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Mô hình dự báo và phát hiện các yếu tố gây ra mưa sử dụng 
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TÓM TẮT 

Nghiên cứu này sử dụng các thuật toán học sâu để xây dựng mô hình dự báo trên các tập dữ liệu thực tế có dấu 

hiệu mưa, nhằm dự đoán có mưa hay không tại một thời điểm cụ thể cũng như phân tích cách mưa xuất hiện dựa trên 

các yếu tố liên quan. Nghiên cứu cũng hướng đến hỗ trợ dự báo chính xác lượng mưa rơi xuống tại một địa điểm vào 

một thời điểm xác định. Trong nghiên cứu, chúng tôi xây dựng mô hình học sâu nhằm hỗ trợ dự báo thời tiết, đặc biệt 

là dự đoán chính xác lượng mưa – một bài toán luôn thách thức không chỉ đối với các cơ quan dự báo tại Việt Nam 

mà còn đối với các hệ thống dự báo tiên tiến trên thế giới. Sử dụng tập dữ liệu thu thập được, chúng tôi tiến hành mô 

tả các thuộc tính của các trường dữ liệu, cũng như phân tích các tham số có tương quan đến hiện tượng mưa. Sau đó, 

chúng tôi áp dụng thuật toán học sâu để xây dựng mô hình dự đoán khả năng có mưa có thể xảy ra hay không và xảy 

ra như thế nào? Các kết quả thu được có thể được ứng dụng trong thực tế để dự đoán lượng mưa tại một địa điểm và 

thời điểm cụ thể từ dữ liệu đầu vào là dữ liệu dấu hiệu mưa được trích xuất từ cơ sở dữ liệu dự báo thời tiết. Từ đó, 

nghiên cứu mở ra tiềm năng ứng dụng trí tuệ nhân tạo trong lĩnh vực dự báo khí tượng nhằm nâng cao độ chính xác 

và giảm thiểu rủi ro do thời tiết cực đoan gây ra. 

Từ khóa: mô hình dự báo mưa, thuật toán LSTM, thuật toán RNN, thuật toán GRU, thuật toán học sâu. 
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ABSTRACT 

This study aims to employ deep learning algorithms to construct predictive models using real-world datasets 

containing indicators of rainfall. The objective is to determine the occurrence of rainfall at a specific point in time and 

to analyze the underlying factors contributing to its onset. Furthermore, the research is directed toward improving the 

accuracy of quantitative rainfall prediction for a given location and time. In the study, a deep learning-based 

framework for weather forecasting has been developed, with a particular focus on accurate rainfall prediction - a task 

that remains highly challenging not only for meteorological agencies in Vietnam but also for state-of-the-art 

forecasting systems worldwide. Using the collected dataset, we conducted descriptive statistical analyses to 

characterize its properties and investigated the parameters exhibiting correlations with rainfall events. Based on these 

findings, deep learning algorithms were applied to develop a classification model capable of predicting the probability 

of rainfall occurrence. The experimental results demonstrate that the proposed model can be applied to operational 

scenarios for forecasting rainfall at specific locations and times, utilizing rainfall indicators extracted from 

meteorological forecast databases. The outcomes of this research highlight the potential of artificial intelligence 

techniques in meteorological applications, offering the prospect of enhanced prediction accuracy and reduced risks 

associated with extreme weather phenomena. 

Keywords: Rainfall prediction model, LSTM algorithm, RNN algorithm, GRU algorithm, deep learning algorithm.

1. INTRODUCTION 

One of the critical inputs for hydrological 

computation models is rainfall forecasting. 

