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Đánh giá hiệu năng một cài đặt thuật toán KNN bằng Rust-

webassembly 
 

 

 

TÓM TẮT 

Trong bối cảnh điện toán biên đang phát triển mạnh mẽ, việc chuyển dịch xử lý từ máy chủ (server-side) sang 

thiết bị khách (client-side) ngày càng quan trọng để giảm độ trễ, tăng cường bảo mật dữ liệu, và hỗ trợ các ứng dụng 

thời gian thực như IoT hoặc ứng dụng trí tuệ nhân tạo (AI) trên thiết bị như trình duyệt web nói riêng và thiết bị biên 

(thiết bị IoT, điện thoại thông minh, hoặc thiết bị phần cứng có tài nguyên hạn chế…) nói chung . WebAssembly 

(WASM) là công nghệ hỗ trợ làm việc trên các thiết bị trên với tốc độ gần native, tính di động khi triển khai. Trong 

bài báo này chúng tôi đánh giá hiệu năng của thuật toán K-Nearest Neighbors (KNN) được triển khai trên ngôn ngữ 

Rust và biên dịch sang WebAssembly với các cài đặt KNN khác nhau trên môi trường web. Mục tiêu là đánh giá 

khả năng của WASM và thuật toán KNN từ đó mở ra hướng nghiên cứu, triển khai các mô hình học máy khác vốn 

cần khả năng tính toán lớn, sử dụng WASM trên các thiết bị biên để tối ưu hiệu năng các ứng dụng học máy. 

Từ khóa: Thuật toán KNN, WebAssembly, Edge Computing, Rust, Machine Learning. 
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ABSTRACT 

In the context of edge computing that is developing rapidly, shifting processing from server-side to client-

side is increasingly important to reduce latency, enhance data security, and support real-time applications such as 

IoT or artificial intelligence (AI) applications on devices like web browsers in particular and edge devices (e.g., IoT 

devices, smartphones, or hardware with limited resources...) in general. WebAssembly (WASM) is a technology that 

supports operations on these devices with near-native speed and portability during deployment. In this paper, we 

evaluate the performance of the K-Nearest Neighbors (KNN) algorithm implemented in the Rust language and 

compiled to WebAssembly, and compare it with various other KNN implementations in web environments. The 

objective is to assess the capabilities of WASM and the KNN algorithm, thereby opening up research directions for 

implementing other machine learning models that require substantial computational power, utilizing WASM on 

edge devices to optimize machine learning applications. 

Keywords: K-Nearest Neighbors Algorithm, WebAssembly, Edge Computing, Rust, Machine Learning. 

 

 

1. INTRODUCTION 

The rapid proliferation of edge devices, such as 

smartphones, IoT sensors, and web clients, has 

created a pressing need for data processing closer 

to the source, reducing reliance on cloud servers. 

Edge computing not only minimizes latency and 

conserves bandwidth but also enhances data 

security by limiting the transmission of sensitive 

information to the cloud. In the domain of 

machine learning, many applications are shifting 

toward direct execution  in web browsers or 

resource-constrained devices to support tasks like 

real-time anomaly detection or personalized 

recommendations. However, classical algorithms 

like K-Nearest Neighbors (KNN), which demand 

substantial computational resources for distance 

calculations in high-dimensional spaces, face 

significant efficiency issues on edge devices with 

limited hardware, particularly in web 

environments.1-3 

WebAssembly (WASM) offers a promising 

solution, providing a binary instruction format 

that enables compilation from low-level 

languages like Rust, C, and C++ to achieve near-

native performance in browsers.4,5 Rust, with its 

memory safety, concurrency support, and robust 

WASM compilation capabilities, is an ideal 

choice for deploying applications on edge 

devices. Recent studies demonstrate that WASM 

can outperform traditional JavaScript in web 

environments  with reported speedups of 1.5–2x, 

as evidenced by applications such as Photoshop 

Web, AutoCAD Web, and Figma.6 

In the field of machine learning, WASM has been 

adopted for certain algorithms to enable client-

side execution in web environments. However, 

there is a lack of comprehensive studies 

evaluating the performance of classification 

algorithms like KNN when implemented with 

WASM compared to other setups. This study 

evaluates the performance of the KNN algorithm, 

a simple yet computationally intensive classifier 

with a time complexity of O(n × d) to 

demonstrate WASM’s capabilities in resource-

constrained web environments compared to 

traditional JavaScript implementations, 

TensorFlow.js-based setups, and server-side 

models.7  

The primary motivation of this research is to shift 

processing from large-scale servers to edge 

devices, reducing cloud dependency and 

enhancing data privacy by keeping data on-

device. Rust provides safety and high efficiency 

for KNN, while WASM ensures seamless 

deployment in web environments. 

