M hinh dw bao va phat hién cac yéu t6 gay ra mwa str dung
Hoc Sau

TOM TAT

Nghién ctru nay str dung céac thuét toan hoc sau dé xay dung mé hinh du bao trén céc tap dir lidu thuc té c6 dau
hiéu mua, nhim du doan c6 mua hay khong tai mot thoi diém cuy thé cling nhu phan tich cach mua xuét hién dya trén
céc yéu t6 lién quan. Nghién ctru ciing huéng dén hd tro du bao chinh xac lvong mua roi xubng tai mot dia diém vao
mot thoi diém xac dinh. Trong nghién ctru, chiing t6i xdy dyng mé hinh hoc sau nham hd trg dy bao thoi tiét, dac biét
la dy doén chinh xac lugng mua — mdt bai toan ludén thach thirc khong chi ddi véi céc co quan dy bao tai Viét Nam
ma con dbi voi cac hé théng du bao tién tién trén thé gidi. Str dung tap dir liu thu thap dugc, chung toi tién hanh mo
ta cac thudc tinh cua cac truong dit liéu, cling nhu phén tich cac tham sé c6 tuong quan dén hién tuong mua. Sau do,
chang 61 ap dung thuét toan hoc sau dé x@y dyng md hinh dy doan kha nang c6 mua co thé xay ra hay khong va xay
ra nhu thé nao? Cac két qua thu duoc c6 thé dugc tmg dung trong thuc té de du doan lugng mua tai mot dia diém va
thoi diém cu thé tir dir liéu ddu vao 1a dit lidu dau hiéu mua duoc trich xuét tir co s& dit liéu du béo thoi tiét. Tir do,
nghién ctru mo ra tiém ning tmg dung tri tué nhan tao trong linh vuc du bao khi twong nhim nang cao do chinh xac
va giam thiéu rui ro do thoi tiét cuc doan gay ra.

Tw khéa: mo hinh dw bao muea, thudt toan LSTM, thudt toan RNN, thudt toan GRU, thudt toan hoc sdu.



Predicting Model and Detecting Factors Causing Rainfall
Using Deep Learning

ABSTRACT

This study aims to employ deep learning algorithms to construct predictive models using real-world datasets
containing indicators of rainfall. The objective is to determine the occurrence of rainfall at a specific point in time and
to analyze the underlying factors contributing to its onset. Furthermore, the research is directed toward improving the
accuracy of quantitative rainfall prediction for a given location and time. In the study, a deep learning-based
framework for weather forecasting has been developed, with a particular focus on accurate rainfall prediction - a task
that remains highly challenging not only for meteorological agencies in Vietnam but also for state-of-the-art
forecasting systems worldwide. Using the collected dataset, we conducted descriptive statistical analyses to
characterize its properties and investigated the parameters exhibiting correlations with rainfall events. Based on these
findings, deep learning algorithms were applied to develop a classification model capable of predicting the probability
of rainfall occurrence. The experimental results demonstrate that the proposed model can be applied to operational
scenarios for forecasting rainfall at specific locations and times, utilizing rainfall indicators extracted from
meteorological forecast databases. The outcomes of this research highlight the potential of artificial intelligence
techniques in meteorological applications, offering the prospect of enhanced prediction accuracy and reduced risks
associated with extreme weather phenomena.

Keywords: Rainfall prediction model, LSTM algorithm, RNN algorithm, GRU algorithm, deep learning algorithm.

1. INTRODUCTION

One of the critical inputs for hydrological
computation models is rainfall forecasting.
Rainfall prediction is an inherently complex task,
especially when forecasting for specific locations
across different months and seasons. To develop a
low-cost yet effective method that delivers
acceptable forecasting accuracy, we employed
machine learning techniques to build a daily
rainfall forecasting model. Unlike traditional
approaches, this study utilized datasets collected
from monitoring stations, combining observed
attributes with ERAS reanalysis data, and applied
suitable deep learning algorithms to construct
models for rainfall prediction and related
influencing factors. In this paper, we present a
rainfall forecasting model developed using 16
years of data collected from monitoring stations
and ERAS5 reanalysis datasets. The forecast
outputs from this model can support decision-
making in operational forecasting and other
related tasks at monitoring station locations.

Artificial Intelligence (Al) is playing an
increasingly important role in meteorology and
hydrology due to its capability to process large
volumes of data from observation stations,
forecasts, and historical weather records. Deep
Learning, a subset of Al, employs multi-layer

neural networks to learn complex patterns from
data and construct predictive models.