Rainfall prediction is an inherently complex task, 

especially when forecasting for specific locations 

across different months and seasons. To develop a 

low-cost yet effective method that delivers 

acceptable forecasting accuracy, we employed 

machine learning techniques to build a daily 

rainfall forecasting model. Unlike traditional 

approaches, this study utilized datasets collected 

from monitoring stations, combining observed 

attributes with ERA5 reanalysis data, and applied 

suitable deep learning algorithms to construct 

models for rainfall prediction and related 

influencing factors. In this paper, we present a 

rainfall forecasting model developed using 16 

years of data collected from monitoring stations 

and ERA5 reanalysis datasets. The forecast 

outputs from this model can support decision-

making in operational forecasting and other 

related tasks at monitoring station locations.  

Artificial Intelligence (AI) is playing an 

increasingly important role in meteorology and 

hydrology due to its capability to process large 

volumes of data from observation stations, 

forecasts, and historical weather records. Deep 

Learning, a subset of AI, employs multi-layer 

neural networks to learn complex patterns from 

data and construct predictive models.  

In this study, we developed deep learning 

models based on the Long Short-Term Memory 

(LSTM) architecture to predict the occurrence and 

probability of rainfall. Model optimization was 

performed through the analysis of evaluation 

metrics such as the confusion matrix, ROC-AUC 

curve, and Precision–Recall curve, alongside the 

identification of key variables influencing 

predictive performance. 

We also integrated meteorological data 

from observation stations with deep learning 

algorithms to construct a rainfall forecasting 

model that can assist meteorologists in their 

forecasting tasks and be transferable to other 

stations when necessary. By combining 

meteorological expertise with observational 

datasets, the model can analyze factors 

influencing rainfall based on meteorological 

parameters, thereby providing predictions on 

rainfall occurrence and the expected rainfall 

intensity. 

2. RAIN FORECASTING PROBLEMS 

2.1. Rain forecasting problem  

Currently, accurately predicting rainfall at a 

specific location and time remains a significant 

challenge for meteorological agencies worldwide. 
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Rainfall is essentially the result of 

atmospheric processes in which water vapor in the 

atmosphere undergoes a phase change 

(condensation) into solid or liquid forms such as 

water, ice, or snow and falls to the ground under 

the influence of gravity. During the process of 

condensation and descent to the ground, raindrops 

are affected by horizontal air currents. Due to 

differences in environmental conditions, the 

raindrops themselves may partially evaporate 

during their fall.1 

In recent years, meteorology and hydrology 

have made significant progress in forecasting 

large-scale heavy rainfall events. Such phenomena 

can be predicted 2–3 days in advance with an 

accuracy of about 70%, and in some cases, early 

warnings can be issued 5-7 days ahead. Forecast 

information for large-scale heavy rainfall events is 

generally reliable regarding the timing of rainfall 

onset, the affected areas, and the ending time of 

the event. 

Early forecasting of large-scale heavy 

rainfall plays a crucial role in supporting flood, 

flash flood, landslide, and inundation warnings. 

These alerts are communicated to authorities and 

the public to enable proactive response planning 

and minimize damage. 

However, when it comes to quantitative 

rainfall forecasts (for specific locations and 

times), current numerical weather prediction 

technology still faces many limitations. Notably, 

there are constraints in spatial resolution due to the 

use of numerous empirical parameters in physical 

models, as well as a shortage of observational 

input data particularly over oceans and at higher 

atmospheric layers. 

Estimates indicate that the reliability of 

point-based quantitative forecasts within a 1–3 

day range is only about 40–60% for light and 

moderate rainfall events (less than 16 mm/day). 

In addition to improving the physical 

modeling capabilities of forecasting systems, the 

meteorological sector also focuses on enhancing 

the training and expertise of forecasters especially 

in utilizing intelligent decision-support systems. 

This allows for the integration of various types of 

observations and forecast products, enabling fine-

tuning of rainfall and temperature predictions, as 

well as leveraging ensemble forecasting and other 

decision-support tools.2,3 

2.2. Rainfall database  

In this study, we use data from the Quy Nhon 

Meteorological Station a Class I meteorological 

station with the international code “48870”. This 

station is internationally recognized as a high-

accuracy data source and is frequently used in 

weather forecasting models. 

