
1

Đánh giá hiệu năng một cài đặt thuật toán KNN bằng Rust-

webassembly

TÓM TẮT

Trong bối cảnh điện toán biên đang phát triển mạnh mẽ, việc chuyển dịch xử lý từ máy chủ (server-side) sang

thiết bị khách (client-side) ngày càng quan trọng để giảm độ trễ, tăng cường bảo mật dữ liệu, và hỗ trợ các ứng dụng

thời gian thực như IoT hoặc ứng dụng trí tuệ nhân tạo (AI) trên thiết bị như trình duyệt web nói riêng và thiết bị biên

(thiết bị IoT, điện thoại thông minh, hoặc thiết bị phần cứng có tài nguyên hạn chế…) nói chung . WebAssembly

(WASM) là công nghệ hỗ trợ làm việc trên các thiết bị trên với tốc độ gần native, tính di động khi triển khai. Trong

bài báo này chúng tôi đánh giá hiệu năng của thuật toán K-Nearest Neighbors (KNN) được triển khai trên ngôn ngữ

Rust và biên dịch sang WebAssembly với các cài đặt KNN khác nhau trên môi trường web. Mục tiêu là đánh giá

khả năng của WASM và thuật toán KNN từ đó mở ra hướng nghiên cứu, triển khai các mô hình học máy khác vốn

cần khả năng tính toán lớn, sử dụng WASM trên các thiết bị biên để tối ưu hiệu năng các ứng dụng học máy.

Từ khóa: Thuật toán KNN, WebAssembly, Edge Computing, Rust, Machine Learning.

2

Performance evaluation of a KNN algorithm implementation
using Rust-webassembly

ABSTRACT

In the context of edge computing that is developing rapidly, shifting processing from server-side to client-

side is increasingly important to reduce latency, enhance data security, and support real-time applications such as

IoT or artificial intelligence (AI) applications on devices like web browsers in particular and edge devices (e.g., IoT

devices, smartphones, or hardware with limited resources...) in general. WebAssembly (WASM) is a technology that

supports operations on these devices with near-native speed and portability during deployment. In this paper, we

evaluate the performance of the K-Nearest Neighbors (KNN) algorithm implemented in the Rust language and

compiled to WebAssembly, and compare it with various other KNN implementations in web environments. The

objective is to assess the capabilities of WASM and the KNN algorithm, thereby opening up research directions for

implementing other machine learning models that require substantial computational power, utilizing WASM on

edge devices to optimize machine learning applications.

Keywords: K-Nearest Neighbors Algorithm, WebAssembly, Edge Computing, Rust, Machine Learning.

1. INTRODUCTION

The rapid proliferation of edge devices, such as

smartphones, IoT sensors, and web clients, has

created a pressing need for data processing closer

to the source, reducing reliance on cloud servers.

Edge computing not only minimizes latency and

conserves bandwidth but also enhances data

security by limiting the transmission of sensitive

information to the cloud. In the domain of

machine learning, many applications are shifting

toward direct execution in web browsers or

resource-constrained devices to support tasks like

real-time anomaly detection or personalized

recommendations. However, classical algorithms

like K-Nearest Neighbors (KNN), which demand

substantial computational resources for distance

calculations in high-dimensional spaces, face

significant efficiency issues on edge devices with

limited hardware, particularly in web

environments.1-3

WebAssembly (WASM) offers a promising

solution, providing a binary instruction format

that enables compilation from low-level

languages like Rust, C, and C++ to achieve near-

native performance in browsers.4,5 Rust, with its

memory safety, concurrency support, and robust

WASM compilation capabilities, is an ideal

choice for deploying applications on edge

devices. Recent studies demonstrate that WASM

can outperform traditional JavaScript in web

environments with reported speedups of 1.5–2x,

as evidenced by applications such as Photoshop

Web, AutoCAD Web, and Figma.6

In the field of machine learning, WASM has been

adopted for certain algorithms to enable client-

side execution in web environments. However,

there is a lack of comprehensive studies

evaluating the performance of classification

algorithms like KNN when implemented with

WASM compared to other setups. This study

evaluates the performance of the KNN algorithm,

a simple yet computationally intensive classifier

with a time complexity of O(n × d) to

demonstrate WASM’s capabilities in resource-

constrained web environments compared to

traditional JavaScript implementations,

TensorFlow.js-based setups, and server-side

models.7

The primary motivation of this research is to shift

processing from large-scale servers to edge

devices, reducing cloud dependency and

enhancing data privacy by keeping data on-

device. Rust provides safety and high efficiency

for KNN, while WASM ensures seamless

deployment in web environments.

This paper is organized as follows: Section 2

reviews related work; Section 3 describes the

experimental methodology; Section 4 presents

the experimental results; Section 5 discusses the

findings; and Section 6 concludes with future

directions.

