
1

Mô hình dự báo và phát hiện các yếu tố gây ra mưa sử dụng
Học Sâu

TÓM TẮT

Nghiên cứu này sử dụng các thuật toán học sâu để xây dựng mô hình dự báo trên các tập dữ liệu thực tế có dấu

hiệu mưa, nhằm dự đoán có mưa hay không tại một thời điểm cụ thể cũng như phân tích cách mưa xuất hiện dựa trên

các yếu tố liên quan. Nghiên cứu cũng hướng đến hỗ trợ dự báo chính xác lượng mưa rơi xuống tại một địa điểm vào

một thời điểm xác định. Trong nghiên cứu, chúng tôi xây dựng mô hình học sâu nhằm hỗ trợ dự báo thời tiết, đặc biệt

là dự đoán chính xác lượng mưa – một bài toán luôn thách thức không chỉ đối với các cơ quan dự báo tại Việt Nam

mà còn đối với các hệ thống dự báo tiên tiến trên thế giới. Sử dụng tập dữ liệu thu thập được, chúng tôi tiến hành mô

tả các thuộc tính của các trường dữ liệu, cũng như phân tích các tham số có tương quan đến hiện tượng mưa. Sau đó,

chúng tôi áp dụng thuật toán học sâu để xây dựng mô hình dự đoán khả năng có mưa có thể xảy ra hay không và xảy

ra như thế nào? Các kết quả thu được có thể được ứng dụng trong thực tế để dự đoán lượng mưa tại một địa điểm và

thời điểm cụ thể từ dữ liệu đầu vào là dữ liệu dấu hiệu mưa được trích xuất từ cơ sở dữ liệu dự báo thời tiết. Từ đó,

nghiên cứu mở ra tiềm năng ứng dụng trí tuệ nhân tạo trong lĩnh vực dự báo khí tượng nhằm nâng cao độ chính xác

và giảm thiểu rủi ro do thời tiết cực đoan gây ra.

Từ khóa: mô hình dự báo mưa, thuật toán LSTM, thuật toán RNN, thuật toán GRU, thuật toán học sâu.

2

Predicting Model and Detecting Factors Causing Rainfall
Using Deep Learning

ABSTRACT

This study aims to employ deep learning algorithms to construct predictive models using real-world datasets

containing indicators of rainfall. The objective is to determine the occurrence of rainfall at a specific point in time and

to analyze the underlying factors contributing to its onset. Furthermore, the research is directed toward improving the

accuracy of quantitative rainfall prediction for a given location and time. In the study, a deep learning-based

framework for weather forecasting has been developed, with a particular focus on accurate rainfall prediction - a task

that remains highly challenging not only for meteorological agencies in Vietnam but also for state-of-the-art

forecasting systems worldwide. Using the collected dataset, we conducted descriptive statistical analyses to

characterize its properties and investigated the parameters exhibiting correlations with rainfall events. Based on these

findings, deep learning algorithms were applied to develop a classification model capable of predicting the probability

of rainfall occurrence. The experimental results demonstrate that the proposed model can be applied to operational

scenarios for forecasting rainfall at specific locations and times, utilizing rainfall indicators extracted from

meteorological forecast databases. The outcomes of this research highlight the potential of artificial intelligence

techniques in meteorological applications, offering the prospect of enhanced prediction accuracy and reduced risks

associated with extreme weather phenomena.

Keywords: Rainfall prediction model, LSTM algorithm, RNN algorithm, GRU algorithm, deep learning algorithm.

1. INTRODUCTION

One of the critical inputs for hydrological

computation models is rainfall forecasting.

Rainfall prediction is an inherently complex task,

especially when forecasting for specific locations

across different months and seasons. To develop a

low-cost yet effective method that delivers

acceptable forecasting accuracy, we employed

machine learning techniques to build a daily

rainfall forecasting model. Unlike traditional

approaches, this study utilized datasets collected

from monitoring stations, combining observed

attributes with ERA5 reanalysis data, and applied

suitable deep learning algorithms to construct

models for rainfall prediction and related

influencing factors. In this paper, we present a

rainfall forecasting model developed using 16

years of data collected from monitoring stations

and ERA5 reanalysis datasets. The forecast

outputs from this model can support decision-

making in operational forecasting and other

related tasks at monitoring station locations.

