Panh gia hiéu nang mét cai dat thuat toan KNN bang Rust-
webassembly

TOM TAT

Trong boi canh dién toan bién dang phat trién manh mé, viéc chuyén dich xur 1y tir may chu (server-side) sang
thiét bi khach (client-side) ngay cang quan trong dé giam do tré, ting cudng bao mat dit liéu, va hd trg cic ing dung
thoi gian thyc nhu IoT hodc tmg dyng tri tu¢ nhén tao (Al trén thiét bi nhu trinh duyét web noi riéng va thiét bi bién
(thiét bi IoT, dién thoai thong minh, hodc thiét bi phan clmg ¢4 tai nguyén han ché...) n6i chung. WebAssembly
(WASM) la cong nghé hd tro 1am viéc trén cac thiét bi trén vai te do gan native, tinh di dong khi trién khai. Trong
bai bao nay chung t6i d4nh gia higu ning cua thuat toan K-Nearest Neighbors (KNN) duoc trién khai trén ngon ngit
Rust va bién dich sang WebAssembly vai cac cai dat KNN khac nhau trén moi truong web. Muc tiéu 1a danh gia
kha ning ciia WASM va thuat toan KNN tir d6 mé ra hudng nghién ctru, trién khai cac md hinh hoc may khac vén
can kha ning tinh toan 16n, sir dung WASM trén cac thiét bi bién dé t6i wu hiéu nang cic ing dung hoc may.

Twr khéa: Thudt toan KNN, WebAssembly, Edge Computing, Rust, Machine Learning.

Performance evaluation of a KNN algorithm implementation
using Rust-webassembly

ABSTRACT

In the context of edge computing that is developing rapidly, shifting processing from server-side to client-
side is increasingly important to reduce latency, enhance data security, and support real-time applications such as
IoT or artificial intelligence (AI) applications on devices like web browsers in particular and edge devices (e.g., [oT
devices, smartphones, or hardware with limited resources...) in general. WebAssembly (WASM) is a technology that
supports operations on these devices with near-native speed and portability during deployment. In this paper, we
evaluate the performance of the K-Nearest Neighbors (KNN) algorithm implemented in the Rust language and
compiled to WebAssembly, and compare it with various other KNN implementations in web environments. The
objective is to assess the capabilities of WASM and the KNN algorithm, thereby opening up research directions for
implementing other machine learning models that require substantial computational power, utilizing WASM on

edge devices to optimize machine learning applications.

Keywords: K-Nearest Neighbors Algorithm, WebAssembly, Edge Computing, Rust, Machine Learning.

1. INTRODUCTION

The rapid proliferation of edge devices, such as
smartphones, IoT sensors, and web clients, has
created a pressing need for data processing closer
to the source, reducing reliance on cloud servers.
Edge computing not only minimizes latency and
conserves bandwidth but also enhances data
security by limiting the transmission of sensitive
information to the cloud. In the domain of
machine learning, many applications are shifting
toward direct execution in web browsers or
resource-constrained devices to support tasks like
real-time anomaly detection or personalized
recommendations. However, classical algorithms
like K-Nearest Neighbors (KNN), which demand
substantial computational resources for distance
calculations in high-dimensional spaces, face
significant efficiency issues on edge devices with
limited hardware, particularly in web
environments. '

WebAssembly (WASM) offers a promising
solution, providing a binary instruction format
that enables compilation from low-level
languages like Rust, C, and C++ to achieve near-
native performance in browsers.*> Rust, with its
memory safety, concurrency support, and robust
WASM compilation capabilities, is an ideal
choice for deploying applications on edge
devices. Recent studies demonstrate that WASM
can outperform traditional JavaScript in web
environments with reported speedups of 1.5-2x,

as evidenced by applications such as Photoshop
Web, AutoCAD Web, and Figma.®

In the field of machine learning, WASM has been
adopted for certain algorithms to enable client-
side execution in web environments. However,
there is a lack of comprehensive studies
evaluating the performance of classification
algorithms like KNN when implemented with
WASM compared to other setups. This study
evaluates the performance of the KNN algorithm,
a simple yet computationally intensive classifier
with a time complexity of O(n x d) to
demonstrate WASM’s capabilities in resource-
constrained web environments compared to
traditional JavaScript implementations,
TensorFlow.js-based setups, and server-side
models.’