The dataset spans from 2009 to 2024 and 

includes hourly observational variables such as 

temperature, humidity, station pressure, and total 

rainfall. In addition, reanalysis data from ERA5 is 

incorporated, comprising 54 variables, primarily 

related to temperature, humidity, and wind vectors 

in the u and v directions at atmospheric pressure 

levels ranging from 950 hPa to 300 hPa. All data 

are organized as time series by hour, day, and 

month. 

The objective of using these datasets is to 

explore and analyze the relationship between 

rainfall and other meteorological factors in the 

Quy Nhon area. Rainfall classification in the 

dataset follows the standards of the Vietnam 

Meteorology and Hydrology sector as follows: 

•  No rain = 0mm/day 

• Rain < 16mm/day 

• 16mm/day ≤ Moderate rain < 50mm/day 

• 50mm/day ≤ Heavy rain < 100mm/day 

• Very heavy rain ≥ 100mm/day 

Statistics show that “No rain” has the 

highest occurrence with 86601 cases, followed by 

“Rain” with 40752 cases, and then “Moderate 

rain” with 9157 cases. “Heavy rain” is 

significantly less frequent with 2476 cases, and 

finally, “Very heavy rain” has the fewest 

occurrences with 1192 cases. 

 

Figure 1. The distribution of rainfall categories in the 

dataset. 

From Figure 1, it is evident that among 100 

sampled values, there are 62 “No rain” cases, 29 

“Rain” cases, 6 “Moderate rain” cases, 2 “Heavy 

rain” cases, and only 1 “Very heavy rain” case. 

This indicates an uneven distribution of data 

among rainfall categories, with heavier rainfall 

events occurring less frequently.  
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Figure 2. The distribution of rainfall categories by 

month. 

Based on Figure 2, heavy and very heavy 

rainfall events are primarily concentrated between 

September and December, with a pronounced 

increase in their occurrence during September, 

October, and November. This period corresponds 

to the region’s main rainy season, when active 

weather systems deliver abundant precipitation. In 

these months, not only does the number of rainfall 

events rise significantly, but rainfall intensity also 

increases, contributing substantially to the 

region’s annual total precipitation. 

Specifically, the number of moderate, 

heavy, and very heavy rainfall events increases 

sharply from September to December, whereas the 

rest of the year is dominated by no rain or rain 

events. This highlights a clear seasonal pattern in 

rainfall distribution within the study area. 

As shown in Figure 3, rainfall events occur 

most frequently in the temperature range of 24°C 

to 30°C, with particularly high concentrations in 

the 24–26°C and 26–28°C intervals. In these 

temperature ranges, the total number of rainfall 

samples (from light to very heavy) accounts for 

the majority compared to other temperature 

groups. Notably, very heavy rainfall events almost 

exclusively occur within the 24-26°C and 26-28°C 

intervals, indicating that this temperature range is 

the most favorable for extreme rainfall. 

Conversely, at lower temperatures (< 22°C) or 

higher temperatures (> 30°C), the frequency of 

rainfall events especially heavy and very heavy 

declines sharply, with almost no extreme rainfall 

observed above 30°C. This suggests that samples 

with excessively low or high temperatures are less 

likely to be associated with rainfall, particularly 

intense rainfall events.  

   

 

Figure 3. The distribution of rainfall types across 

temperature groups. 

Figure 4 shows that the frequency of rainfall 

events (from light rain to very heavy rain) 

increases with higher humidity levels. In the 80-

90% humidity range, the total number of rainy 

samples is the highest, with light rain and 

moderate rain dominating. This indicates that this 

humidity band is ideal for rain formation. The 70-

80% range comes next, also showing a relatively 

large number of rainy samples, reflecting the clear 

trend that higher humidity is associated with a 

higher likelihood of rain. 

