Hé thong giam sat va canh bao li lut théi gian thwe dwa trén
nén tang loT va cam bién mwc nwéc kép

TOM TAT

Lii Iyt 1a mot trong nhimg tham hoa thién nhién gay thiét hai nang né vé ngudi va kinh té. Viéc phat hién som
va dua ra canh bao kip thoi dong vai tro then chdt trong cong tac quan ly i, dac biét tai cac khu vuc co diéu kién dia
hinh phtre tap. Bai bao nay dé xuit mot hé théng giam sat 1t lut dya trén cong nghé 10T, tan dung dir liéu myc nudc
tlr hai cam bién dat cach xa nhau dé nang cao do chinh xac trong dy bao rti ro va phat canh bao kip thoi. Mot thuat
toan phan tich muc nuéc mai dya trén cam bién kép duge giéi thiu, nham danh gia nguy co li thong qua viéc phan
tich toc do dang myc nudc va chénh 1éch myc nude gilra hai vi tri cam bién. Heé théng tich hop Node.js cho xur ly
phia may chu va Google Maps API cho truc quan hoéa khong gian, gitip giam sat va phan phdi canh bao theo thoi
gian thuc. Két qua thyc nghiém cho théy hé théng dat do chinh xac cao, 94.66% trong viéc phat hién rti ro 1ii, va do
tré thap, chi 10 gidy trong qué trinh phat canh bao, khang dinh tinh kha thi ctia hé thong trong cac khu vuc thudng
xuyén xay ra lii lut, dién hinh nhu luu vye séng Con, tinh Binh Dinh.

Tir khéa: [oT, hé thong canh bdo lii sém, cam bién kép, Node.js, Google Maps API.



loT-Enabled Flood Risk Detection via Dual-Sensor Water
Level Monitoring and Real-Time Alerting

ABSTRACT

Flooding is a devastating natural disaster that causes significant loss of life and economic damage. Early
detection and real-time alerts are essential for effective flood management, particularly in regions with challenging
geographical conditions. This paper proposes an IoT-based flood monitoring system that leverages dual-sensor
water level data for accurate risk prediction and timely alerts. A novel dual-sensor water level analysis algorithm is
introduced to evaluate flood risks by analyzing the rate of water level increase and the differential between two
sensor locations. The system integrates Node.js for backend processing and Google Maps API for spatial
visualization, enabling real-time monitoring and alert dissemination. Experimental results demonstrate high
accuracy of 94.66% in detecting flood risks and low latency of 10 seconds in generating alerts, proving the system's
suitability for flood-prone areas like the Con River basin, Binh Dinh province.

Keywords: [oT, early warning system, dual-sensor water level prediction, Node.js, Google Maps API

1. INTRODUCTION

Flooding is one of the most catastrophic natural
disasters, causing widespread destruction, loss
of life, and economic damage globally.
According to the report from the World
Meteorological Organization (WMO), floods
account for approximately 44% of all natural
disasters, affecting millions of people annually’.
In developing countries, where infrastructure
and disaster management systems are often
underdeveloped, the impact of floods is
particularly severe. Early detection and real-time
alerts are critical for mitigating the adverse
effects of floods, enabling communities and
authorities to take proactive measures such as
evacuations, resource allocation, and emergency
response planning?.

Traditional flood monitoring systems often rely
on manual measurements or single-point
sensors, which may lack spatial coverage,
accuracy, and timeliness. Water level data
collected manually at specific locations may not
reflect the dynamic changes occurring across a
river basin. Similarly, single-point sensor
systems fail to capture spatial variations in water
levels, leading to delayed or inaccurate flood
predictions®. These limitations highlight the
need for advanced, scalable, and cost-effective
solutions that can provide real-time insights into
flood risks.

Recent advancements in Internet of Things (IoT)
technologies have enabled the development of
smart flood monitoring systems capable of
collecting and processing environmental data in
real time. loT-based systems offer several
advantages, including  continuous  data
collection, wireless communication, and
integration with cloud platforms for analysis and
visualization*>, However, most existing IoT-
based flood monitoring systems focus on single-
sensor data, which may not fully capture the
complex dynamics of river systems. To address
this gap, this paper proposes an loT-based flood
monitoring system that leverages dual-sensor
water level data for enhanced flood risk
prediction and timely alerts.

The proposed system integrates advanced
technologies such as Node.js for backend
processing and Google Maps API for spatial
visualization, enabling real-time monitoring and
alert dissemination. A novel dual-sensor water
level analysis algorithm is introduced to predict
flood risks by analyzing two key parameters: (i)
the rate of water level increase at each sensor
location and (ii) the differential between water
levels measured by two sensors placed at
different points along a river. This approach not
only captures temporal changes in water levels
but also accounts for spatial variations,
providing a more comprehensive assessment of
flood risks.