Artificial Intelligence (AI) is playing an

increasingly important role in meteorology and

hydrology due to its capability to process large

volumes of data from observation stations,

forecasts, and historical weather records. Deep

Learning, a subset of AI, employs multi-layer

neural networks to learn complex patterns from

data and construct predictive models.

In this study, we developed deep learning

models based on the Long Short-Term Memory

(LSTM) architecture to predict the occurrence and

probability of rainfall. Model optimization was

performed through the analysis of evaluation

metrics such as the confusion matrix, ROC-AUC

curve, and Precision–Recall curve, alongside the

identification of key variables influencing

predictive performance.

We also integrated meteorological data

from observation stations with deep learning

algorithms to construct a rainfall forecasting

model that can assist meteorologists in their

forecasting tasks and be transferable to other

stations when necessary. By combining

meteorological expertise with observational

datasets, the model can analyze factors

influencing rainfall based on meteorological

parameters, thereby providing predictions on

rainfall occurrence and the expected rainfall

intensity.

2. RAIN FORECASTING PROBLEMS

2.1. Rain forecasting problem

Currently, accurately predicting rainfall at a

specific location and time remains a significant

challenge for meteorological agencies worldwide.

3

Rainfall is essentially the result of

atmospheric processes in which water vapor in the

atmosphere undergoes a phase change

(condensation) into solid or liquid forms such as

water, ice, or snow and falls to the ground under

the influence of gravity. During the process of

condensation and descent to the ground, raindrops

are affected by horizontal air currents. Due to

differences in environmental conditions, the

raindrops themselves may partially evaporate

during their fall.1

In recent years, meteorology and hydrology

have made significant progress in forecasting

large-scale heavy rainfall events. Such phenomena

can be predicted 2–3 days in advance with an

accuracy of about 70%, and in some cases, early

warnings can be issued 5-7 days ahead. Forecast

information for large-scale heavy rainfall events is

generally reliable regarding the timing of rainfall

onset, the affected areas, and the ending time of

the event.

Early forecasting of large-scale heavy

rainfall plays a crucial role in supporting flood,

flash flood, landslide, and inundation warnings.

These alerts are communicated to authorities and

the public to enable proactive response planning

and minimize damage.

However, when it comes to quantitative

rainfall forecasts (for specific locations and

times), current numerical weather prediction

technology still faces many limitations. Notably,

there are constraints in spatial resolution due to the

use of numerous empirical parameters in physical

models, as well as a shortage of observational

input data particularly over oceans and at higher

atmospheric layers.

Estimates indicate that the reliability of

point-based quantitative forecasts within a 1–3

day range is only about 40–60% for light and

moderate rainfall events (less than 16 mm/day).

In addition to improving the physical

modeling capabilities of forecasting systems, the

meteorological sector also focuses on enhancing

the training and expertise of forecasters especially

in utilizing intelligent decision-support systems.

This allows for the integration of various types of

observations and forecast products, enabling fine-

tuning of rainfall and temperature predictions, as

well as leveraging ensemble forecasting and other

decision-support tools.2,3

2.2. Rainfall database

In this study, we use data from the Quy Nhon

Meteorological Station a Class I meteorological

station with the international code “48870”. This

station is internationally recognized as a high-

accuracy data source and is frequently used in

weather forecasting models.

The dataset spans from 2009 to 2024 and

includes hourly observational variables such as

temperature, humidity, station pressure, and total

rainfall. In addition, reanalysis data from ERA5 is

incorporated, comprising 54 variables, primarily

related to temperature, humidity, and wind vectors

in the u and v directions at atmospheric pressure

levels ranging from 950 hPa to 300 hPa. All data

are organized as time series by hour, day, and

month.

The objective of using these datasets is to

explore and analyze the relationship between

rainfall and other meteorological factors in the

Quy Nhon area. Rainfall classification in the

dataset follows the standards of the Vietnam

Meteorology and Hydrology sector as follows:

• No rain = 0mm/day

• Rain < 16mm/day

• 16mm/day ≤ Moderate rain < 50mm/day

• 50mm/day ≤ Heavy rain < 100mm/day

• Very heavy rain ≥ 100mm/day

Statistics show that “No rain” has the

highest occurrence with 86601 cases, followed by

“Rain” with 40752 cases, and then “Moderate

rain” with 9157 cases. “Heavy rain” is

significantly less frequent with 2476 cases, and

finally, “Very heavy rain” has the fewest

occurrences with 1192 cases.