This paper is organized as follows: Section 2 

reviews related work; Section 3 describes the 

experimental methodology; Section 4 presents 

the experimental results; Section 5 discusses the 

findings; and Section 6 concludes with future 

directions. 

2. RELATED WORK 
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2.1. WebAssembly and Rust in Edge 

Computing 

WebAssembly (WASM) is a critical technology 

for web and edge applications, particularly when 

combined with programming languages like 

C/C++ and Rust to enable machine learning 

(ML) on client-side devices. In recent years, 

numerous applications have been compiled to 

WASM, reflecting a shift from server-side to 

client-side processing.1,5 

2.1.1 WASM and RUST 

WebAssembly (WASM) is a binary instruction 

format designed to execute code at near-native 

speed in sandboxed environments, such as web 

browsers or edge devices. Developed by the 

World Wide Web Consortium (W3C)  in 2017, 

WASM aims to provide a low-level compiled 

language that operates across platforms without 

relying on JavaScript, addressing the 

performance limitations of traditional scripting 

languages. WASM supports compilation from 

various source languages, including C/C++, Go, 

and notably Rust, enabling developers to write 

high-performance code with strong portability.1,5 

Rust, a systems programming language 

developed by Mozilla  in 2010, emphasizes 

memory safety, performance, and concurrency 

without requiring garbage collection, mitigating 

common errors in C/C++ such as null pointers or 

data races. Since the introduction of WASM in 

2017, Rust has become a preferred choice for 

WASM compilation due to its ability to produce 

safe and efficient code. The Rust-WASM 

combination optimizes compute-intensive tasks, 

such as those in ML applications.4,8 

2.1.2 Compilation from Rust to WebAssembly 

and Operation in Web Browsers 

The compilation process from Rust to WASM 

involves three key steps. The first step is writing 

Rust code using libraries that support WASM 

conversion. The second involves using the 

WASM-pack tool to build the Rust project into a 

WASM module.  The third is applying WASM-

bindgen to generate JavaScript bindings, 

allowing Rust functions to be called from 

browsers with minimal modifications. WASM 

operates in web browsers via the WebAssembly 

virtual machine integrated into browser engines 

(e.g., V8 in Chrome) or Node.js, where WASM 

binaries are loaded and executed directly. It also 

supports Web Workers for multi-threading and 

WebGPU for GPU acceleration when needed.4 

2.1.3. Benefits of Using WebAssembly in Web 

Browsers and Edge Computing Devices 

WebAssembly offers significant advantages for 

web browsers and edge computing devices, 

including high performance, portability, and 

enhanced security. Recent studies quantify these 

benefits, making WASM an ideal choice for 

shifting ML processing from large-scale servers 

to client-side environments, reducing cloud 

dependency, and optimizing for resource-

constrained devices. 