The remainder of this paper is organized as
follows: Section II provides an overview of
related work. Section III describes the system
architecture and design. Section IV details the
dual-sensor water level prediction algorithm.
Section V presents the experimental results,
including the field experiment conducted along
the Con River. Finally, Section VI concludes the
paper and discusses future work.

2. RELATED WORK

Flood monitoring and early warning systems
have been extensively studied in recent years,
driven by the increasing frequency and severity
of floods due to climate change and
urbanization. Existing research can be broadly
categorized into three main areas: (i) loT-based
flood monitoring systems, (ii) data analysis and
prediction algorithms, and (iii) visualization and
alert dissemination platforms. This section
reviews key contributions in these areas and
highlights the gaps addressed by the proposed
system.

2.1. IoT-Based flood monitoring systems

The advent of IoT technologies has
revolutionized flood monitoring by enabling
real-time data collection and remote sensing.
Masoudimoghaddam et al. proposed an IoT-
based flood monitoring system using ultrasonic
sensors to measure water levels in rivers®. The
system transmitted sensor data to a cloud
platform for analysis and visualization. While
effective, this approach relied on single-point
sensors, which may not capture spatial
variations in water levels across a river basin.
Similarly, a wireless sensor network for flood
detection,  focusing on  energy-efficient
communication  protocols was developed’.
However, the study did not incorporate
advanced algorithms for flood risk prediction,
limiting its ability to provide actionable insights.

More recently, the researchers introduced a
multi-sensor [oT system for flood monitoring,
integrating rainfall, soil moisture, and water
level data®. The system demonstrated improved
accuracy in detecting flood risks compared to
single-parameter approaches. Despite these
advancements, most existing loT-based systems
lack the capability to analyze spatial
relationships between multiple sensor locations,
which is critical for understanding the dynamics
of river systems.

2.2. Data analysis and prediction algorithms

Data analysis and prediction algorithms play a
crucial role in flood risk assessment. Traditional
approaches often rely on statistical models or
hydrological simulations to predict flood events.
A rainfall-runoff system was developed to
estimate flood risks based on historical rainfall
data’. While these systems are effective for
long-term predictions, they may not be suitable
for real-time monitoring due to their
computational complexity.

Machine learning (ML) techniques have gained
popularity in recent years for flood prediction. A
deep learning model was deployed to predict
flood risks wusing satellite imagery and
environmental data'®, The model achieved high
accuracy in detecting flood-prone areas but
required  extensive  training data  and
computational resources. Similarly, a support
vector machine (SVM) algorithm was employed
to classify flood risks based on water level
data''. However, these ML-based approaches are
often resource-intensive and may not be feasible
for deployment in  resource-constrained
environments.

In contrast, rule-based algorithms have been
explored as a lightweight alternative for real-
time flood prediction. A threshold-based
algorithm was introduced to detect rapid
increases in water levels using single-sensor
data'?. While simple and efficient, this approach
did not account for spatial variations in water
levels, which are essential for accurate flood risk
assessment.

2.3. Visualization and alert dissemination
platforms

Visualization and alert dissemination platforms
are critical components of flood monitoring
systems, enabling users to interpret sensor data
and respond to flood risks effectively. Recent
studies have highlighted the importance of
integrating geographic information systems
(GIS) for spatial visualization. The researchers
developed a flood monitoring system that used
Google Maps API to display sensor locations
and flood risk zones on an interactive map'’.
The system provided intuitive visualization and
real-time alerts, enhancing situational awareness
for users.

Other studies have explored mobile applications
and  web-based dashboards for  alert
dissemination. A smartphone app that delivered
flood alerts via push notifications, SMS, and
email was proposed'*. While effective, the study

3



did not address the integration of advanced data
analysis algorithms for flood risk prediction.
Similarly, a web-based platform for flood
monitoring was introduced!® but the platform's
effectiveness is limited by the absence of real-
world validation during actual flood events,
reducing its reliability in emergency scenarios.

2.4. Gaps addressed by the proposed system

Despite significant advancements in flood
monitoring technologies, several gaps remain
unaddressed in existing research. First, most
IoT-based systems rely on single-point sensors
or fail to analyze spatial relationships between
multiple sensor locations. Second, many data
analysis algorithms are either computationally
intensive or lack the ability to capture both
temporal and spatial variations in water levels.
Third, while visualization platforms have
improved user experience, they are often
decoupled from robust prediction algorithms,
limiting their effectiveness in providing
actionable insights.