In this study, we developed deep learning
models based on the Long Short-Term Memory
(LSTM) architecture to predict the occurrence and
probability of rainfall. Model optimization was
performed through the analysis of evaluation
metrics such as the confusion matrix, ROC-AUC
curve, and Precision—Recall curve, alongside the
identification of key variables influencing
predictive performance.

We also integrated meteorological data
from observation stations with deep learning
algorithms to construct a rainfall forecasting
model that can assist meteorologists in their
forecasting tasks and be transferable to other
stations when necessary. By combining
meteorological expertise with observational
datasets, the model can analyze factors
influencing rainfall based on meteorological
parameters, thereby providing predictions on
rainfall occurrence and the expected rainfall
intensity.

2. RAIN FORECASTING PROBLEMS
2.1. Rain forecasting problem

Currently, accurately predicting rainfall at a
specific location and time remains a significant
challenge for meteorological agencies worldwide.
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Rainfall is essentially the result of
atmospheric processes in which water vapor in the
atmosphere  undergoes a phase change
(condensation) into solid or liquid forms such as
water, ice, or snow and falls to the ground under
the influence of gravity. During the process of
condensation and descent to the ground, raindrops
are affected by horizontal air currents. Due to
differences in environmental conditions, the
raindrops themselves may partially evaporate
during their fall.!

In recent years, meteorology and hydrology
have made significant progress in forecasting
large-scale heavy rainfall events. Such phenomena
can be predicted 2-3 days in advance with an
accuracy of about 70%, and in some cases, early
warnings can be issued 5-7 days ahead. Forecast
information for large-scale heavy rainfall events is
generally reliable regarding the timing of rainfall
onset, the affected areas, and the ending time of
the event.

Early forecasting of large-scale heavy
rainfall plays a crucial role in supporting flood,
flash flood, landslide, and inundation warnings.
These alerts are communicated to authorities and
the public to enable proactive response planning
and minimize damage.

However, when it comes to quantitative
rainfall forecasts (for specific locations and
times), current numerical weather prediction
technology still faces many limitations. Notably,
there are constraints in spatial resolution due to the
use of numerous empirical parameters in physical
models, as well as a shortage of observational
input data particularly over oceans and at higher
atmospheric layers.

Estimates indicate that the reliability of
point-based quantitative forecasts within a 1-3
day range is only about 40-60% for light and
moderate rainfall events (less than 16 mm/day).

In addition to improving the physical
modeling capabilities of forecasting systems, the
meteorological sector also focuses on enhancing
the training and expertise of forecasters especially
in utilizing intelligent decision-support systems.
This allows for the integration of various types of
observations and forecast products, enabling fine-
tuning of rainfall and temperature predictions, as
well as leveraging ensemble forecasting and other
decision-support tools.>?

2.2. Rainfall database

In this study, we use data from the Quy Nhon
Meteorological Station a Class I meteorological
station with the international code “48870”. This

station is internationally recognized as a high-
accuracy data source and is frequently used in
weather forecasting models.

The dataset spans from 2009 to 2024 and
includes hourly observational variables such as
temperature, humidity, station pressure, and total
rainfall. In addition, reanalysis data from ERAS is
incorporated, comprising 54 variables, primarily
related to temperature, humidity, and wind vectors
in the u and v directions at atmospheric pressure
levels ranging from 950 hPa to 300 hPa. All data
are organized as time series by hour, day, and
month.

The objective of using these datasets is to
explore and analyze the relationship between
rainfall and other meteorological factors in the
Quy Nhon area. Rainfall classification in the
dataset follows the standards of the Vietnam
Meteorology and Hydrology sector as follows:

e No rain = Omm/day

¢ Rain < 16mm/day

¢ 16mm/day < Moderate rain < 50mm/day
¢ 50mm/day < Heavy rain < 100mm/day

¢ Very heavy rain > 100mm/day

Statistics show that “No rain” has the
highest occurrence with 86601 cases, followed by
“Rain” with 40752 cases, and then “Moderate
rain” with 9157 cases. “Heavy rain” is
significantly less frequent with 2476 cases, and
finally, “Very heavy rain” has the fewest
occurrences with 1192 cases.

Type of rain

Figure 1. The distribution of rainfall categories in the
dataset.

From Figure 1, it is evident that among 100
sampled values, there are 62 “No rain” cases, 29
“Rain” cases, 6 “Moderate rain” cases, 2 “Heavy
rain” cases, and only 1 “Very heavy rain” case.
This indicates an uneven distribution of data
among rainfall categories, with heavier rainfall
events occurring less frequently.