First, WASM delivers superior execution speed 

compared to traditional JavaScript. It achieves 

speedups of 1.5–2x for compute-intensive ML 

tasks in browsers, leveraging pre-compiled 

binaries and Single Instruction, Multiple Data 

(SIMD) for vectorized computations, reducing 

execution time by up to 50% compared to 

JavaScript in in-browser deep learning inference 

benchmarks on edge devices.4,6 Real-world 

examples, such as sub-second latency for 

complex models, highlight WASM’s suitability 

for time-critical decision-making tasks. WASM 

runtimes also reduce startup time by 20–30% 

compared to JavaScript, saving bandwidth and 

accelerating data processing, particularly when 

combined with Rust to prevent memory errors.9 

Benchmarks indicate that WASM reduces binary 

size by 50% after optimization with WASM-opt, 

leading to 40% faster load times in web browsers, 

which is critical for IoT nodes with limited 

connectivity.6 

Second, portability is a key strength. WASM 

enables code to run on all modern browsers 

(Chrome, Firefox, Edge) and Node.js without 

recompilation, achieving 95% compatibility 

across platforms, making it ideal for diverse IoT 

ecosystems.10 In edge computing, WASM 

supports cross-platform deployment, reducing 

integration time by 30–40% compared to native 

code.4  

Third, WASM enhances security through its 

sandboxed execution model, preventing code 

injection and restricting system access, which is 

vital for sensitive client-side ML tasks. Studies 

show that WASM reduces attack risks by 70% 

compared to JavaScript due to its isolation 

mechanisms, while keeping data on-device 

reduces cloud transmission by up to 80% in ML 

tasks.8-10 

Figure 1 illustrates the compilation and 

deployment process of WASM from various 

programming languages across different 

environments10 
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Figure 1 WASM Deployment from Various 

Programming Languages 

2.2 The K-Nearest Neighbors Algorithm 

The K-Nearest Neighbors (KNN) algorithm is a 

fundamental machine learning method based on 

instance-based learning, used for classification or 

regression by identifying the k nearest neighbors 

in the training dataset based on a distance metric 

(e.g., Euclidean, Manhattan) and applying 

majority voting (for classification) or averaging 

(for regression). As a non-parametric method, 

KNN stores the entire dataset and performs 

computations at query time, resulting in a time 

complexity of O(n × d), where n is the number of 

samples and d is the number of features. While 

suitable for small datasets, KNN poses challenges 

for large datasets, especially on edge devices 

with limited resources. KNN is widely applied in 

edge computing for tasks like anomaly detection 

or recommendation systems, but its performance 

in client-side environments often requires 

optimizations such as parallelization or 

approximate nearest neighbor variants.7 In 

browsers, KNN has been implemented using 

JavaScript and Rust. Comparing a WASM-based 

KNN implementation with existing 

implementations, such as JavaScript in browsers, 

TensorFlow.js, or server-side scikit-learn models, 

provides valuable insights into the effectiveness 

of WASM for classification algorithms like KNN 

in resource-constrained environments. 

Pseudo-code KNN Algorithm 

Input: Data set D (training set with features and 

labels), test point x, K  

Output: Label of x 

Begin: 

For each point xi in D:  

 Compute distance d(x, xi)  

 // e.g., Euclidean distance  

End For 

Sort the distances in ascending order  

Select the first K points with smallest distances 

Count the frequency of each label in the K points 

Return the label with the highest frequency // 

majority vote  

End 

3. EXPERIMENTAL SETUP 

3.1. System Overview 

To evaluate the performance of the KNN 

algorithm in web environments, we propose a 

workflow consisting of three phases: (i) 

implementing a basic KNN in Rust, (ii) 

compiling it to WebAssembly (WASM) for 

browser execution, and (iii) measuring 

performance against other KNN implementations 

in browsers on the same device. The system is 

designed to focus on evaluating the capabilities 

of programming languages for the same 

algorithm (WASM compiled from Rust 

compared to JavaScript and Python server-side), 

rather than assessing optimized versions of the 

algorithm. The goal is to demonstrate WASM's 

potential in applications with limited hardware, 

such as web browsers or edge devices, 

particularly in the field of machine learning for 

classification tasks. Figure 2 illustrates the 

overall architecture: input data (from the Wine 

Quality and Covertype datasets) is processed by 

the KNN module in Rust, compiled to WASM 

via WASM-pack, and integrated into browsers 

through JavaScript bindings to invoke functions. 

