation, with alerts typically 

delivered within 10 seconds of detecting a 

potential flood threat. 

5. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed 

flood monitoring system, a series of experiments 

were conducted using simulated data and limited 

field testing along the Con River in Binh Dinh 

Province. Two ultrasonic sensors were deployed 

at upstream (Tay Son district) and downstream 

(An Nhon district) locations, with a distance of 

approximately 24 km between them. Data was 

collected at 5 seconds intervals over a period of 

48 hours, during which both normal and 

simulated high water level conditions were 

tested. The measurement results are displayed in 

real time, as shown in Figure 3. 

The ultrasonic sensors successfully captured 

real-time water level data at regular intervals.  

The sensor monitoring interface effectively 

integrates Google Maps API and real-time data 

visualization to provide a comprehensive 

overview of environmental conditions across the 

region. The interface is divided into two main 

sections: (i) a map displaying sensor locations 

and their corresponding data, and (ii) a sidebar 

showing detailed sensor readings and historical 

data trends. The map clearly highlights the 

spatial distribution of sensors at Tay Son and An 

Nhon, marked with red pins. Each pin provides a 

pop-up window with real-time environmental 

data. This visual representation allows users to 

quickly identify critical environmental data. This 
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Figure 3.  Experimental results displayed on web server 

visual representation allows users to quickly 

identify critical environmental parameters at 

each location, providing valuable spatial context 

for decision-making. 

The dual-sensor water level prediction algorithm 
was tested using simulated data to evaluate its 
ability to classify flood risks. The algorithm 
demonstrated high sensitivity to rapid increases 
in water levels (  and ) and significant 
water level differentials Delta. However, 
determining accurate thresholds for parameters 
such as the rate of water level increase 

 and the water level differential 
(Delta) remains a challenge that requires further 
investigation. To establish appropriate 
thresholds, the system needs to be supplied with 
more real-world data collected under various 
environmental conditions, particularly during 
actual flood events or abnormal flow situations. 
Additionally, the Delta threshold must also 
consider the distance between the two sensors 
and the proximity of the sensors to the areas 
being forecasted. A larger distance between 
sensors may naturally result in water level 
differences due to terrain and flow dynamics, 
while the distance from the sensors to the 
forecasted areas will influence the accuracy and 
timeliness of the warnings. Therefore, optimizing 
these thresholds requires a combination of 
empirical data and spatial analysis to ensure the 
system performs effectively under all real-world 
conditions. 

To evaluate the performance of the proposed 

flood monitoring system, we conducted a series 

of tests using both real-time field data and 

simulated flood conditions. The performance of 

the system was measured in terms of its 

accuracy, calculated using standard metrics 

derived from the confusion matrix (True 

Positives - TP, False Positives - FP, False 

Negatives - FN, and True Negatives - TN). 

The accuracy of the system is defined as the 

proportion of correct predictions (both TP and 

TN) to the total number of predictions (TP, TN, 

FP, and FN). Specifically, the accuracy was 

calculated using the following formula: 

               (4) 

Table 1: Simulation results and accuracy calculation 

Category Number of 

Instances 

Percentage 

(%) 

True Positives 

(TP) 

71 47.33% 

False Positives 

(FP) 

4 2.67% 

False Negatives 

(FN) 

4 2.67% 

True Negatives 

(TN) 

71 47.33% 

Accuracy — 94.66% 

 

From the Table 1, the accuracy of 94.66% is 

derived from the system's ability to correctly 

predict flood risks in 94.66% of the cases tested, 

which indicates that the system's predictions 

matched the actual flood conditions observed 

during the test. This high accuracy was achieved 

by leveraging dual-sensor water level data, 

which enhanced the system's ability to detect 
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rapid changes in water levels and spatial 

variations along the river. 

The table clearly shows that the system was 

highly effective in identifying flood risks, with a 

minimal number of false positives (2.67%) and 

false negatives (2.67%). The 94.66% accuracy 

rate demonstrates the robustness and reliability 

of the system, particularly in rapidly changing 

water conditions. 

Latency is a critical factor that can impact the 

overall performance of the flood monitoring 

system. In the current implementation, the 

system achieves a low-latency data transmission 

and processing pipeline, with alerts typically 

generated within 10 seconds of detecting a 

potential flood risk, as shown in Figure 4. This 

experimental result is completely suitable for 

applying this system in practice. This rapid 

response is achieved through the integration of 

IoT sensors, efficient Node.js backend 

processing, and real-time communication 

protocols MQTT. However, certain factors can 

introduce delays in the system. Since signal 

transmission over long distances or through 

areas with poor network coverage may result in 

increased latency, particularly when using 

wireless communication methods like 4G. 

Additionally, the time required for data 

preprocessing and algorithm execution, though 

minimal, can also contribute to slight delays in 

generating predictions. 

 

Figure 4. The latency when sending data from the 

sensor node to the webserver 

6. CONCLUSIONS 

This paper presents an IoT-based flood 

monitoring system that leverages dual-sensor 

water level data, Node.js backend processing, 

and Google Maps API visualization to provide 

real-time flood risk prediction and alert 

dissemination. The proposed dual-sensor water 

level prediction algorithm effectively analyzes 

both temporal changes (rate of water level 

increase) and spatial variations (water level 

differential) to classify flood risks into low, 

medium, and high categories. Initial testing 

demonstrates the system's ability to achieve high 

accuracy of 94.66% in flood risk classification 

and generate alerts with minimal latency (around 

10 seconds), outperforming traditional single-

sensor approaches. Furthermore, the integration 

of Google Maps API enhances situational 

awareness by providing intuitive spatial 

visualization of sensor locations and flood-prone 

areas. Future work will focus on expanding the 

sensor network, incorporating additional 

environmental parameters such as rainfall and 

flow rate, and conducting long-term field testing 

during flood events. By addressing these 

limitations, the system has the potential to serve 

as a scalable and cost-effective solution for 

mitigating flood risks in vulnerable regions like 

the Con River basin in Binh Dinh Province, 

Vietnam and beyond. 
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