Manthly Distribution of Rainfall Types

Figure 2. The distribution of rainfall categories by
month.

Based on Figure 2, heavy and very heavy
rainfall events are primarily concentrated between
September and December, with a pronounced
increase in their occurrence during September,
October, and November. This period corresponds
to the region’s main rainy season, when active
weather systems deliver abundant precipitation. In
these months, not only does the number of rainfall
events rise significantly, but rainfall intensity also
increases, contributing substantially to the
region’s annual total precipitation.

Specifically, the number of moderate,
heavy, and very heavy rainfall events increases
sharply from September to December, whereas the
rest of the year is dominated by no rain or rain
events. This highlights a clear seasonal pattern in
rainfall distribution within the study area.

As shown in Figure 3, rainfall events occur
most frequently in the temperature range of 24°C
to 30°C, with particularly high concentrations in
the 24-26°C and 26-28°C intervals. In these
temperature ranges, the total number of rainfall
samples (from light to very heavy) accounts for
the majority compared to other temperature
groups. Notably, very heavy rainfall events almost
exclusively occur within the 24-26°C and 26-28°C
intervals, indicating that this temperature range is
the most favorable for extreme rainfall.
Conversely, at lower temperatures (< 22°C) or
higher temperatures (> 30°C), the frequency of
rainfall events especially heavy and very heavy
declines sharply, with almost no extreme rainfall
observed above 30°C. This suggests that samples
with excessively low or high temperatures are less
likely to be associated with rainfall, particularly
intense rainfall events.

zoonn

Figure 3. The distribution of rainfall types across
temperature groups.

Figure 4 shows that the frequency of rainfall
events (from light rain to very heavy rain)
increases with higher humidity levels. In the 80-
90% humidity range, the total number of rainy
samples is the highest, with light rain and
moderate rain dominating. This indicates that this
humidity band is ideal for rain formation. The 70-
80% range comes next, also showing a relatively
large number of rainy samples, reflecting the clear
trend that higher humidity is associated with a
higher likelihood of rain.

Notably, heavy and very heavy rainfall
events occur mainly in the two highest humidity
groups 80-90% and >90% and are almost absent
in lower humidity groups. This suggests that
extreme rainfall events often happen when the air
holds a very high moisture content, providing
favorable conditions for intense atmospheric
condensation. In contrast, humidity groups below
60% and 60-70% record relatively few rainy
samples, with heavy and very heavy rain almost
non-existent, indicating that drier environments
have little potential to produce rainfall, especially
extreme events. Moreover, the >90% humidity
group is the only one with the highest number of
very heavy rain samples in the entire chart,
emphasizing the role of extreme humidity in
triggering severe weather phenomena.
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Figure 4. Distribution of rainfall types by humidity
group.

In Figure 5, rainfall samples are
concentrated mainly in the pressure range of 1005-
1015 mb, with the 1005-1010 mb and 1010-1015
mb groups clearly dominating. This range not only
shows a high number of rainy samples but also a
noticeable increase in strong rainfall events,
reflected in the frequent appearance of orange and
red bars representing heavy and very heavy rain.
This suggests that this pressure range is favorable
for atmospheric conditions that lead to the
formation and growth of convective rain clouds.

On the other hand, at the extremes of
pressure specifically <1000 mb and >1025 mb the
number of rainy samples is very low, and heavy
rainfall events are almost absent, indicating that
both very low and very high pressure are not ideal
environments for rain. The 1015-1020 mb group
still maintains a considerable number of rainy
samples but shows a slight decrease compared to
the preceding range, suggesting that when
pressure exceeds 1015 mb, the likelihood of rain
begins to decline. Similarly, the 1020-1025 mb
and >1025 mb groups are dominated by non-rain
samples, reflecting a more stable atmosphere with
fewer conditions supporting rainfall development.

Distribution of Aain Types by Al pressura Groups

Figure 5. Distribution of rainfall types by pressure
group.

Because the features in the dataset are
independent, analyzing their correlations is
essential to assess both their interrelationships and
their relationship with the target variable in this
case, the likelihood of rain the next day
(rain_tomorrow).

Correlation matrix between factors 0
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Figure 6. Correlation matrix between factors.

From Figure 6, we observe that humidity,
month, and rainfall all show positive correlations
with the probability of rain on the following day,
with previous-day rainfall exhibiting the strongest
positive correlation with next-day rain. In contrast,
factors such as temperature have a negative
correlation with the likelihood of rain. Notably,
atmospheric pressure shows a very weak
correlation with next-day rain, with a coefficient
of only 0.09.