Notably, heavy and very heavy rainfall 

events occur mainly in the two highest humidity 

groups 80–90% and >90% and are almost absent 

in lower humidity groups. This suggests that 

extreme rainfall events often happen when the air 

holds a very high moisture content, providing 

favorable conditions for intense atmospheric 

condensation. In contrast, humidity groups below 

60% and 60-70% record relatively few rainy 

samples, with heavy and very heavy rain almost 

non-existent, indicating that drier environments 

have little potential to produce rainfall, especially 

extreme events. Moreover, the >90% humidity 

group is the only one with the highest number of 

very heavy rain samples in the entire chart, 

emphasizing the role of extreme humidity in 

triggering severe weather phenomena.  
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Figure 4. Distribution of rainfall types by humidity 

group. 

In Figure 5, rainfall samples are 

concentrated mainly in the pressure range of 1005-

1015 mb, with the 1005-1010 mb and 1010-1015 

mb groups clearly dominating. This range not only 

shows a high number of rainy samples but also a 

noticeable increase in strong rainfall events, 

reflected in the frequent appearance of orange and 

red bars representing heavy and very heavy rain. 

This suggests that this pressure range is favorable 

for atmospheric conditions that lead to the 

formation and growth of convective rain clouds. 

On the other hand, at the extremes of 

pressure specifically <1000 mb and >1025 mb the 

number of rainy samples is very low, and heavy 

rainfall events are almost absent, indicating that 

both very low and very high pressure are not ideal 

environments for rain. The 1015-1020 mb group 

still maintains a considerable number of rainy 

samples but shows a slight decrease compared to 

the preceding range, suggesting that when 

pressure exceeds 1015 mb, the likelihood of rain 

begins to decline. Similarly, the 1020-1025 mb 

and >1025 mb groups are dominated by non-rain 

samples, reflecting a more stable atmosphere with 

fewer conditions supporting rainfall development. 

 

 

Figure 5. Distribution of rainfall types by pressure 

group. 

Because the features in the dataset are 

independent, analyzing their correlations is 

essential to assess both their interrelationships and 

their relationship with the target variable in this 

case, the likelihood of rain the next day 

(rain_tomorrow). 

 

Figure 6. Correlation matrix between factors. 

From Figure 6, we observe that humidity, 

month, and rainfall all show positive correlations 

with the probability of rain on the following day, 

with previous-day rainfall exhibiting the strongest 

positive correlation with next-day rain. In contrast, 

factors such as temperature have a negative 

correlation with the likelihood of rain. Notably, 

atmospheric pressure shows a very weak 

correlation with next-day rain, with a coefficient 

of only 0.09. 
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3. ALGORITHMS AND PREDICTION 

MODELS 

3.1. Deep Learning Algorithms  

Deep learning is an important branch of artificial 

intelligence that focuses on building and training 

multi-layer neural networks to automatically learn 

complex features from data. 

Unlike traditional machine learning 

methods, deep learning can extract features 

directly from raw data, reducing dependence on 

manual preprocessing steps while effectively 

capturing complex nonlinear relationships 

between input variables. 

Thanks to these capabilities, deep learning 

has become a powerful tool in fields that require 

processing large and complex datasets, such as 

computer vision, natural language processing, and 

especially time series forecasting in meteorology 

and hydrology.5 

In the context of weather forecasting and 

hydrometeorological phenomena, deep learning 

algorithms are widely applied to predict variables 

related to rainfall, temperature, humidity, 

pressure, and other meteorological parameters. 

Sequential neural networks such as RNNs 

(Recurrent Neural Networks) allow the model to 

retain information from previous time steps, while 

more advanced variants such as LSTM (Long 

Short-Term Memory) and GRU (Gated Recurrent 

Unit) are specifically designed to address the 

vanishing gradient problem, enabling the learning 

of long-term dependencies in time series data.6 

The choice of an appropriate deep learning 

algorithm depends on the specific characteristics 

of the problem and the data. 