 

 

Figure 2 KNN model used for experimentation 

3.2. Implementation of the KNN Algorithm 

We implement KNN using its basic version, 

computing Euclidean distances between all data 

points without any algorithmic optimizations 

(such as search trees or approximations), to 

purely assess the capabilities of the programming 

language. Rust is selected for implementation due 

to its memory safety, computational capabilities 

comparable to C/C++, and straightforward 

compilation to WASM.9-11 We use the ndarray 

library to handle multi-dimensional arrays for 

input data and distance calculations, as this 

library supports WASM compilation. 
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Pseudo-code KNN Algorithm on RUST. 

struct KnnModel{  

 Array1: 1D array y_train // labels of n training 

samples  

 Array2: 2D array X_train // matrix n x d with 

n rows (training samples), d columns (features in 

the dataset) } 

} 

Function Predict 

Input: x_test: One row of test data (vector of d 

features), k 

Output: Label of x_test 

Begin:  

 Convert x_test to a 1D array (Array1)  

 Create Vector distances (Vec<(f64, i32)>) 

 For each xi in X_train (zip with y_train):  

  Compute distance d(x_test, xi) 

  Add(dist, x_test[label_i]) in distances  

 End For  

 Sort the Vector distances in ascending order 

by dist 

 Get k_labels = [label for (dist, label) in 

distances[0:k]]  

 Create Hashmap counts // count frequency of 

labels in k_labels  

 For each label in k_labels:  

  counts[label] += 1  

 End For  

 Return the label with the highest frequency or 

0 // majority vote  

End 

3.3. Compilation to WebAssembly and 

Deployment in Web Browsers 

After implementing the basic KNN source code 

in Rust (as described in Section 3.2), the 

compilation to WebAssembly (WASM) is 

performed to create a module that can be 

integrated into web browsers, enabling 

comparisons with JavaScript or Python server 

versions. WASM-pack, a CLI tool from the Rust 

community, compiles Rust to WASM binaries, 

standardizing WASM for web, Node.js, and other 

environments. WASM-bindgen then exports Rust 

functions (e.g., knn_predict) and provides bridges 

for interaction between the compiled module and 

JavaScript.5-6 

Once the WASM code is obtained after 

compilation, we deploy it in web browsers via an 

HTML/JS interface. We import the WASM code 

to load and initialize the WASM runtime in 

browser engines like V8, then shuffle the data 

with a seed and split it into 80% training and 

20% testing. To simulate a process similar to 

receiving input data from real devices, we do not 

perform classification on the entire 20% test set 

but process each data row as  a stream from IoT 

(e.g., sensor data transmitted continuously via 

WebSocket).  

3.4. Evaluation Methods 

To evaluate performance, we use the following 

metrics: 

• Latency: The time to execute one KNN 

query, measured using performance.now() in 

JavaScript. This method returns time values 

accurate to microseconds (based on 

DOMHighResTimeStamp), suitable for 

benchmarking KNN queries without external 

influences like garbage collection. 

• Memory Usage: Maximum RAM usage 

(MB), measured using performance.memory. 

This method returns JavaScript heap sizes with 

parameters like usedJSHeapSize for used heap, 

totalJSHeapSize for total heap, and 

jsHeapSizeLimit for heap limit, helping monitor 

memory for web apps on Chromium-based 

browsers to determine maximum RAM when 

running KNN. The baselines for comparison 

include five versions: 

• KNN by JavaScript: Basic 

implementation using JavaScript. 

• KNN by TensorFlow.js: KNN 

implementation using the TensorFlow.js 

library. 

• KNN Server-Side by Python: KNN 

implementation using scikit-learn via a 

server-side model. 

• KNN on WASM from Rust in Web 

Browser: WASM version compiled from 

Rust. 

• KNN on WASM from Rust on NodeJS: 

WASM version compiled from Rust for 

edge devices.  

During experimentation, we observed that the 

TensorFlow.js KNN version utilizes both CPU 

and GPU in parallel, so we customized an 
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additional version using only CPU to establish 

comparable metrics with other implementations. 