3. ALGORITHMS AND PREDICTION
MODELS

3.1. Deep Learning Algorithms

Deep learning is an important branch of artificial
intelligence that focuses on building and training
multi-layer neural networks to automatically learn
complex features from data.

Unlike traditional machine learning
methods, deep learning can extract features
directly from raw data, reducing dependence on
manual preprocessing steps while effectively
capturing complex nonlinear relationships
between input variables.

Thanks to these capabilities, deep learning
has become a powerful tool in fields that require
processing large and complex datasets, such as
computer vision, natural language processing, and
especially time series forecasting in meteorology
and hydrology.’

In the context of weather forecasting and
hydrometeorological phenomena, deep learning
algorithms are widely applied to predict variables
related to rainfall, temperature, humidity,
pressure, and other meteorological parameters.

Sequential neural networks such as RNNs
(Recurrent Neural Networks) allow the model to
retain information from previous time steps, while
more advanced variants such as LSTM (Long
Short-Term Memory) and GRU (Gated Recurrent
Unit) are specifically designed to address the
vanishing gradient problem, enabling the learning
of long-term dependencies in time series data.

The choice of an appropriate deep learning
algorithm depends on the specific characteristics
of the problem and the data.

For example, with datasets containing long
time series and requiring the capture of complex
relationships among meteorological variables,
LSTM is often preferred for its long-term memory
capabilities, while GRU can be used when
reducing the number of parameters and speeding
up training is a priority. Thus, deep learning not
only offers more accurate forecasting but also
provides flexibility in uncovering hidden features
in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a
neural network architecture specifically designed
to process time series data, where the current value
depends on previous values. Unlike traditional
neural networks, RNNs have the ability to retain
information from previous time steps through a

hidden state, enabling the model to predict future
values based on historical data.’

RNN Training Algorithm: RNNs are
trained using Backpropagation Through Time
(BPTT), an extension of backpropagation, to
update weights based on the gradient of the loss
function with respect to the entire time sequence:*

Step 1: Weight Initialization - Randomly
initialize the weights W, (hidden state weights),
W, (input weights), W, (output weights) along
with biases b (hidden state bias) and ¢ (output
bias).

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step t, compute
the hidden state h; based on the current input x;
and the previous hidden state h;_; according to
the formula:

hy = tanh(W,x; + Wphy_1 + b)

Then, compute the predicted output y, from
the hidden state h;:

Ve = softmax(Wyht + c)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output y, and the actual label y*

Step 4: Backward pass - Backpropagate
the error from the final time steps to the initial
ones, computing the gradient of the loss function
with respect to the weights W, Wy, W}, b, c.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss calculation, backward pass, and weight
updates is repeated over many epochs until the
model converges or meets the early stopping
criterion.

Step 7: Prediction - Once the model is
trained, the RNN can take a new input sequence
and continuously compute the hidden states to
predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is an
improved recurrent neural network (RNN)
architecture designed to handle long time-series
data and overcome the vanishing gradient problem
often found in traditional RNNs. LSTM can retain
long-term information thanks to its gating
mechanism, which controls which information is
kept, updated, or discarded in the cell state.>’



LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
Wy, input gate W;, output gate W, cell input W,
along with the biases by, b;, by, be. The hidden

state hy and the cell state C, are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step t:

Forget gate:
ft = U(Wf “[he—g,xe ] + bf)
Input gate:
ir = o(W; - [he—q, ] + by)
Cell input:
ir = o(W; - [he—q, %] + by)
Update cell state:
Ce=fe*Cy +ir*C
Output gate:
0¢ = (W, - [he—1,x¢] + by)
Hidden state:
h; = o; * tanh(C;)
Output prediction (if needed):
y¢ = output_layer(h;)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output y; and the actual label.

Step 4: Backward pass - Backpropagate
errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
We, Wi, Wy, We, bs, by, by, be..

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate W, reset gate W,., candidate state W}, along
with the biases b,, b,,, by,. The initial hidden state
ho is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step t:

Update gate:

ze = o(W, - [he—1,x¢] + by)
Reset gate:

e = oW - [he_1, x¢] + by)
Candidate hidden state:

he = tanh(W), - [y * he_y, %] + by)
New hidden state:
he=(1—2)*hey + 2, % Iy
Output prediction (if needed):
y: = output_layer(h;)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output y; and the actual labels.