Figure 1. The distribution of rainfall categories in the

dataset.

From Figure 1, it is evident that among 100

sampled values, there are 62 “No rain” cases, 29

“Rain” cases, 6 “Moderate rain” cases, 2 “Heavy

rain” cases, and only 1 “Very heavy rain” case.

This indicates an uneven distribution of data

among rainfall categories, with heavier rainfall

events occurring less frequently.

4

Figure 2. The distribution of rainfall categories by

month.

Based on Figure 2, heavy and very heavy

rainfall events are primarily concentrated between

September and December, with a pronounced

increase in their occurrence during September,

October, and November. This period corresponds

to the region’s main rainy season, when active

weather systems deliver abundant precipitation. In

these months, not only does the number of rainfall

events rise significantly, but rainfall intensity also

increases, contributing substantially to the

region’s annual total precipitation.

Specifically, the number of moderate,

heavy, and very heavy rainfall events increases

sharply from September to December, whereas the

rest of the year is dominated by no rain or rain

events. This highlights a clear seasonal pattern in

rainfall distribution within the study area.

As shown in Figure 3, rainfall events occur

most frequently in the temperature range of 24°C

to 30°C, with particularly high concentrations in

the 24–26°C and 26–28°C intervals. In these

temperature ranges, the total number of rainfall

samples (from light to very heavy) accounts for

the majority compared to other temperature

groups. Notably, very heavy rainfall events almost

exclusively occur within the 24-26°C and 26-28°C

intervals, indicating that this temperature range is

the most favorable for extreme rainfall.

Conversely, at lower temperatures (< 22°C) or

higher temperatures (> 30°C), the frequency of

rainfall events especially heavy and very heavy

declines sharply, with almost no extreme rainfall

observed above 30°C. This suggests that samples

with excessively low or high temperatures are less

likely to be associated with rainfall, particularly

intense rainfall events.

Figure 3. The distribution of rainfall types across

temperature groups.

Figure 4 shows that the frequency of rainfall

events (from light rain to very heavy rain)

increases with higher humidity levels. In the 80-

90% humidity range, the total number of rainy

samples is the highest, with light rain and

moderate rain dominating. This indicates that this

humidity band is ideal for rain formation. The 70-

80% range comes next, also showing a relatively

large number of rainy samples, reflecting the clear

trend that higher humidity is associated with a

higher likelihood of rain.

Notably, heavy and very heavy rainfall

events occur mainly in the two highest humidity

groups 80–90% and >90% and are almost absent

in lower humidity groups. This suggests that

extreme rainfall events often happen when the air

holds a very high moisture content, providing

favorable conditions for intense atmospheric

condensation. In contrast, humidity groups below

60% and 60-70% record relatively few rainy

samples, with heavy and very heavy rain almost

non-existent, indicating that drier environments

have little potential to produce rainfall, especially

extreme events. Moreover, the >90% humidity

group is the only one with the highest number of

very heavy rain samples in the entire chart,

emphasizing the role of extreme humidity in

triggering severe weather phenomena.

5

Figure 4. Distribution of rainfall types by humidity

group.

In Figure 5, rainfall samples are

concentrated mainly in the pressure range of 1005-

1015 mb, with the 1005-1010 mb and 1010-1015

mb groups clearly dominating. This range not only

shows a high number of rainy samples but also a

noticeable increase in strong rainfall events,

reflected in the frequent appearance of orange and

red bars representing heavy and very heavy rain.

This suggests that this pressure range is favorable

for atmospheric conditions that lead to the

formation and growth of convective rain clouds.

On the other hand, at the extremes of

pressure specifically <1000 mb and >1025 mb the

number of rainy samples is very low, and heavy

rainfall events are almost absent, indicating that

both very low and very high pressure are not ideal

environments for rain. The 1015-1020 mb group

still maintains a considerable number of rainy

samples but shows a slight decrease compared to

the preceding range, suggesting that when

pressure exceeds 1015 mb, the likelihood of rain

begins to decline. Similarly, the 1020-1025 mb

and >1025 mb groups are dominated by non-rain

samples, reflecting a more stable atmosphere with

fewer conditions supporting rainfall development.

Figure 5. Distribution of rainfall types by pressure

group.

Because the features in the dataset are

independent, analyzing their correlations is

essential to assess both their interrelationships and

their relationship with the target variable in this

case, the likelihood of rain the next day

(rain_tomorrow).