The proposed system addresses these gaps by
leveraging dual-sensor water level data for
enhanced flood risk prediction. A novel dual-
sensor water level analysis algorithm is
introduced to evaluate flood risks based on both
the rate of water level increase and the
differential between two sensor locations. The
system integrates Node.js for efficient backend
processing and Google Maps API for spatial
visualization, enabling real-time monitoring and
alert dissemination. Furthermore, the system is
validated through a field experiment conducted
along the Con River in Binh Dinh Province ,
demonstrating its suitability for real-world
deployment in flood-prone areas.

3. SYSTEM ARCHITECTURE AND
DESIGN

The architecture of the proposed IoT-based
flood monitoring system is designed to provide
real-time flood risk prediction and alert
dissemination by leveraging dual-sensor water
level data, Node.js for backend processing, and
Google Maps API for spatial visualization. The
system architecture is shown in Figure 1. The
system follows a modular design that integrates
hardware components for data collection,
software components for processing and
analysis, and a robust data flow mechanism to
ensure seamless operation.

POWER

WATER LEVEL MICROCONTROLLER
SENSOR UNIT GOOGLE MAP
API
TEMP/HUMI SIM MODULE Internet WEB SERVER
SENSOR 3G/4G

Figure 1. System architecture overview

At the core of the system are the hardware
components responsible for collecting water
level data from the field. Two ultrasonic sensors
are strategically deployed at different locations
along the river, one upstream and the other
downstream, to capture spatial variations in
water levels. The distance between the two
measuring points is 24 km along the length of
the river, as shown in Figure 2. These sensors
are chosen for their accuracy and ability to
withstand harsh environmental conditions. An
ESP32 microcontroller with SIM module is used
to collect data from the sensors and transmit it to
the cloud via cellular network. The ESP32's low
power consumption and wireless connectivity
make it an ideal choice for remote deployments.
To ensure reliable data transmission, a localhost
acts as a gateway, aggregating sensor data from
multiple locations and forwarding it to the
Node.js server.

On the software side, the system relies on
Node.js for backend processing and Google
Maps API for visualization. The Node.js
backend is responsible for handling sensor data,
executing the dual-sensor water level prediction
algorithm, and generating real-time alerts. The
dual-sensor algorithm calculates the rate of
water level increase and the differential between
the two sensor locations to assess flood risks. If
a high or medium risk is detected, the system
generates alerts and sends them to users via
Telegram app. Meanwhile, Google Maps API
provides an intuitive interface for visualizing
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Figure 2. Two sensors are installed at two different
locations on the river

sensor locations, water level data at each
measuring point in map. Additionally, The
measured data is updated on the map in real time
as new data becomes available, ensuring that
users always have access to the latest
information. The system also incorporates a
MongoDB database to store historical sensor
data for analysis and visualization. By storing
data such as timestamps, sensor IDs, water
levels, and flood risk levels, the system can
generate insights into past flood events and help
predict future risks.

One of the key strengths of the proposed system
is its ability to provide real-time monitoring
while capturing spatial variations in water
levels. By leveraging dual-sensor data, the
system offers a more comprehensive assessment
of flood risks compared to single-sensor
approaches. Its scalability allows it to support
multiple sensor pairs, making it suitable for
deployment across larger river basins.
Furthermore, the user-friendly interface powered
by Google Maps API ensures that even non-
technical users can easily interpret the data and
take appropriate actions. These features
collectively enhance the system's effectiveness
in mitigating the impact of floods, particularly in
regions like the Con River basin in Binh Dinh
Province, where rapid water flow and wide
floodplains pose significant challenges.

4. DUAL-SENSOR WATER LEVEL
PREDICTION ALGORITHM

The proposed dual-sensor water level prediction
algorithm is a key component of the flood

monitoring system, enabling accurate and timely
flood risk assessment. This section provides a
detailed description of the algorithm, including
its operational principles, risk classification
mechanism, and alert generation process.

4.1. Algorithm

The dual-sensor water level prediction algorithm
analyzes two critical parameters to evaluate
flood risks: (i) the rate of water level increase at
each sensor location and (ii) the differential
between water levels measured by the two
sensors. These parameters are derived from real-
time data collected by ultrasonic sensors
deployed upstream and downstream along the
river. To calculate the rate of water level
increase, the algorithm computes the difference
between the current water level and the previous
water level for each sensor, divided by the time
interval between measurements.
Mathematically, this is expressed as:

WAcu'rremt - WAprevious
At (1)

Rate, =

WBcur'remt - WB'pf'evious
At 2)

Rategp =

where WA, ren: and WB . ren: Tepresent the
current water levels at Sensor A and Sensor B,
respectively,  WAprepious  and  WBopious
represent the previous water levels, and At is the
time interval between consecutive
measurements. The water level differential is
calculated as the absolute difference between the
water levels at the two sensor locations:

Delta=|W A current— W Bcyrrent| 3)

This parameter captures spatial variations in
water levels, which are essential for
understanding the dynamics of river systems.
For instance, a significant differential may
indicate uneven water flow or potential
blockages between the two sensor locations. By
combining these two parameters, the algorithm
provides a comprehensive assessment of flood
risks, accounting for both temporal changes and
spatial relationships in water levels.