Step 4: Backward pass - Backpropagate
the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights W,, W,., Wy, b,, b, by,.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the
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hidden state continuously to predict the
corresponding output sequence.

3.2. Prediction Models Using Deep Learning

The dataset from the Quy Nhon Meteorological
Station, after being cleaned and encoded to
convert categorical features into numerical values,
can be used as input for deep learning models. The
objective is to train and compare the performance
of three deep learning algorithms: LSTM, RNN,
and GRU. These models are highly suitable for
time series data and have proven effective in
weather forecasting tasks thanks to their ability to
capture temporal dependencies, automatically
extract features from raw data, and model complex
nonlinear relationships between variables.*

Table 1. Comparison among the the machine learning
model

Model | Accuracy | Kappa AUC-ROC

LSTM | 0.8211 0.6462 0.9544

RNN | 0.7675 0.5254 0.9196

GRU | 0.8115 0.6290 0.9514
Table 1 presents the performance

comparison of the three deep learning models—
LSTM, RNN, and GRU—in a multi-class
classification problem. The results show that
LSTM achieved the highest performance across
all three evaluation metrics, with an Accuracy of
0.8211, a Kappa of 0.6462, and an impressive
AUC-ROC of 0.9544. This indicates that LSTM
not only delivers high predictive accuracy but also
effectively  distinguishes between classes,
especially in the context of complex data.

GRU also demonstrated competitive
performance, with an Accuracy of 0.8115, a
Kappa of 0.6290, and an AUC-ROC of 0.9514
only slightly lower than LSTM. This suggests that
GRU is an efficient choice when balancing
accuracy and computational complexity is
important.

In contrast, RNN achieved significantly
lower results, with an Accuracy of only 0.7675, a
Kappa of 0.5254, and an AUC-ROC of 0.9196.
This gap is particularly evident in the Kappa score,
indicating that RNN struggles to accurately
classify classes when dealing with imbalanced
data. Notably, while the AUC-ROC scores of all
three models exceed 0.9, the differences in
Accuracy and Kappa indicate that LSTM and
GRU handle the task more effectively than the
traditional RNN.

These results suggest that modern neural
network architectures such as LSTM and GRU are
better suited for multi-class classification
problems than basic RNNs, due to their ability to
capture long-term dependencies in time series
data.

Confusion Matrix

Analysis of the confusion matrix in Figure
7 for the three deep learning models (LSTM,
RNN, GRU) in the rainfall classification task (0:
no rain, 1: rain, 2: moderate rain, 3: heavy rain, 4:
very heavy rain) reveals distinct patterns.

Figure 7. Confusion Matrices for LSTM, RNN and
GRU Models.

For the LSTM model, classification
performance decreases as rainfall intensity
increases: it achieves the highest accuracy with
16281 correctly classified cases for the no-rain
class (0), drops to 5726 for the light rain class (1),
and only 84 correct predictions for the very heavy
rain class (4). Notably, the model tends to confuse
rainfall classes, as evidenced by 37 very heavy
rain cases (4) being misclassified as light rain (1)
and 2 cases as no rain (0). This outcome reflects a
common challenge for models when dealing with
minority classes that occur infrequently in the
dataset, especially extreme rainfall events. The
large disparity in the number of correct predictions
between the majority class (no rain) and the
minority classes (various rainfall types) highlights
the need to apply data imbalance handling
techniques to improve the model’s overall
performance.

The RNN model demonstrates the most
unstable performance among the three, with gaps
in its confusion matrix. Although it achieves
16086 correct predictions for the no-rain class (0),
it misclassifies up to 4900 cases. Its performance
drops sharply for rainfall classes, with only 4970
correct predictions for light rain (1) and 102 for
very heavy rain (4).



The GRU model shows inconsistent
classification performance across classes. For the
no-rain class (0), it performs well with 16075
correct predictions, but a wide range of abnormal
values (1276-5748) suggests potential overfitting
or issues in the data normalization process.
Performance declines significantly for rainfall
classes: the moderate rain class (2) achieves only
1216 correct predictions, heavy rain (3) drops to
398, and the very heavy rain class (4) is almost
entirely unrecognized, with correct predictions
ranging from 0—4. This steep decline in accuracy
with increasing rainfall intensity, along with
extremely low values at the bottom of the matrix,
points to limitations in input data quality or a
suboptimal preprocessing pipeline, especially for
extreme rainfall cases.