Figure 6. Correlation matrix between factors.

From Figure 6, we observe that humidity,

month, and rainfall all show positive correlations

with the probability of rain on the following day,

with previous-day rainfall exhibiting the strongest

positive correlation with next-day rain. In contrast,

factors such as temperature have a negative

correlation with the likelihood of rain. Notably,

atmospheric pressure shows a very weak

correlation with next-day rain, with a coefficient

of only 0.09.

6

3. ALGORITHMS AND PREDICTION

MODELS

3.1. Deep Learning Algorithms

Deep learning is an important branch of artificial

intelligence that focuses on building and training

multi-layer neural networks to automatically learn

complex features from data.

Unlike traditional machine learning

methods, deep learning can extract features

directly from raw data, reducing dependence on

manual preprocessing steps while effectively

capturing complex nonlinear relationships

between input variables.

Thanks to these capabilities, deep learning

has become a powerful tool in fields that require

processing large and complex datasets, such as

computer vision, natural language processing, and

especially time series forecasting in meteorology

and hydrology.5

In the context of weather forecasting and

hydrometeorological phenomena, deep learning

algorithms are widely applied to predict variables

related to rainfall, temperature, humidity,

pressure, and other meteorological parameters.

Sequential neural networks such as RNNs

(Recurrent Neural Networks) allow the model to

retain information from previous time steps, while

more advanced variants such as LSTM (Long

Short-Term Memory) and GRU (Gated Recurrent

Unit) are specifically designed to address the

vanishing gradient problem, enabling the learning

of long-term dependencies in time series data.6

The choice of an appropriate deep learning

algorithm depends on the specific characteristics

of the problem and the data.

For example, with datasets containing long

time series and requiring the capture of complex

relationships among meteorological variables,

LSTM is often preferred for its long-term memory

capabilities, while GRU can be used when

reducing the number of parameters and speeding

up training is a priority. Thus, deep learning not

only offers more accurate forecasting but also

provides flexibility in uncovering hidden features

in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a

neural network architecture specifically designed

to process time series data, where the current value

depends on previous values. Unlike traditional

neural networks, RNNs have the ability to retain

information from previous time steps through a

hidden state, enabling the model to predict future

values based on historical data.5

RNN Training Algorithm: RNNs are

trained using Backpropagation Through Time

(BPTT), an extension of backpropagation, to

update weights based on the gradient of the loss

function with respect to the entire time sequence:4

Step 1: Weight Initialization - Randomly

initialize the weights 𝑊ℎ (hidden state weights),

𝑊𝑥 (input weights), 𝑊𝑦 (output weights) along

with biases 𝑏 (hidden state bias) and 𝑐 (output

bias).

Step 2: Forward pass - Iterate through the

entire time sequence. At each time step 𝑡, compute

the hidden state ℎ𝑡 based on the current input 𝑥𝑡

and the previous hidden state ℎ𝑡−1 according to

the formula:

ℎ𝑡 = tanh(𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏)

Then, compute the predicted output 𝑦𝑡 from

the hidden state ℎ𝑡:

𝑦𝑡 = softmax(𝑊𝑦ℎ𝑡 + 𝑐)

Step 3: Compute the loss function - Use

an appropriate loss function based on the predicted

output 𝑦𝑡 and the actual label 𝑦𝑡

Step 4: Backward pass - Backpropagate

the error from the final time steps to the initial

ones, computing the gradient of the loss function

with respect to the weights 𝑊𝑥 , 𝑊ℎ , 𝑊𝑦, 𝑏, 𝑐.

Step 5: Update weights - Use an

optimization algorithm to update the weights

based on the computed gradients, minimizing the

loss function.

Step 6: Repeat - The process of forward

pass, loss calculation, backward pass, and weight

updates is repeated over many epochs until the

model converges or meets the early stopping

criterion.

Step 7: Prediction - Once the model is

trained, the RNN can take a new input sequence

and continuously compute the hidden states to

predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is an

improved recurrent neural network (RNN)

architecture designed to handle long time-series

data and overcome the vanishing gradient problem

often found in traditional RNNs. LSTM can retain

long-term information thanks to its gating

mechanism, which controls which information is

kept, updated, or discarded in the cell state.5,7

7

LSTM training algorithm: LSTM is also

trained using Backpropagation Through Time, an

extension of backpropagation, to update weights

based on the gradient of the loss function over the

entire time series.