The primary motivation of this research is to shift
processing from large-scale servers to edge
devices, reducing cloud dependency and
enhancing data privacy by keeping data on-
device. Rust provides safety and high efficiency
for KNN, while WASM ensures scamless
deployment in web environments.

This paper is organized as follows: Section 2
reviews related work; Section 3 describes the
experimental methodology; Section 4 presents
the experimental results; Section 5 discusses the
findings; and Section 6 concludes with future
directions.

2. RELATED WORK

2.1. WebAssembly and Rust in Edge
Computing

WebAssembly (WASM) is a critical technology
for web and edge applications, particularly when
combined with programming languages like
C/C++ and Rust to enable machine learning
(ML) on client-side devices. In recent years,
numerous applications have been compiled to
WASM, reflecting a shift from server-side to
client-side processing.'

2.1.1 WASM and RUST

WebAssembly (WASM) is a binary instruction
format designed to execute code at near-native
speed in sandboxed environments, such as web
browsers or edge devices. Developed by the
World Wide Web Consortium (W3C) in 2017,
WASM aims to provide a low-level compiled
language that operates across platforms without
relying on JavaScript, addressing the
performance limitations of traditional scripting
languages. WASM supports compilation from
various source languages, including C/C++, Go,
and notably Rust, enabling developers to write
high-performance code with strong portability.'

Rust, a systems programming language
developed by Mozilla in 2010, emphasizes
memory safety, performance, and concurrency
without requiring garbage collection, mitigating
common errors in C/C++ such as null pointers or
data races. Since the introduction of WASM in
2017, Rust has become a preferred choice for
WASM compilation due to its ability to produce
safe and efficient code. The Rust-WASM
combination optimizes compute-intensive tasks,
such as those in ML applications.*®

2.1.2 Compilation from Rust to WebAssembly
and Operation in Web Browsers

The compilation process from Rust to WASM
involves three key steps. The first step is writing
Rust code using libraries that support WASM
conversion. The second involves using the
WASM-pack tool to build the Rust project into a
WASM module. The third is applying WASM-
bindgen to generate JavaScript bindings,
allowing Rust functions to be called from
browsers with minimal modifications. WASM
operates in web browsers via the WebAssembly
virtual machine integrated into browser engines
(e.g., V8 in Chrome) or Node.js, where WASM
binaries are loaded and executed directly. It also
supports Web Workers for multi-threading and
WebGPU for GPU acceleration when needed.*

2.1.3. Benefits of Using WebAssembly in Web
Browsers and Edge Computing Devices

WebAssembly offers significant advantages for
web browsers and edge computing devices,
including high performance, portability, and
enhanced security. Recent studies quantify these
benefits, making WASM an ideal choice for
shifting ML processing from large-scale servers
to client-side environments, reducing cloud
dependency, and optimizing for resource-
constrained devices.

First, WASM delivers superior execution speed
compared to traditional JavaScript. It achieves
speedups of 1.5-2x for compute-intensive ML
tasks in browsers, leveraging pre-compiled
binaries and Single Instruction, Multiple Data
(SIMD) for vectorized computations, reducing
execution time by up to 50% compared to
JavaScript in in-browser deep learning inference
benchmarks on edge devices.*® Real-world
examples, such as sub-second latency for
complex models, highlight WASM’s suitability
for time-critical decision-making tasks. WASM
runtimes also reduce startup time by 20-30%
compared to JavaScript, saving bandwidth and
accelerating data processing, particularly when
combined with Rust to prevent memory errors.’
Benchmarks indicate that WASM reduces binary
size by 50% after optimization with WASM-opt,
leading to 40% faster load times in web browsers,
which is critical for IoT nodes with limited
connectivity.®

Second, portability is a key strength. WASM
enables code to run on all modern browsers
(Chrome, Firefox, Edge) and Node.js without
recompilation, achieving 95% compatibility
across platforms, making it ideal for diverse loT
ecosystems.'” In edge computing, WASM
supports cross-platform deployment, reducing
integration time by 30—40% compared to native
code.*

Third, WASM enhances security through its
sandboxed execution model, preventing code
injection and restricting system access, which is
vital for sensitive client-side ML tasks. Studies
show that WASM reduces attack risks by 70%
compared to JavaScript due to its isolation
mechanisms, while keeping data on-device
reduces cloud transmission by up to 80% in ML
tasks.®10