Overall, all three models struggled to
accurately classify minority classes, with LSTM
producing the most stable results despite being
imperfect, while RNN and GRU exhibited several
anomalies that require further inspection of data
quality and training processes. The large disparity
in the number of predictions across classes
highlights the issue of data imbalance.

Training progress - Loss log

Analysis of the learning curves (Figure 8)
shows a clear difference in the training processes
of the three models: LSTM, RNN, and GRU. All
three display a general downward trend in loss as
the number of epochs increases, but with distinct
characteristics.

Figure 8. Training progress and loss log for LSTM,
RNN, and GRU.

The LSTM model shows the most stable
learning curve, with test loss decreasing gradually
from 0.75 to 0.575 after 70 epochs, indicating a
slow yet steady learning process. Notably, the gap
between train loss and test loss is relatively small,
suggesting that the model suffers little from
overfitting.

RNN improves more quickly in the early
stages, with test loss dropping from 0.65 to 0.45 in
the first 30 epochs. However, it later exhibits
strong fluctuations (especially between epochs
40-50), reflecting the inherent instability of the
traditional RNN architecture.

GRU demonstrates a balance between the
two above learning faster than LSTM but with
more stability than RNN. Its test loss decreases
steadily from 0.65 to 0.30. However, the sudden
drop in test loss at epoch 20 (from 0.60 to 0.35)
followed by subsequent oscillations may point to
optimization issues or an unsuitable learning rate.

In summary, LSTM shows an advantage in
stability, GRU learns faster but is less stable, and
RNN  struggles to maintain  consistent
performance across epochs. These results align
with theory: LSTM is designed to address the
vanishing gradient problem faced by traditional
RNNs, while GRU is a simplified version of
LSTM with fewer parameters.

Feature Importance

Analysis of Figure 9 shows the contribution
levels of input features for three deep learning
models: LSTM, RNN, and GRU, highlighting the
15 most important features for each model.

Figure 9. Importance of Features.

For LSTM, temperature-related factors at
various pressure levels, such as t 750hPa,
t 950hPa, t 300hPa, and the Month variable, rank
at the top, indicating that this model focuses on
temperature variations across both time and
atmospheric  height. Additionally, humidity
features like ¢ 700hPa and wind components such
as v_600hPa also play significant roles.

For RNN, features related to surface and
lower-level wind, such as v100 and v10n, along
with mid and low-level temperatures (t 750hPa,
t 900hPa) dominate. Notably, actual rainfall (R)
and 24-hour pressure variation (DELTA P 24H)
are among the top features, reflecting the RNN’s
ability to strongly leverage local and direct
weather signals.

Meanwhile, GRU prioritizes v100 and
u_600hPa (zonal wind at 600hPa), combined with
temperatures at multiple levels (t 900hPa,

9



t 750hPa, t 650hPa) and mid-level humidity
(e_700hPa). The 24-hour pressure variation
(DELTA_P_24H) is also among the important
features, highlighting the role of large-scale
dynamic factors.

Overall, all three models utilize a
combination of temperature, wind, and pressure
information, but LSTM emphasizes multi-level
temperature analysis, RNN is more sensitive to
surface wind and rainfall signals, while GRU
balances wind, temperature, and pressure. These
differences reflect the distinct strategies each
architecture employs in rainfall prediction.

4. CONCLUSION

The study applied three deep neural network
architectures LSTM, RNN, and GRU to classify
rainfall by intensity, using observational data from
the Quy Nhon meteorological station combined
with ERAS reanalysis data. The results indicate
that all three models achieved good forecasting
performance, with LSTM demonstrating superior
accuracy, class discrimination ability, and training
stability. GRU performed closely to LSTM,
offering a balanced choice between accuracy and
computational cost, while the traditional RNN was
less stable and faced limitations in classifying
minority classes.

Feature importance analysis revealed that
the temporal factor (Month) plays a prominent
role, clearly reflecting the seasonal nature of
rainfall in the study area. In addition,
meteorological  features such as  wind,
temperature, humidity, and pressure variations at
multiple atmospheric levels also contributed
significantly, with each model tending to exploit
information differently: LSTM focused on multi-

level temperature variations, RNN was more
sensitive to surface wind and rainfall signals, and
GRU maintained a balance between wind,
temperature, and pressure factors.

However, in the context of climate change
and the evolving structure of meteorological
variables over time, model performance may
decline if not updated. Therefore, periodic data
updates and model retraining are necessary to
maintain accuracy and enhance applicability in
forecasting and managing extreme weather risks.
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