For example, with datasets containing long 

time series and requiring the capture of complex 

relationships among meteorological variables, 

LSTM is often preferred for its long-term memory 

capabilities, while GRU can be used when 

reducing the number of parameters and speeding 

up training is a priority. Thus, deep learning not 

only offers more accurate forecasting but also 

provides flexibility in uncovering hidden features 

in hydrometeorological data. 

RNN Algorithm 

RNN (Recurrent Neural Network) is a 

neural network architecture specifically designed 

to process time series data, where the current value 

depends on previous values. Unlike traditional 

neural networks, RNNs have the ability to retain 

information from previous time steps through a 

hidden state, enabling the model to predict future 

values based on historical data.5 

RNN Training Algorithm: RNNs are 

trained using Backpropagation Through Time 

(BPTT), an extension of backpropagation, to 

update weights based on the gradient of the loss 

function with respect to the entire time sequence:4 

Step 1: Weight Initialization - Randomly 

initialize the weights 𝑊ℎ (hidden state weights), 

𝑊𝑥 (input weights), 𝑊𝑦 (output weights) along 

with biases 𝑏 (hidden state bias) and 𝑐 (output 

bias).  

Step 2: Forward pass - Iterate through the 

entire time sequence. At each time step 𝑡, compute 

the hidden state ℎ𝑡 based on the current input 𝑥𝑡 

and the previous hidden state ℎ𝑡−1 according to 

the formula: 

ℎ𝑡 = tanh(𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏) 

Then, compute the predicted output 𝑦𝑡  from 

the hidden state ℎ𝑡: 

𝑦𝑡 = softmax(𝑊𝑦ℎ𝑡 + 𝑐) 

Step 3: Compute the loss function - Use 

an appropriate loss function based on the predicted 

output 𝑦𝑡 and the actual label 𝑦𝑡 

Step 4: Backward pass - Backpropagate 

the error from the final time steps to the initial 

ones, computing the gradient of the loss function 

with respect to the weights 𝑊𝑥 , 𝑊ℎ , 𝑊𝑦, 𝑏, 𝑐. 

Step 5: Update weights - Use an 

optimization algorithm to update the weights 

based on the computed gradients, minimizing the 

loss function. 

Step 6: Repeat - The process of forward 

pass, loss calculation, backward pass, and weight 

updates is repeated over many epochs until the 

model converges or meets the early stopping 

criterion. 

Step 7: Prediction - Once the model is 

trained, the RNN can take a new input sequence 

and continuously compute the hidden states to 

predict the corresponding output sequence. 

LSTM Algorithm 

LSTM (Long Short-Term Memory) is an 

improved recurrent neural network (RNN) 

architecture designed to handle long time-series 

data and overcome the vanishing gradient problem 

often found in traditional RNNs. LSTM can retain 

long-term information thanks to its gating 

mechanism, which controls which information is 

kept, updated, or discarded in the cell state.5,7 
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LSTM training algorithm: LSTM is also 

trained using Backpropagation Through Time, an 

extension of backpropagation, to update weights 

based on the gradient of the loss function over the 

entire time series. 

Step 1: Initialize weights and states - 

Randomly initialize the weights for the forget gate 

𝑊𝑓, input gate 𝑊𝑖, output gate 𝑊𝑜, cell input 𝑊𝑐 

along with the biases 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐. The hidden 

state ℎ0 and the cell state 𝐶0 are usually initialized 

as zero vectors. 

Step 2: Forward pass - Iterate through the 

entire time series. At each time step 𝑡: 

Forget gate: 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Input gate: 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

Cell input: 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

Update cell state: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ 

Output gate: 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

Hidden state: 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

Output prediction (if needed): 

𝑦𝑡 = output_layer(ℎ𝑡) 

Step 3: Compute the loss function - Use 

an appropriate loss function based on the predicted 

output 𝑦𝑡 and the actual label. 