Figure 1 illustrates the compilation and
deployment process of WASM from various
programming languages across different
environments'”

s

Systen Resourc

Figure 1 WASM Deployment from Various
Programming Languages

2.2 The K-Nearest Neighbors Algorithm

The K-Nearest Neighbors (KNN) algorithm is a
fundamental machine learning method based on
instance-based learning, used for classification or
regression by identifying the k nearest neighbors
in the training dataset based on a distance metric
(e.g., Euclidean, Manhattan) and applying
majority voting (for classification) or averaging
(for regression). As a non-parametric method,
KNN stores the entire dataset and performs
computations at query time, resulting in a time
complexity of O(n x d), where n is the number of
samples and d is the number of features. While
suitable for small datasets, KNN poses challenges
for large datasets, especially on edge devices
with limited resources. KNN is widely applied in
edge computing for tasks like anomaly detection
or recommendation systems, but its performance
in client-side environments often requires
optimizations such as parallelization or
approximate nearest neighbor variants.” In
browsers, KNN has been implemented using
JavaScript and Rust. Comparing a WASM-based
KNN implementation with existing
implementations, such as JavaScript in browsers,
TensorFlow.js, or server-side scikit-learn models,
provides valuable insights into the effectiveness
of WASM for classification algorithms like KNN
in resource-constrained environments.

Pseudo-code KNN Algorithm

Input: Data set D (training set with features and
labels), test point x, K

Output: Label of x

Begin:

For each point x; in D:
Compute distance d(x, xi)
// e.g., Euclidean distance

End For

Sort the distances in ascending order
Select the first K points with smallest distances
Count the frequency of each label in the K points

Return the label with the highest frequency //
majority vote

End
3. EXPERIMENTAL SETUP
3.1. System Overview

To evaluate the performance of the KNN
algorithm in web environments, we propose a
workflow consisting of three phases: (i)
implementing a basic KNN in Rust, (ii)
compiling it to WebAssembly (WASM) for
browser execution, and (iii) measuring
performance against other KNN implementations
in browsers on the same device. The system is
designed to focus on evaluating the capabilities
of programming languages for the same
algorithm (WASM compiled from Rust
compared to JavaScript and Python server-side),
rather than assessing optimized versions of the
algorithm. The goal is to demonstrate WASM's
potential in applications with limited hardware,
such as web browsers or edge devices,
particularly in the field of machine learning for
classification tasks. Figure 2 illustrates the
overall architecture: input data (from the Wine
Quality and Covertype datasets) is processed by
the KNN module in Rust, compiled to WASM
via WASM-pack, and integrated into browsers
through JavaScript bindings to invoke functions.

=
@ Bust—> WEB@M = JS &= g 4{“{8}

Figure 2 KNN model used for experimentation

3.2. Implementation of the KNN Algorithm

We implement KNN using its basic version,
computing Euclidean distances between all data
points without any algorithmic optimizations
(such as search trees or approximations), to
purely assess the capabilities of the programming
language. Rust is selected for implementation due
to its memory safety, computational capabilities
comparable to C/C++, and straightforward
compilation to WASM.*!! We use the ndarray
library to handle multi-dimensional arrays for
input data and distance calculations, as this
library supports WASM compilation.

Pseudo-code KNN Algorithm on RUST.

struct KnnModel{

Arrayl: 1D array y_train // labels of n training
samples

Array2: 2D array X _train // matrix n x d with
n rows (training samples), d columns (features in
the dataset) }

}

Function Predict

Input: x_test: One row of test data (vector of d
features), k

Qutput: Label of x_test
Begin:
Convert x_test to a 1D array (Arrayl)
Create Vector distances (Vec<(f64, 132)>)
For each x; in X _train (zip with y_train):
Compute distance d(x_test, X;)
Add(dist, x_test[label i]) in distances
End For

Sort the Vector distances in ascending order
by dist

Get k_labels = [label for (dist, label) in
distances[0:k]]