4. RESULTS 

4.1. Datasets 

To evaluate the performance of the basic KNN 

algorithm, we utilize two datasets from the UCI 

Machine learning Repository, focusing on 

classification tasks to test the capabilities of the 

implementations across web clients and server-

side setups. The first dataset is Wine Quality 

White, consisting of 4898 samples representing 

white wine samples from the Vinho Verde region 

in Portugal, with 11 features related to wine 

physicochemical properties. This dataset is 

selected for its moderate size (4898 samples, 11 

features), allowing latency benchmarking without 

excessive overhead in browsers. The second 

dataset is Covertype, comprising 581012 samples 

describing forest cover types from four 

wilderness areas in the Roosevelt National 

Forest, USA, with 54 features. This dataset 

includes information on tree type, shadow 

coverage, distance to nearby landmarks (roads, 

etc.), soil type, and local topography. With its 

large size (581012 samples, 54 features), this 

dataset is more challenging than Wine Quality 

White, enabling scalability evaluation of KNN 

across versions without algorithmic 

optimizations. Both datasets are split into 80% 

training and 20% testing, with k=5 for KNN. 

Table 1 Description of the Wine Quality White and 

Forest Cover-Type Datasets 

Dataset 
Featu

res 
Samples Description 

Wine 

Quality 

White 

11 4898 

Multiclass classification 

(wine quality from 3-9 

classes, based on 

physicochemical features 

like acidity, sugar, 

alcohol) 

Forest 

Cover-

Type 

54 581012 

Multiclass classification (7 

forest cover classes, based 

on geographic features like 

elevation, slope, soil 

types) 

4.2. Devices 

The experiments are conducted on a Dell 

Latitude 7320 laptop with an Intel Core i5-

1140G7 processor (base speed 1.10 GHz, turbo 

up to 4.20 GHz, 4 cores 8 threads), 16 GB DDR4 

RAM, running Windows 11, and using Microsoft 

Edge version 140.0 for browser-based versions 

(WASM in Browser, JS, TFJS). The Python 

server runs locally on the same device via the 

Flask API Framework, with Node.js 22.15 for 

WASM on NodeJS. This configuration represents 

a typical client-side device in edge computing, 

with moderate resources to assess KNN overhead 

without hardware optimizations. Metrics are 

measured using Chromium DevTools and 

performance APIs, with 10 iterations per version 

to compute averages. 

4.3. Experimental Results 

The results are presented for the two datasets 

across five implementations: KNN by JavaScript 

(basic JavaScript implementation), KNN by 

TensorFlow.js (using TFJS), KNN Server-Side 

by Python (using scikit-learn locally), KNN on 

WASM from Rust in Web Browser (WASM in 

browsers), and KNN on WASM from Rust on 

NodeJS (WASM on Node.js). We do not evaluate 

memory usage for the KNN Server-Side by 

Python version due to inconsistent measurement 

methods compared to others. 

Table 2 Results on Wine Quality White (4898 

samples, 11 features, k=5). 

Implementation 
Latency 

(ms) 

Memory 

(MB) 
Accuracy 

KNN by 

JavaScript 
2.56 9.54 0.549 

KNN by 

TensorFlow.js 
8.58 12.78 0.559 

KNN Server-

Side by Python 
165.33 N/A 0.572 

KNN on WASM 

Rust in Browser 
1.99 13.88 0.547 

KNN on WASM 

Rust on NodeJS 
0.67 41.21 0.547 

During experimentation on the Wine Quality 

White dataset, the accuracy results were 

approximately 0.57 due to class imbalance (class 

6 dominates, extreme classes like 3-4 or 8-9 are 

scarce), outliers in features like residual sugar 

(high IQR leading to noise), and low correlations 

of some features (e.g., density, pH with quality). 

To address this, we performed data preprocessing 

by converting the quality label to binary (bad =6) 

to reduce class complexity from 7 to 2; removing 

outliers using IQR across all features to eliminate 
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noise. After preprocessing, accuracy increased to 

approximately 0.75, while other metrics remained 

as in Table 2. 

 

Figure 3 Distribution of the Quality column in the 

Wine Quality White dataset 

Table 3 Results on Preprocessed Wine Quality White 

(normalized edge data). 