Step 1: Initialize weights and states -

Randomly initialize the weights for the forget gate

𝑊𝑓, input gate 𝑊𝑖, output gate 𝑊𝑜, cell input 𝑊𝑐

along with the biases 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐. The hidden

state ℎ0 and the cell state 𝐶0 are usually initialized

as zero vectors.

Step 2: Forward pass - Iterate through the

entire time series. At each time step 𝑡:

Forget gate:

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

Input gate:

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

Cell input:

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

Update cell state:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃

Output gate:

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

Hidden state:

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

Output prediction (if needed):

𝑦𝑡 = output_layer(ℎ𝑡)

Step 3: Compute the loss function - Use

an appropriate loss function based on the predicted

output 𝑦𝑡 and the actual label.

Step 4: Backward pass - Backpropagate

errors from the last time step to the first

(Backpropagation Through Time), computing the

gradients of the loss with respect to all weights

𝑊𝑓 , 𝑊𝑖, 𝑊𝑜, 𝑊𝑐 , 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, 𝑏𝑐.

Step 5: Update weights - Use an

optimization algorithm to update weights based on

computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss

computation, backward pass, and weight updates

over many epochs until the model converges or

meets early stopping criteria.

Step 7: Prediction - Once trained, the

LSTM can take a new input sequence and compute

hidden states sequentially to predict the

corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an

improved recurrent neural network architecture,

similar to LSTM but with a simpler structure. It

combines certain gates to reduce the number of

parameters while still maintaining the ability to

remember long-term information. GRU has two

main gates: the update gate and the reset gate,

which control which information should be

retained or discarded in the hidden state.

The GRU training algorithm also uses

Backpropagation Through Time to update weights

based on the gradients of the loss function across

the entire time sequence.

Step 1: Initialize weights and states -

Randomly initialize the weights for the update

gate 𝑊𝑧, reset gate 𝑊𝑟, candidate state 𝑊ℎ along

with the biases 𝑏𝑧, 𝑏𝑟, 𝑏ℎ. The initial hidden state

h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the

entire time sequence. At each time step 𝑡:

• Update gate:

𝑧𝑡 = σ(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)

• Reset gate:

𝑟𝑡 = σ(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)

• Candidate hidden state:

ℎ𝑡̃ = tanh(𝑊ℎ ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)

• New hidden state:

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ𝑡̃

• Output prediction (if needed):

𝑦𝑡 = output_layer(ℎ𝑡)

Step 3: Compute the loss function - Use

an appropriate loss function based on the predicted

output 𝑦𝑡 and the actual labels.

Step 4: Backward pass - Backpropagate

the error from the last time steps to the first,

computing the gradients of the loss function with

respect to all weights 𝑊𝑧, 𝑊𝑟 , 𝑊ℎ , 𝑏𝑧, 𝑏𝑟, 𝑏ℎ.

Step 5: Update weights - Use an

optimization algorithm to update the weights

based on the computed gradients, minimizing the

loss function.

Step 6: Repeat - The process of forward

pass, loss computation, backward pass, and weight

update is repeated for many epochs until the model

converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU

can take a new input sequence and compute the

8

hidden state continuously to predict the

corresponding output sequence.

3.2. Prediction Models Using Deep Learning

The dataset from the Quy Nhon Meteorological

Station, after being cleaned and encoded to

convert categorical features into numerical values,

can be used as input for deep learning models. The

objective is to train and compare the performance

of three deep learning algorithms: LSTM, RNN,

and GRU. These models are highly suitable for

time series data and have proven effective in

weather forecasting tasks thanks to their ability to

capture temporal dependencies, automatically

extract features from raw data, and model complex

nonlinear relationships between variables.4

Table 1. Comparison among the the machine learning

model

Model Accuracy Kappa AUC-ROC

LSTM 0.8211 0.6462 0.9544

RNN 0.7675 0.5254 0.9196

GRU 0.8115 0.6290 0.9514

Table 1 presents the performance

comparison of the three deep learning models—

LSTM, RNN, and GRU—in a multi-class

classification problem. The results show that

LSTM achieved the highest performance across

all three evaluation metrics, with an Accuracy of

0.8211, a Kappa of 0.6462, and an impressive

AUC-ROC of 0.9544. This indicates that LSTM

not only delivers high predictive accuracy but also

effectively distinguishes between classes,

especially in the context of complex data.