Step 4: Backward pass - Backpropagate 

errors from the last time step to the first 

(Backpropagation Through Time), computing the 

gradients of the loss with respect to all weights 

𝑊𝑓 , 𝑊𝑖, 𝑊𝑜, 𝑊𝑐 , 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐. 

Step 5: Update weights - Use an 

optimization algorithm to update weights based on 

computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 

computation, backward pass, and weight updates 

over many epochs until the model converges or 

meets early stopping criteria. 

Step 7: Prediction - Once trained, the 

LSTM can take a new input sequence and compute 

hidden states sequentially to predict the 

corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 

improved recurrent neural network architecture, 

similar to LSTM but with a simpler structure. It 

combines certain gates to reduce the number of 

parameters while still maintaining the ability to 

remember long-term information. GRU has two 

main gates: the update gate and the reset gate, 

which control which information should be 

retained or discarded in the hidden state. 

The GRU training algorithm also uses 

Backpropagation Through Time to update weights 

based on the gradients of the loss function across 

the entire time sequence. 

Step 1: Initialize weights and states - 

Randomly initialize the weights for the update 

gate 𝑊𝑧, reset gate 𝑊𝑟, candidate state 𝑊ℎ along 

with the biases 𝑏𝑧, 𝑏𝑟, 𝑏ℎ. The initial hidden state 

h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 

entire time sequence. At each time step 𝑡: 

• Update gate: 

𝑧𝑡 = σ(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) 

• Reset gate: 

𝑟𝑡 = σ(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) 

• Candidate hidden state: 

ℎ𝑡̃ = tanh(𝑊ℎ ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) 

• New hidden state: 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡̃ 

• Output prediction (if needed): 

𝑦𝑡 = output_layer(ℎ𝑡) 

Step 3: Compute the loss function - Use 

an appropriate loss function based on the predicted 

output 𝑦𝑡 and the actual labels. 

Step 4: Backward pass - Backpropagate 

the error from the last time steps to the first, 

computing the gradients of the loss function with 

respect to all weights 𝑊𝑧, 𝑊𝑟 , 𝑊ℎ , 𝑏𝑧, 𝑏𝑟, 𝑏ℎ. 

Step 5: Update weights - Use an 

optimization algorithm to update the weights 

based on the computed gradients, minimizing the 

loss function. 

Step 6: Repeat - The process of forward 

pass, loss computation, backward pass, and weight 

update is repeated for many epochs until the model 

converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 

can take a new input sequence and compute the 
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hidden state continuously to predict the 

corresponding output sequence. 

3.2. Prediction Models Using Deep Learning 

The dataset from the Quy Nhon Meteorological 

Station, after being cleaned and encoded to 

convert categorical features into numerical values, 

can be used as input for deep learning models. The 

objective is to train and compare the performance 

of three deep learning algorithms: LSTM, RNN, 

and GRU. These models are highly suitable for 

time series data and have proven effective in 

weather forecasting tasks thanks to their ability to 

capture temporal dependencies, automatically 

extract features from raw data, and model complex 

nonlinear relationships between variables.4 

Table 1. Comparison among the the machine learning 

model 

Model Accuracy Kappa AUC-ROC 

LSTM 0.8211 0.6462 0.9544 

RNN 0.7675 0.5254 0.9196 

GRU 0.8115 0.6290 0.9514 

Table 1 presents the performance 

comparison of the three deep learning models—

LSTM, RNN, and GRU—in a multi-class 

classification problem. The results show that 

LSTM achieved the highest performance across 

all three evaluation metrics, with an Accuracy of 

0.8211, a Kappa of 0.6462, and an impressive 

AUC-ROC of 0.9544. This indicates that LSTM 

not only delivers high predictive accuracy but also 

effectively distinguishes between classes, 

especially in the context of complex data. 

GRU also demonstrated competitive 

performance, with an Accuracy of 0.8115, a 

Kappa of 0.6290, and an AUC-ROC of 0.9514 

only slightly lower than LSTM. This suggests that 

GRU is an efficient choice when balancing 

accuracy and computational complexity is 

important. 