Implementation 
Latency 

(ms) 

Memory 

(MB) 
Accuracy 

KNN by 

JavaScript 
2.45 9.54 0.7557 

KNN by 

TensorFlow.js 
7.17 13.64 0.7557 

KNN Server-

Side by Python 
168.68 N/A 0.7604 

KNN on WASM 

Rust in Browser 
2.10 13.94 0.7557 

KNN on WASM 

Rust on NodeJS 
0.73 41.72 0.7557 

Table 4 Results on Covertype (581012 samples, 54 

features, 100 queries, k=5) 

Implementation 
Latency 

(ms) 

Memory 

(MB) 
Accuracy 

KNN by 

JavaScript 
560.72 756.26 0.9435 

KNN by 

TensorFlow.js 
35.98 953.67 0.9432 

KNN by 

TensorFlow.js 

without GPU 

3328.00 527.38 0.9432 

KNN Server-

Side by Python 
260.88 N/A 0.9353 

KNN on WASM 

Rust in Browser 
227.75 1433.42 0.9432 

KNN on WASM 

Rust on NodeJS 
109.55 1504.59 0.9432 

5. DISCUSSION 

5.1. Analysis of Results 

 

Figure 4 Chart illustrating experimental results from 

Table 2 (Wine Quality White dataset) 

The experimental results from Table 2 (Wine 

Quality White) demonstrate the capabilities of 

WebAssembly (WASM) in executing KNN, with 

significantly lower latency compared to the 

JavaScript version and the implementation using 

the TensorFlow.js library. For the Python server-

side version, although network dependency was 

eliminated (running locally on the same 

machine), latency remains very high. 

Specifically, the WASM in Browser version 

achieves an average of 1.99 ms, reducing 22.3% 

compared to the JavaScript version at 2.56 ms 

and 76.8% compared to the TensorFlow.js 

version at 8.58 ms. Notably, the execution delay 

is 83 times shorter than the Server-Side by 

Python version at 165.33 ms. Running the KNN 

WASM on NodeJS version directly from the V8 

Engine (0.67 ms) provides nearly 3 times better 

performance compared to running the same 

WASM in the browser's sandbox. 

However, in terms of system resource usage, the 

WASM on NodeJS version consumes the most 
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memory, three times more than the WASM in 

Browser version. Meanwhile, the WASM in 

Browser version only consumes 8.6% more than 

the TensorFlow.js version and 45.5% more than 

the JavaScript version. 

Considering the balance between response time 

and memory efficiency on the Wine Quality 

White dataset, the KNN WASM in Browser 

version performs best. 

 

Figure 5 Chart illustrating experimental results from 

Table 4 (Forest Cover-Type dataset) 

The results on the Covertype dataset (Table 4, 

581012 samples) offer additional insights for an 

objective evaluation of the implementation. We 

selected the Covertype dataset due to its larger 

number of samples and dimensions to approach 

the limitations regarding the complexity of the 

KNN algorithm. This allows assessing 

computational capabilities on WASM compared 

to other KNN versions. In the experimental 

results, we observed that the latency of KNN on 

the TensorFlow.js version is very low, as the 

KNN algorithm from this library is optimized to 

run in parallel on CPU and GPU. To avoid bias in 

the evaluation while maintaining objectivity in 

the experiments, we added a version that disables 

GPU processing in this setup. The results were 

surprising, with execution delay increasing 

abnormally, to nearly 6 times that of the 

JavaScript version (the second-highest latency 

version). In particular, when experimenting with 

larger datasets on KNN, which implies greater 

algorithmic complexity, the latency results of the 

WASM versions show superior advantages over 

the other versions. Specifically, the WASM in 

Browser version (227.75 ms) reduces time by 

59.4% compared to the JavaScript version and is 

12.7% faster than the KNN Server-Side by 

Python version; the WASM Rust on NodeJS 

version (109.55 ms) is still more than 2 times 

faster than the WASM in Browser version. 

This experiment also highlights issues in device 

resource usage, with KNN on WASM Rust in 

Browser (using 1433.42 MB) consuming 

approximately 1.9 times more than the KNN by 

JavaScript version and 2.72 times more than the 

KNN by TensorFlow.js without GPU version. 

The KNN on WASM Rust on NodeJS version 

(1504.59 MB) uses memory comparable to the 

WASM Rust in Browser version (an increase of 

5.0%). 