Create Hashmap counts // count frequency of
labels in k_labels

For each label in k_labels:
counts[label] += 1
End For

Return the label with the highest frequency or
0 // majority vote

End

3.3. Compilation to WebAssembly and
Deployment in Web Browsers

After implementing the basic KNN source code
in Rust (as described in Section 3.2), the
compilation to WebAssembly (WASM) is
performed to create a module that can be
integrated into web browsers, enabling
comparisons with JavaScript or Python server
versions. WASM-pack, a CLI tool from the Rust
community, compiles Rust to WASM binaries,
standardizing WASM for web, Node.js, and other
environments. WASM-bindgen then exports Rust
functions (e.g., knn_predict) and provides bridges

for interaction between the compiled module and
JavaScript.>¢

Once the WASM code is obtained after
compilation, we deploy it in web browsers via an
HTMLY/JS interface. We import the WASM code
to load and initialize the WASM runtime in
browser engines like V8, then shuffle the data
with a seed and split it into 80% training and
20% testing. To simulate a process similar to
receiving input data from real devices, we do not
perform classification on the entire 20% test set
but process each data row as a stream from IoT
(e.g., sensor data transmitted continuously via
WebSocket).

3.4. Evaluation Methods

To evaluate performance, we use the following
metrics:

e Latency: The time to execute one KNN
query, measured using performance.now() in
JavaScript. This method returns time values
accurate to microseconds (based on
DOMHighResTimeStamp), suitable for
benchmarking KNN queries without external
influences like garbage collection.

¢ Memory Usage: Maximum RAM usage
(MB), measured using performance.memory.
This method returns JavaScript heap sizes with
parameters like usedJSHeapSize for used heap,
totalJSHeapSize for total heap, and
jsHeapSizeLimit for heap limit, helping monitor
memory for web apps on Chromium-based
browsers to determine maximum RAM when
running KNN. The baselines for comparison
include five versions:

e KNN by JavaScript: Basic
implementation using JavaScript.

e KNN by TensorFlow.js: KNN
implementation using the TensorFlow.js
library.

e KNN Server-Side by Python: KNN
implementation using scikit-learn via a
server-side model.

e KNN on WASM from Rust in Web
Browser: WASM version compiled from
Rust.

e KNN on WASM from Rust on NodeJS:
WASM version compiled from Rust for
edge devices.

During experimentation, we observed that the
TensorFlow.js KNN version utilizes both CPU
and GPU in parallel, so we customized an

additional version using only CPU to establish
comparable metrics with other implementations.

4. RESULTS
4.1. Datasets

To evaluate the performance of the basic KNN
algorithm, we utilize two datasets from the UCI
Machine learning Repository, focusing on
classification tasks to test the capabilities of the
implementations across web clients and server-
side setups. The first dataset is Wine Quality
White, consisting of 4898 samples representing
white wine samples from the Vinho Verde region
in Portugal, with 11 features related to wine
physicochemical properties. This dataset is
selected for its moderate size (4898 samples, 11
features), allowing latency benchmarking without
excessive overhead in browsers. The second
dataset is Covertype, comprising 581012 samples
describing forest cover types from four
wilderness areas in the Roosevelt National
Forest, USA, with 54 features. This dataset
includes information on tree type, shadow
coverage, distance to nearby landmarks (roads,
etc.), soil type, and local topography. With its
large size (581012 samples, 54 features), this
dataset is more challenging than Wine Quality
White, enabling scalability evaluation of KNN
across versions without algorithmic
optimizations. Both datasets are split into 80%
training and 20% testing, with k=5 for KNN.

Table 1 Description of the Wine Quality White and
Forest Cover-Type Datasets

RAM, running Windows 11, and using Microsoft
Edge version 140.0 for browser-based versions
(WASM in Browser, JS, TFJS). The Python
server runs locally on the same device via the
Flask API Framework, with Node.js 22.15 for
WASM on NodelS. This configuration represents
a typical client-side device in edge computing,
with moderate resources to assess KNN overhead
without hardware optimizations. Metrics are
measured using Chromium DevTools and
performance APIs, with 10 iterations per version
to compute averages.

4.3. Experimental Results

The results are presented for the two datasets
across five implementations: KNN by JavaScript
(basic JavaScript implementation), KNN by
TensorFlow.js (using TFJS), KNN Server-Side
by Python (using scikit-learn locally), KNN on
WASM from Rust in Web Browser (WASM in
browsers), and KNN on WASM from Rust on
NodelJS (WASM on Node.js). We do not evaluate
memory usage for the KNN Server-Side by
Python version due to inconsistent measurement
methods compared to others.

Table 2 Results on Wine Quality White (4898
samples, 11 features, k=5).