GRU also demonstrated competitive

performance, with an Accuracy of 0.8115, a

Kappa of 0.6290, and an AUC-ROC of 0.9514

only slightly lower than LSTM. This suggests that

GRU is an efficient choice when balancing

accuracy and computational complexity is

important.

In contrast, RNN achieved significantly

lower results, with an Accuracy of only 0.7675, a

Kappa of 0.5254, and an AUC-ROC of 0.9196.

This gap is particularly evident in the Kappa score,

indicating that RNN struggles to accurately

classify classes when dealing with imbalanced

data. Notably, while the AUC-ROC scores of all

three models exceed 0.9, the differences in

Accuracy and Kappa indicate that LSTM and

GRU handle the task more effectively than the

traditional RNN.

These results suggest that modern neural

network architectures such as LSTM and GRU are

better suited for multi-class classification

problems than basic RNNs, due to their ability to

capture long-term dependencies in time series

data.

Confusion Matrix

Analysis of the confusion matrix in Figure

7 for the three deep learning models (LSTM,

RNN, GRU) in the rainfall classification task (0:

no rain, 1: rain, 2: moderate rain, 3: heavy rain, 4:

very heavy rain) reveals distinct patterns.

Figure 7. Confusion Matrices for LSTM, RNN and

GRU Models.

For the LSTM model, classification

performance decreases as rainfall intensity

increases: it achieves the highest accuracy with

16281 correctly classified cases for the no-rain

class (0), drops to 5726 for the light rain class (1),

and only 84 correct predictions for the very heavy

rain class (4). Notably, the model tends to confuse

rainfall classes, as evidenced by 37 very heavy

rain cases (4) being misclassified as light rain (1)

and 2 cases as no rain (0). This outcome reflects a

common challenge for models when dealing with

minority classes that occur infrequently in the

dataset, especially extreme rainfall events. The

large disparity in the number of correct predictions

between the majority class (no rain) and the

minority classes (various rainfall types) highlights

the need to apply data imbalance handling

techniques to improve the model’s overall

performance.

The RNN model demonstrates the most

unstable performance among the three, with gaps

in its confusion matrix. Although it achieves

16086 correct predictions for the no-rain class (0),

it misclassifies up to 4900 cases. Its performance

drops sharply for rainfall classes, with only 4970

correct predictions for light rain (1) and 102 for

very heavy rain (4).

9

The GRU model shows inconsistent

classification performance across classes. For the

no-rain class (0), it performs well with 16075

correct predictions, but a wide range of abnormal

values (1276–5748) suggests potential overfitting

or issues in the data normalization process.

Performance declines significantly for rainfall

classes: the moderate rain class (2) achieves only

1216 correct predictions, heavy rain (3) drops to

398, and the very heavy rain class (4) is almost

entirely unrecognized, with correct predictions

ranging from 0–4. This steep decline in accuracy

with increasing rainfall intensity, along with

extremely low values at the bottom of the matrix,

points to limitations in input data quality or a

suboptimal preprocessing pipeline, especially for

extreme rainfall cases.

Overall, all three models struggled to

accurately classify minority classes, with LSTM

producing the most stable results despite being

imperfect, while RNN and GRU exhibited several

anomalies that require further inspection of data

quality and training processes. The large disparity

in the number of predictions across classes

highlights the issue of data imbalance.

Training progress - Loss log

Analysis of the learning curves (Figure 8)

shows a clear difference in the training processes

of the three models: LSTM, RNN, and GRU. All

three display a general downward trend in loss as

the number of epochs increases, but with distinct

characteristics.

Figure 8. Training progress and loss log for LSTM,

RNN, and GRU.

The LSTM model shows the most stable

learning curve, with test loss decreasing gradually

from 0.75 to 0.575 after 70 epochs, indicating a

slow yet steady learning process. Notably, the gap

between train loss and test loss is relatively small,

suggesting that the model suffers little from

overfitting.

RNN improves more quickly in the early

stages, with test loss dropping from 0.65 to 0.45 in

the first 30 epochs. However, it later exhibits

strong fluctuations (especially between epochs

40–50), reflecting the inherent instability of the

traditional RNN architecture.