4.2. Risk Classification

Based on the calculated parameters, the
algorithm classifies flood risks into three levels:
low, medium, and high. The classification is
determined by comparing the computed values
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with  predefined thresholds, denoted as
Thresholdg for the rate of water level increase
and Threshold, for the water level differential.
These thresholds are established based on
historical data and expert knowledge specific to
the monitored river basin. The use of dual
thresholds ensures that the algorithm can adapt to
varying environmental conditions and provide
reliable flood risk predictions. The algorithm of
alert generation is shown in Algorithm 1.

Algorithm 1: Alert Generation Process

Initialize: RiskLevel=Low

1. Retrieve the computed values of Rate,, Rateg
, and Delta from the dual-sensor algorithm.

2. Compare Rate, and Rateg with Thresholdg, :

e If Rate,>Thresholdg and  Rateg
>Thresholdg, set RiskLevel=High.

3. Check the water level differential (Delta)
against Thresholdp, :

o If Delta>Threshold,, set
RiskLevel=High.
4. Evaluate medium-risk conditions:
e If  Rate,>Thresholdy, or Rateg

>Thresholdg, and Delta<Thresholdp, set
RiskLevel=Medium.

5. Confirm low-risk conditions:
e If Rate,<Thresholdg, Rateg<Thresholdg,
and Delta<Threshold,, set

RiskLevel=Low.
6. Generate alerts based on RiskLevel:
o IfRiskLevel=High:

e Send SMS and push notifications to
emergency teams and authorities.

o Highlight affected areas on Google
Maps API  with color-coded
overlays.

e IfRiskLevel=Medium:

¢ Send SMS and push notifications to
users with precautionary messages.

e [fRiskLevel=Low:

e No alerts generated; continue
monitoring.

4.3. Alert Generation

Once the flood risk level is determined, the
system generates real-time alerts to inform
stakeholders of potential flood threats. The alert
generation process is triggered automatically
when a medium or high-risk condition is

detected. For high-risk conditions, the system
prioritizes immediate alerts to emergency
response teams and local authorities. The alerts
include detailed information such as the sensor
locations, current water levels, and predicted
flood zones. Additionally, the Google Maps API
interface highlights the affected areas on an
interactive map, providing users with a visual
representation of the flood risk zones.

For medium-risk conditions, the system sends
precautionary alerts to users, advising them to
monitor the situation closely and prepare for
potential evacuations. These alerts are less
urgent but still emphasize the importance of
proactive measures to mitigate flood impacts.

The integration of automated alert generation
with real-time visualization ensures that the
system not only detects flood risks but also
facilitates  effective = communication and
decision-making. By leveraging Node.js for
backend processing, the system achieves low-
latency alert generation, with alerts typically
delivered within 10 seconds of detecting a
potential flood threat.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed
flood monitoring system, a series of experiments
were conducted using simulated data and limited
field testing along the Con River in Binh Dinh
Province. Two ultrasonic sensors were deployed
at upstream (Tay Son district) and downstream
(An Nhon district) locations, with a distance of
approximately 24 km between them. Data was
collected at 5 seconds intervals over a period of
48 hours, during which both normal and
simulated high water level conditions were
tested. The measurement results are displayed in
real time, as shown in Figure 3.

The ultrasonic sensors successfully captured
real-time water level data at regular intervals.
The sensor monitoring interface effectively
integrates Google Maps API and real-time data
visualization to provide a comprehensive
overview of environmental conditions across the
region. The interface is divided into two main
sections: (i) a map displaying sensor locations
and their corresponding data, and (ii) a sidebar
showing detailed sensor readings and historical
data trends. The map clearly highlights the
spatial distribution of sensors at Tay Son and An
Nhon, marked with red pins. Each pin provides a
pop-up window with real-time environmental
data. This visual representation allows users to
quickly identify critical environmental data. This
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Figure 3. Experimental results displayed on web server

visual representation allows users to quickly
identify critical environmental parameters at
each location, providing valuable spatial context
for decision-making.