In contrast, RNN achieved significantly 

lower results, with an Accuracy of only 0.7675, a 

Kappa of 0.5254, and an AUC-ROC of 0.9196. 

This gap is particularly evident in the Kappa score, 

indicating that RNN struggles to accurately 

classify classes when dealing with imbalanced 

data. Notably, while the AUC-ROC scores of all 

three models exceed 0.9, the differences in 

Accuracy and Kappa indicate that LSTM and 

GRU handle the task more effectively than the 

traditional RNN. 

These results suggest that modern neural 

network architectures such as LSTM and GRU are 

better suited for multi-class classification 

problems than basic RNNs, due to their ability to 

capture long-term dependencies in time series 

data. 

Confusion Matrix 

Analysis of the confusion matrix in Figure 

7 for the three deep learning models (LSTM, 

RNN, GRU) in the rainfall classification task (0: 

no rain, 1: rain, 2: moderate rain, 3: heavy rain, 4: 

very heavy rain) reveals distinct patterns. 

 

Figure 7. Confusion Matrices for LSTM, RNN and 

GRU Models. 

For the LSTM model, classification 

performance decreases as rainfall intensity 

increases: it achieves the highest accuracy with 

16281 correctly classified cases for the no-rain 

class (0), drops to 5726 for the light rain class (1), 

and only 84 correct predictions for the very heavy 

rain class (4). Notably, the model tends to confuse 

rainfall classes, as evidenced by 37 very heavy 

rain cases (4) being misclassified as light rain (1) 

and 2 cases as no rain (0). This outcome reflects a 

common challenge for models when dealing with 

minority classes that occur infrequently in the 

dataset, especially extreme rainfall events. The 

large disparity in the number of correct predictions 

between the majority class (no rain) and the 

minority classes (various rainfall types) highlights 

the need to apply data imbalance handling 

techniques to improve the model’s overall 

performance. 

The RNN model demonstrates the most 

unstable performance among the three, with gaps 

in its confusion matrix. Although it achieves 

16086 correct predictions for the no-rain class (0), 

it misclassifies up to 4900 cases. Its performance 

drops sharply for rainfall classes, with only 4970 

correct predictions for light rain (1) and 102 for 

very heavy rain (4). 
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The GRU model shows inconsistent 

classification performance across classes. For the 

no-rain class (0), it performs well with 16075 

correct predictions, but a wide range of abnormal 

values (1276–5748) suggests potential overfitting 

or issues in the data normalization process. 

Performance declines significantly for rainfall 

classes: the moderate rain class (2) achieves only 

1216 correct predictions, heavy rain (3) drops to 

398, and the very heavy rain class (4) is almost 

entirely unrecognized, with correct predictions 

ranging from 0–4. This steep decline in accuracy 

with increasing rainfall intensity, along with 

extremely low values at the bottom of the matrix, 

points to limitations in input data quality or a 

suboptimal preprocessing pipeline, especially for 

extreme rainfall cases. 

Overall, all three models struggled to 

accurately classify minority classes, with LSTM 

producing the most stable results despite being 

imperfect, while RNN and GRU exhibited several 

anomalies that require further inspection of data 

quality and training processes. The large disparity 

in the number of predictions across classes 

highlights the issue of data imbalance. 

Training progress - Loss log 

Analysis of the learning curves (Figure 8) 

shows a clear difference in the training processes 

of the three models: LSTM, RNN, and GRU. All 

three display a general downward trend in loss as 

the number of epochs increases, but with distinct 

characteristics. 

 

Figure 8. Training progress and loss log for LSTM, 

RNN, and GRU. 

The LSTM model shows the most stable 

learning curve, with test loss decreasing gradually 

from 0.75 to 0.575 after 70 epochs, indicating a 

slow yet steady learning process. Notably, the gap 

between train loss and test loss is relatively small, 

suggesting that the model suffers little from 

overfitting. 