One point of concern in this experiment is that 

the latency of the KNN Server-Side by Python 

version is very stable, increasing only 57.8% 

from the Wine Quality White dataset experiment 

to the Covertype dataset. In contrast, KNN on 

WASM (Rust) shows execution times that are 

more than 114 times longer in browsers and more 

than 163 times longer on Node.js compared to the 

baseline. This indicates that the KNN 

implementation from the scikit-learn library in 

Python is highly optimized, and the observed 

latency in the original comparison primarily 

stems from the client-to-server connection 

process.  

5.2. Significance and Practical Applications 

Through the experiments and analysis, we 

observe that the WASM implementation from 

Rust outperforms in latency compared to 

JavaScript-based versions in web browsers. This 

also serves as a basis to affirm the transition from 

traditional model implementations to direct 

implementations on edge devices to address the 

practical requirements of edge computing. 

Particularly in machine learning problems related 

to product classification, decision-making, early 

warnings, etc., which are often performed using 

Python models on servers. However, 

considerations and optimizations are needed 

when processing large datasets on edge devices 

with small memory (under 2 GB). 

5.3. Limitations 

In our paper, we have not yet proposed diverse 

experiments on different devices such as 

smartphones,Raspberry Pi or ESP32, which are 

edge devices used in edge computing. The 

research also has not approached real data sent 

from cameras or sensors to enhance the practical 

applicability of the paper. In the KNN Server-

Side by Python implementation, we have not 

used a reasonable measurement method aligned  

with performance.memory in JavaScript, 

resulting in no memory usage data for this 

version in the experimental results. Conducting 

experiments on multiple client machines in 

different network environments should also be 

considered to make the latency results more 

representative. 

6. CONCLUSION 6.1. Summary 



9 

 

This study has evaluated the performance of the 

basic K-Nearest Neighbors (KNN) algorithm 

across five implementation versions: KNN by 

JavaScript, KNN by TensorFlow.js, KNN Server-

Side by Python, KNN on WASM from Rust in 

Web Browser, and KNN on WASM from Rust 

on NodeJS, using two datasets from UCI: Wine 

Quality White and Forest Cover-Type. The 

experimental results show that WASM from Rust 

is a reasonable choice to replace other 

implementations in web browser environments in 

particular and edge devices in general, with lower 

latency than other versions using JavaScript, 

especially in the trend of shifting processing to 

edge devices. 

6.2. Future Directions 

In the future, the research can be expanded to 

address current limitations and integrate new 

technologies to enhance the performance of 

WebAssembly (WASM) in machine learning on 

edge devices. First, to increase diversity and 

practicality, we plan to conduct experiments on 

various edge devices, including smartphones 

(such as Android/iOS models supporting modern 

browsers), Raspberry Pi, and ESP32. These 

devices represent real-world edge computing 

environments with limited resources, helping 

evaluate KNN on WASM under constraints 

related to CPU, memory, and battery power. For 

example, on ESP32, we can compile Rust to 

WASM and run it via runtimes like WASMtime 

or WASMEdge, focusing on benchmarks for 

latency and power consumption.8-10 

Second, to enhance practical applicability, the 

research will integrate real-time data from 

sources like cameras or IoT sensors, instead of 

relying solely on static UCI datasets. 

Specifically, we can set up a system for 

streaming data in real time via WebSocket, where 

data from cameras (e.g., simple image 

classification) or sensors (such as temperature, 

humidity in IoT) is processed directly on the 

client-side using KNN on WASM. This will help 

evaluate stream data processing capabilities in 

applications like anomaly detection or predictive 

maintenance, while reducing latency compared to 

server-side processing.2,3 

Finally, a key development direction is 

integrating WebGPU into WASM processing to 

accelerate KNN computations, particularly 

Euclidean distance calculations in high-

dimensional spaces. WebGPU, a new API 

enabling GPU access in browsers, can be 

combined with WASM via libraries like wgpu 

(Rust-based) to parallelize vector operations, 

reducing time complexity from O(n × d) to lower 

levels through GPU acceleration. Recent studies 

show that this combination can achieve speedups 

of up to 10-20x for in-browser ML inference on 

edge devices.1,4 This approache could not only 

address performance limitations on large datasets 

but also open potential for more complex 

machine learning models, such as neural 

networks or federated learning on client-side.3,12 
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