The dual-sensor water level prediction algorithm
was tested using simulated data to evaluate its
ability to classify flood risks. The algorithm
demonstrated high sensitivity to rapid increases
in water levels (Rate, and Ratey) and significant
water level differentials Delta. However,
determining accurate thresholds for parameters
such as the rate of water level increase
Rate,, Rateg and the water level differential
(Delta) remains a challenge that requires further
investigation. To  establish  appropriate
thresholds, the system needs to be supplied with
more real-world data collected under various
environmental conditions, particularly during
actual flood events or abnormal flow situations.
Additionally, the Delta threshold must also
consider the distance between the two sensors
and the proximity of the sensors to the areas
being forecasted. A larger distance between
sensors may naturally result in water level
differences due to terrain and flow dynamics,
while the distance from the sensors to the
forecasted areas will influence the accuracy and
timeliness of the warnings. Therefore, optimizing
these thresholds requires a combination of
empirical data and spatial analysis to ensure the
system performs effectively under all real-world
conditions.

To evaluate the performance of the proposed
flood monitoring system, we conducted a series
of tests using both real-time field data and
simulated flood conditions. The performance of
the system was measured in terms of its
accuracy, calculated using standard metrics

Sensor List

Tay Son - 27.1°C, Humidity: 81.4%, Water Level: 15 cm

An Nhon - 27.3°C, Humidity: 78%, Water Level: 15.4 cm
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derived from the confusion matrix (True
Positives - TP, False Positives - FP, False
Negatives - FN, and True Negatives - TN).

The accuracy of the system is defined as the
proportion of correct predictions (both TP and
TN) to the total number of predictions (TP, TN,
FP, and FN). Specifically, the accuracy was
calculated using the following formula:

TP +TN

A pu—
Y T TP YFP Y FN + TN )

Table 1: Simulation results and accuracy calculation

Category Number of | Percentage
Instances (%)

True  Positives | 71 47.33%
(TP)

False  Positives | 4 2.67%
(FP)

False Negatives | 4 2.67%
(FN)

True Negatives | 71 47.33%
(TN)

Accuracy — 94.66%

From the Table 1, the accuracy of 94.66% is
derived from the system's ability to correctly
predict flood risks in 94.66% of the cases tested,
which indicates that the system's predictions
matched the actual flood conditions observed
during the test. This high accuracy was achieved
by leveraging dual-sensor water level data,
which enhanced the system's ability to detect

7




rapid changes in water levels and spatial
variations along the river.

The table clearly shows that the system was
highly effective in identifying flood risks, with a
minimal number of false positives (2.67%) and
false negatives (2.67%). The 94.66% accuracy
rate demonstrates the robustness and reliability
of the system, particularly in rapidly changing
water conditions.

Latency is a critical factor that can impact the
overall performance of the flood monitoring
system. In the current implementation, the
system achieves a low-latency data transmission
and processing pipeline, with alerts typically
generated within 10 seconds of detecting a
potential flood risk, as shown in Figure 4. This
experimental result is completely suitable for
applying this system in practice. This rapid
response is achieved through the integration of
IoT sensors, efficient Node.js backend
processing, and real-time communication
protocols MQTT. However, certain factors can
introduce delays in the system. Since signal
transmission over long distances or through
areas with poor network coverage may result in
increased latency, particularly when using
wireless communication methods like 4G.
Additionally, the time required for data
preprocessing and algorithm execution, though
minimal, can also contribute to slight delays in
generating predictions.
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Figure 4. The latency when sending data from the
sensor node to the webserver

6. CONCLUSIONS

This paper presents an IoT-based flood
monitoring system that leverages dual-sensor
water level data, Node.js backend processing,
and Google Maps API visualization to provide
real-time flood risk prediction and alert
dissemination. The proposed dual-sensor water
level prediction algorithm effectively analyzes
both temporal changes (rate of water level

increase) and spatial variations (water level
differential) to classify flood risks into low,
medium, and high categories. Initial testing
demonstrates the system's ability to achieve high
accuracy of 94.66% in flood risk classification
and generate alerts with minimal latency (around
10 seconds), outperforming traditional single-
sensor approaches. Furthermore, the integration
of Google Maps API enhances situational
awareness by providing intuitive spatial
visualization of sensor locations and flood-prone
areas. Future work will focus on expanding the
sensor network, incorporating additional
environmental parameters such as rainfall and
flow rate, and conducting long-term field testing
during flood events. By addressing these
limitations, the system has the potential to serve
as a scalable and cost-effective solution for
mitigating flood risks in vulnerable regions like
the Con River basin in Binh Dinh Province,
Vietnam and beyond.
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