Implementation Lz(llts:)cy M(;:[n];))ry Accuracy
JavaSari Y| 256 9.54 0.549
JavaScript

NN by gsg 12.78 0.559
TensorFlow.js

KNN Server-

Side by Python 165.33 N/A 0.572
KNN' on WASM 1.99 13.88 0547
Rust in Browser

KNN on WASM

Rust on NodeJS 0.67 41.21 0.547

Dataset Ff:stu Samples Description

Multiclass classification
Wine (wine quality from 3-9
Quality| 11 | 4gog [classes, ~ based — on

. physicochemical features

White . -

like acidity, sugar,

alcohol)

Multiclass classification (7
Forest forest cover classes, based
Cover-| 54 | 581012 |on geographic features like
Type elevation, slope, soil

types)

4.2. Devices

The experiments are conducted on a Dell
Latitude 7320 laptop with an Intel Core i5-
1140G7 processor (base speed 1.10 GHz, turbo
up to 4.20 GHz, 4 cores 8 threads), 16 GB DDR4

During experimentation on the Wine Quality
White dataset, the accuracy results were
approximately 0.57 due to class imbalance (class
6 dominates, extreme classes like 3-4 or 8-9 are
scarce), outliers in features like residual sugar
(high IQR leading to noise), and low correlations
of some features (e.g., density, pH with quality).
To address this, we performed data preprocessing
by converting the quality label to binary (bad =6)
to reduce class complexity from 7 to 2; removing
outliers using IQR across all features to eliminate

6

noise. After preprocessing, accuracy increased to
approximately 0.75, while other metrics remained
as in Table 2.

2000

1500

1000

500

3 4 5 6 7 8 9
Quality (3-9)

Figure 3 Distribution of the Quality column in the
Wine Quality White dataset

Table 3 Results on Preprocessed Wine Quality White
(normalized edge data).

. | Latency | Memory
Implementation (ms) (MB) Accuracy
KRN 5| 245 954 | 0.7557
JavaScript
RNN O 07 | 1364 | 07557
TensorFlow.js
KNN Server-

Side by Python 168.68 N/A 0.7604
KNN. on WASM 510 13.94 07557
Rust in Browser

KNN on WASM

Rust on NodelS 0.73 41.72 0.7557

Table 4 Results on Covertype (581012 samples, 54
features, 100 queries, k=5)

. | Latency | Memory
Implementation (ms) (MB) Accuracy
KNN - b} s60.72 | 75626 | 0.9435
JavaScript
KNN Y| 3508 | 953.67 | 0.9432
TensorFlow.js

KNN by
TensorFlow.js
without GPU

3328.00 | 527.38 | 0.9432

KNN Server-

Side by Python 260.88 N/A

0.9353

KNN on WASM

Rust in Browser 22775

1433.42 | 0.9432

KNN on WASM

Rust on NodeJS 109.55

1504.59 | 0.9432

5. DISCUSSION
5.1. Analysis of Results

Latency and Memory Comparison for KNN Implementations Wine Guality Dataset

Figure 4 Chart illustrating experimental results from
Table 2 (Wine Quality White dataset)

The experimental results from Table 2 (Wine
Quality White) demonstrate the capabilities of
WebAssembly (WASM) in executing KNN, with
significantly lower latency compared to the
JavaScript version and the implementation using
the TensorFlow js library. For the Python server-
side version, although network dependency was
eliminated (running locally on the same
machine), latency remains very high.
Specifically, the WASM in Browser version
achieves an average of 1.99 ms, reducing 22.3%
compared to the JavaScript version at 2.56 ms
and 76.8% compared to the TensorFlow.js
version at 8.58 ms. Notably, the execution delay
is 83 times shorter than the Server-Side by
Python version at 165.33 ms. Running the KNN
WASM on NodelS version directly from the V8
Engine (0.67 ms) provides nearly 3 times better
performance compared to running the same
WASM in the browser's sandbox.

However, in terms of system resource usage, the
WASM on NodelS version consumes the most

7

memory, three times more than the WASM in
Browser version. Meanwhile, the WASM in
Browser version only consumes 8.6% more than
the TensorFlow.js version and 45.5% more than
the JavaScript version.

Considering the balance between response time
and memory efficiency on the Wine Quality
White dataset, the KNN WASM in Browser
version performs best.