GRU demonstrates a balance between the

two above learning faster than LSTM but with

more stability than RNN. Its test loss decreases

steadily from 0.65 to 0.30. However, the sudden

drop in test loss at epoch 20 (from 0.60 to 0.35)

followed by subsequent oscillations may point to

optimization issues or an unsuitable learning rate.

In summary, LSTM shows an advantage in

stability, GRU learns faster but is less stable, and

RNN struggles to maintain consistent

performance across epochs. These results align

with theory: LSTM is designed to address the

vanishing gradient problem faced by traditional

RNNs, while GRU is a simplified version of

LSTM with fewer parameters.

Feature Importance

Analysis of Figure 9 shows the contribution

levels of input features for three deep learning

models: LSTM, RNN, and GRU, highlighting the

15 most important features for each model.

Figure 9. Importance of Features.

For LSTM, temperature-related factors at

various pressure levels, such as t_750hPa,

t_950hPa, t_300hPa, and the Month variable, rank

at the top, indicating that this model focuses on

temperature variations across both time and

atmospheric height. Additionally, humidity

features like e_700hPa and wind components such

as v_600hPa also play significant roles.

For RNN, features related to surface and

lower-level wind, such as v100 and v10n, along

with mid and low-level temperatures (t_750hPa,

t_900hPa) dominate. Notably, actual rainfall (R)

and 24-hour pressure variation (DELTA_P_24H)

are among the top features, reflecting the RNN’s

ability to strongly leverage local and direct

weather signals.

Meanwhile, GRU prioritizes v100 and

u_600hPa (zonal wind at 600hPa), combined with

temperatures at multiple levels (t_900hPa,

10

t_750hPa, t_650hPa) and mid-level humidity

(e_700hPa). The 24-hour pressure variation

(DELTA_P_24H) is also among the important

features, highlighting the role of large-scale

dynamic factors.

Overall, all three models utilize a

combination of temperature, wind, and pressure

information, but LSTM emphasizes multi-level

temperature analysis, RNN is more sensitive to

surface wind and rainfall signals, while GRU

balances wind, temperature, and pressure. These

differences reflect the distinct strategies each

architecture employs in rainfall prediction.

4. CONCLUSION

The study applied three deep neural network

architectures LSTM, RNN, and GRU to classify

rainfall by intensity, using observational data from

the Quy Nhon meteorological station combined

with ERA5 reanalysis data. The results indicate

that all three models achieved good forecasting

performance, with LSTM demonstrating superior

accuracy, class discrimination ability, and training

stability. GRU performed closely to LSTM,

offering a balanced choice between accuracy and

computational cost, while the traditional RNN was

less stable and faced limitations in classifying

minority classes.

Feature importance analysis revealed that

the temporal factor (Month) plays a prominent

role, clearly reflecting the seasonal nature of

rainfall in the study area. In addition,

meteorological features such as wind,

temperature, humidity, and pressure variations at

multiple atmospheric levels also contributed

significantly, with each model tending to exploit

information differently: LSTM focused on multi-

level temperature variations, RNN was more

sensitive to surface wind and rainfall signals, and

GRU maintained a balance between wind,

temperature, and pressure factors.

However, in the context of climate change

and the evolving structure of meteorological

variables over time, model performance may

decline if not updated. Therefore, periodic data

updates and model retraining are necessary to

maintain accuracy and enhance applicability in

forecasting and managing extreme weather risks.

REFERENCES

1. M. P. Plummer. Rainfall formation and

precipitation microphysics, Atmospheric

Research, 2017, 183, 12-24.

2. J. Smith, A. Brown, T. Nguyen. Artificial

intelligence and numerical weather prediction

models: A technical survey, ScienceDirect, 2024,

1, 1-3.

3. M. Johnson, H. Lee. Quantitative precipitation

forecasting using an improved weighted moving

average probability-matching method,

Atmosphere (MDPI), 2023, 12, 1346.

4. Y. LeCun, Y. Bengio, G. Hinton. Deep learning,

Nature, 2015, 521, 436-444.

5. S. Hochreiter, J. Schmidhuber. Long short-term

memory, Neural Computation, 1997, 9, 1735-

1780.

6. C. M. Bishop, Pattern Recognition and Machine

Learning. Springer, 2006.

7. Y. Yu, X. Si, C. Hu, J. Zhang. A review of

recurrent neural networks: LSTM cells and

network architectures, Neural Computation, 2019,

31, 1235-1270.