RNN improves more quickly in the early 

stages, with test loss dropping from 0.65 to 0.45 in 

the first 30 epochs. However, it later exhibits 

strong fluctuations (especially between epochs 

40–50), reflecting the inherent instability of the 

traditional RNN architecture. 

GRU demonstrates a balance between the 

two above learning faster than LSTM but with 

more stability than RNN. Its test loss decreases 

steadily from 0.65 to 0.30. However, the sudden 

drop in test loss at epoch 20 (from 0.60 to 0.35) 

followed by subsequent oscillations may point to 

optimization issues or an unsuitable learning rate. 

In summary, LSTM shows an advantage in 

stability, GRU learns faster but is less stable, and 

RNN struggles to maintain consistent 

performance across epochs. These results align 

with theory: LSTM is designed to address the 

vanishing gradient problem faced by traditional 

RNNs, while GRU is a simplified version of 

LSTM with fewer parameters. 

Feature Importance 

Analysis of Figure 9 shows the contribution 

levels of input features for three deep learning 

models: LSTM, RNN, and GRU, highlighting the 

15 most important features for each model. 

 

Figure 9. Importance of Features. 

For LSTM, temperature-related factors at 

various pressure levels, such as t_750hPa, 

t_950hPa, t_300hPa, and the Month variable, rank 

at the top, indicating that this model focuses on 

temperature variations across both time and 

atmospheric height. Additionally, humidity 

features like e_700hPa and wind components such 

as v_600hPa also play significant roles. 

For RNN, features related to surface and 

lower-level wind, such as v100 and v10n, along 

with mid and low-level temperatures (t_750hPa, 

t_900hPa) dominate. Notably, actual rainfall (R) 

and 24-hour pressure variation (DELTA_P_24H) 

are among the top features, reflecting the RNN’s 

ability to strongly leverage local and direct 

weather signals. 

Meanwhile, GRU prioritizes v100 and 

u_600hPa (zonal wind at 600hPa), combined with 

temperatures at multiple levels (t_900hPa, 
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t_750hPa, t_650hPa) and mid-level humidity 

(e_700hPa). The 24-hour pressure variation 

(DELTA_P_24H) is also among the important 

features, highlighting the role of large-scale 

dynamic factors. 

Overall, all three models utilize a 

combination of temperature, wind, and pressure 

information, but LSTM emphasizes multi-level 

temperature analysis, RNN is more sensitive to 

surface wind and rainfall signals, while GRU 

balances wind, temperature, and pressure. These 

differences reflect the distinct strategies each 

architecture employs in rainfall prediction. 

4. CONCLUSION 

The study applied three deep neural network 

architectures LSTM, RNN, and GRU to classify 

rainfall by intensity, using observational data from 

the Quy Nhon meteorological station combined 

with ERA5 reanalysis data. The results indicate 

that all three models achieved good forecasting 

performance, with LSTM demonstrating superior 

accuracy, class discrimination ability, and training 

stability. GRU performed closely to LSTM, 

offering a balanced choice between accuracy and 

computational cost, while the traditional RNN was 

less stable and faced limitations in classifying 

minority classes. 

Feature importance analysis revealed that 

the temporal factor (Month) plays a prominent 

role, clearly reflecting the seasonal nature of 

rainfall in the study area. In addition, 

meteorological features such as wind, 

temperature, humidity, and pressure variations at 

multiple atmospheric levels also contributed 

significantly, with each model tending to exploit 

information differently: LSTM focused on multi-

level temperature variations, RNN was more 

sensitive to surface wind and rainfall signals, and 

GRU maintained a balance between wind, 

temperature, and pressure factors. 

However, in the context of climate change 

and the evolving structure of meteorological 

variables over time, model performance may 

decline if not updated. Therefore, periodic data 

updates and model retraining are necessary to 

maintain accuracy and enhance applicability in 

forecasting and managing extreme weather risks. 
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