Latency and Memory Comparison for KNN Implementations

Figure 5 Chart illustrating experimental results from
Table 4 (Forest Cover-Type dataset)

The results on the Covertype dataset (Table 4,
581012 samples) offer additional insights for an
objective evaluation of the implementation. We
selected the Covertype dataset due to its larger
number of samples and dimensions to approach
the limitations regarding the complexity of the
KNN algorithm. This allows assessing
computational capabilities on WASM compared
to other KNN versions. In the experimental
results, we observed that the latency of KNN on
the TensorFlow.js version is very low, as the
KNN algorithm from this library is optimized to
run in parallel on CPU and GPU. To avoid bias in
the evaluation while maintaining objectivity in
the experiments, we added a version that disables
GPU processing in this setup. The results were
surprising, with execution delay increasing
abnormally, to nearly 6 times that of the
JavaScript version (the second-highest latency
version). In particular, when experimenting with
larger datasets on KNN, which implies greater
algorithmic complexity, the latency results of the
WASM versions show superior advantages over
the other versions. Specifically, the WASM in
Browser version (227.75 ms) reduces time by
59.4% compared to the JavaScript version and is
12.7% faster than the KNN Server-Side by
Python version; the WASM Rust on NodelS
version (109.55 ms) is still more than 2 times
faster than the WASM in Browser version.

This experiment also highlights issues in device
resource usage, with KNN on WASM Rust in
Browser (using 1433.42 MB) consuming
approximately 1.9 times more than the KNN by
6. CONCLUSION

JavaScript version and 2.72 times more than the
KNN by TensorFlow.js without GPU version.
The KNN on WASM Rust on NodeJS version
(1504.59 MB) uses memory comparable to the
WASM Rust in Browser version (an increase of
5.0%).

One point of concern in this experiment is that
the latency of the KNN Server-Side by Python
version is very stable, increasing only 57.8%
from the Wine Quality White dataset experiment
to the Covertype dataset. In contrast, KNN on
WASM (Rust) shows execution times that are
more than 114 times longer in browsers and more
than 163 times longer on Node.js compared to the
baseline. This indicates that the KNN
implementation from the scikit-learn library in
Python is highly optimized, and the observed
latency in the original comparison primarily
stems from the client-to-server connection
process.

5.2. Significance and Practical Applications

Through the experiments and analysis, we
observe that the WASM implementation from
Rust outperforms in latency compared to
JavaScript-based versions in web browsers. This
also serves as a basis to affirm the transition from
traditional model implementations to direct
implementations on edge devices to address the
practical requirements of edge computing.
Particularly in machine learning problems related
to product classification, decision-making, early
warnings, etc., which are often performed using
Python models on servers. However,
considerations and optimizations are needed
when processing large datasets on edge devices
with small memory (under 2 GB).

5.3. Limitations

In our paper, we have not yet proposed diverse
experiments on different devices such as
smartphones,Raspberry Pi or ESP32, which are
edge devices used in edge computing. The
research also has not approached real data sent
from cameras or sensors to enhance the practical
applicability of the paper. In the KNN Server-
Side by Python implementation, we have not
used a reasonable measurement method aligned
with performance.memory in JavaScript,
resulting in no memory usage data for this
version in the experimental results. Conducting
experiments on multiple client machines in
different network environments should also be
considered to make the latency results more
representative.

6.1. Summary

This study has evaluated the performance of the
basic K-Nearest Neighbors (KNN) algorithm
across five implementation versions: KNN by
JavaScript, KNN by TensorFlow.js, KNN Server-
Side by Python, KNN on WASM from Rust in
Web Browser, and KNN on WASM from Rust
on NodelS, using two datasets from UCIL: Wine
Quality White and Forest Cover-Type. The
experimental results show that WASM from Rust
is a reasonable choice to replace other
implementations in web browser environments in
particular and edge devices in general, with lower
latency than other versions using JavaScript,
especially in the trend of shifting processing to
edge devices.

6.2. Future Directions

In the future, the research can be expanded to
address current limitations and integrate new
technologies to enhance the performance of
WebAssembly (WASM) in machine learning on
edge devices. First, to increase diversity and
practicality, we plan to conduct experiments on
various edge devices, including smartphones
(such as Android/iOS models supporting modern
browsers), Raspberry Pi, and ESP32. These
devices represent real-world edge computing
environments with limited resources, helping
evaluate KNN on WASM under constraints
related to CPU, memory, and battery power. For
example, on ESP32, we can compile Rust to
WASM and run it via runtimes like WASMtime
or WASMEdge, focusing on benchmarks for
latency and power consumption.®1°

Second, to enhance practical applicability, the
research will integrate real-time data from
sources like cameras or IoT sensors, instead of
relying solely on static UCI datasets.
Specifically, we can set up a system for
streaming data in real time via WebSocket, where
data from cameras (e.g., simple image
classification) or sensors (such as temperature,
humidity in IoT) is processed directly on the
client-side using KNN on WASM. This will help
evaluate stream data processing capabilities in
applications like anomaly detection or predictive
maintenance, while reducing latency compared to
server-side processing.>?

Finally, a key development direction is
integrating WebGPU into WASM processing to
accelerate KNN computations, particularly
Euclidean distance calculations in high-
dimensional spaces. WebGPU, a new API
enabling GPU access in browsers, can be
combined with WASM via libraries like wgpu
(Rust-based) to parallelize vector operations,

reducing time complexity from O(n x d) to lower
levels through GPU acceleration. Recent studies
show that this combination can achieve speedups
of up to 10-20x for in-browser ML inference on
edge devices.!* This approache could not only
address performance limitations on large datasets
but also open potential for more complex
machine learning models, such as neural
networks or federated learning on client-side.*!?

Acknowledgment

REFERENCES

1. S. Kakati, M. Brorsson. WebAssembly Beyond
the Web: A Review for the Edge-Cloud
Continuum, International Conference on
Intelligent Technologies, 3rd, Karnataka, India,
2023.

2. 0. Jouini, K. Sethom, A. Namoun, N. Aljohani,
M. H. Alanazi, M. N. Alanazi. A Survey of
Machine Learning in Edge Computing:
Techniques, Frameworks, Applications, Issues,
and Research Directions, Technologies Journal,
2024, 12(6), 81.

3. K. Hoffpauir, J. Simmons, N. Schmidt, R.
Pittala, 1. Briggs, S. Makani, Y. Jararweh. A
Survey on Edge Intelligence and Lightweight
Machine Learning Support for Future
Applications and Services, ACM Journal of Data
and Information Quality, 2023, 15(2), 3581759.

4. F.lJia, S. Jiang, T. Cao, W. Cui, T. Xia, X. Cao,
Y. Li, Q. Wang, D. Zhang, J. Ren, Y. Liu, L.
Qiu, M. Yang. Empowering In-Browser Deep
Learning Inference on Edge Devices with Just-
in-Time Kernel Optimizations, The Annual
International Conference on Mobile Systems,
Applications and Services, 22", Tokyo, Japan,
2024.

5. M. Liu, H. Shen, Y. Zhang, H. Mei, Y. Ma.
WebAssembly for Container Runtime: Are We
There Yet?, ACM Transactions on Software
Engineering and Methodology, 2025, 34(6),
3712197.

6. Y. Yan, T. Tu, L. Zhao, Y. Zhou, W. Wang.
Understanding the Performance of WebAssembly
Applications, ACM Internet Measurement
Conference, 21%, Virtual Event, USA, 11-2021.

7. P. Cunningham, S. J. Delany. k-Nearest
Neighbour Classifiers - A Tutorial, ACM
Computing Surveys Journals (CSUR), 2021,
54(6), 3459665.

8. S. E. Khelifa, M. Bagaa, A. O. Messaoud, A.
Ksentini. Case study of WebAssembly Runtimes
for Al Applications on the FEdge, Global
Information Infrastructure and Networking
Symposium (GIIS), 14™, Dubai, UAE, 2024.

9.

10.

P. Gackstatter, P. A. Frangoudis, S. Dustdar.
Pushing Serverless to the Edge with
WebAssembly Runtimes, International
Symposium on Cluster, Cloud and Internet
Computing, 22", Taormina , Italy, 2022.

P. P. Ray. An Overview of WebAssembly for
IoT: Background, Tools, State-of-the-Art,
Challenges, and Future Directions, Future
Internet journal, 2023, 15(8), 275.

1.

12.

K. Nakamura. Machine Learning with Rust: A
practical attempt to explore Rust and its libraries
across popular machine learning techniques,
GitforGits Publisher, British Columbia, Canada,
2024.

R. Jayanth, N. Gupta, V. Prasanna.
Benchmarking Edge Al Platforms for High-
Performance ML Inference, 1EEE High
Performance Extreme Computing Conference,
28 Wakefield, MA, USA, 2024.

10