2. RELATED WORK

3

2.1. WebAssembly and Rust in Edge

Computing

WebAssembly (WASM) is a critical technology

for web and edge applications, particularly when

combined with programming languages like

C/C++ and Rust to enable machine learning

(ML) on client-side devices. In recent years,

numerous applications have been compiled to

WASM, reflecting a shift from server-side to

client-side processing.1,5

2.1.1 WASM and RUST

WebAssembly (WASM) is a binary instruction

format designed to execute code at near-native

speed in sandboxed environments, such as web

browsers or edge devices. Developed by the

World Wide Web Consortium (W3C) in 2017,

WASM aims to provide a low-level compiled

language that operates across platforms without

relying on JavaScript, addressing the

performance limitations of traditional scripting

languages. WASM supports compilation from

various source languages, including C/C++, Go,

and notably Rust, enabling developers to write

high-performance code with strong portability.1,5

Rust, a systems programming language

developed by Mozilla in 2010, emphasizes

memory safety, performance, and concurrency

without requiring garbage collection, mitigating

common errors in C/C++ such as null pointers or

data races. Since the introduction of WASM in

2017, Rust has become a preferred choice for

WASM compilation due to its ability to produce

safe and efficient code. The Rust-WASM

combination optimizes compute-intensive tasks,

such as those in ML applications.4,8

2.1.2 Compilation from Rust to WebAssembly

and Operation in Web Browsers

The compilation process from Rust to WASM

involves three key steps. The first step is writing

Rust code using libraries that support WASM

conversion. The second involves using the

WASM-pack tool to build the Rust project into a

WASM module. The third is applying WASM-

bindgen to generate JavaScript bindings,

allowing Rust functions to be called from

browsers with minimal modifications. WASM

operates in web browsers via the WebAssembly

virtual machine integrated into browser engines

(e.g., V8 in Chrome) or Node.js, where WASM

binaries are loaded and executed directly. It also

supports Web Workers for multi-threading and

WebGPU for GPU acceleration when needed.4

2.1.3. Benefits of Using WebAssembly in Web

Browsers and Edge Computing Devices

WebAssembly offers significant advantages for

web browsers and edge computing devices,

including high performance, portability, and

enhanced security. Recent studies quantify these

benefits, making WASM an ideal choice for

shifting ML processing from large-scale servers

to client-side environments, reducing cloud

dependency, and optimizing for resource-

constrained devices.

First, WASM delivers superior execution speed

compared to traditional JavaScript. It achieves

speedups of 1.5–2x for compute-intensive ML

tasks in browsers, leveraging pre-compiled

binaries and Single Instruction, Multiple Data

(SIMD) for vectorized computations, reducing

execution time by up to 50% compared to

JavaScript in in-browser deep learning inference

benchmarks on edge devices.4,6 Real-world

examples, such as sub-second latency for

complex models, highlight WASM’s suitability

for time-critical decision-making tasks. WASM

runtimes also reduce startup time by 20–30%

compared to JavaScript, saving bandwidth and

accelerating data processing, particularly when

combined with Rust to prevent memory errors.9

Benchmarks indicate that WASM reduces binary

size by 50% after optimization with WASM-opt,

leading to 40% faster load times in web browsers,

which is critical for IoT nodes with limited

connectivity.6

Second, portability is a key strength. WASM

enables code to run on all modern browsers

(Chrome, Firefox, Edge) and Node.js without

recompilation, achieving 95% compatibility

across platforms, making it ideal for diverse IoT

ecosystems.10 In edge computing, WASM

supports cross-platform deployment, reducing

integration time by 30–40% compared to native

code.4

Third, WASM enhances security through its

sandboxed execution model, preventing code

injection and restricting system access, which is

vital for sensitive client-side ML tasks. Studies

show that WASM reduces attack risks by 70%

compared to JavaScript due to its isolation

mechanisms, while keeping data on-device

reduces cloud transmission by up to 80% in ML

tasks.8-10

Figure 1 illustrates the compilation and

deployment process of WASM from various

programming languages across different

environments10

4

Figure 1 WASM Deployment from Various

Programming Languages

2.2 The K-Nearest Neighbors Algorithm

The K-Nearest Neighbors (KNN) algorithm is a

fundamental machine learning method based on

instance-based learning, used for classification or

regression by identifying the k nearest neighbors

in the training dataset based on a distance metric

(e.g., Euclidean, Manhattan) and applying

majority voting (for classification) or averaging

(for regression). As a non-parametric method,

KNN stores the entire dataset and performs

computations at query time, resulting in a time

complexity of O(n × d), where n is the number of

samples and d is the number of features. While

suitable for small datasets, KNN poses challenges

for large datasets, especially on edge devices

with limited resources. KNN is widely applied in

edge computing for tasks like anomaly detection

or recommendation systems, but its performance

in client-side environments often requires

optimizations such as parallelization or

approximate nearest neighbor variants.7 In

browsers, KNN has been implemented using

JavaScript and Rust. Comparing a WASM-based

KNN implementation with existing

implementations, such as JavaScript in browsers,

TensorFlow.js, or server-side scikit-learn models,

provides valuable insights into the effectiveness

of WASM for classification algorithms like KNN

in resource-constrained environments.

Pseudo-code KNN Algorithm

Input: Data set D (training set with features and

labels), test point x, K

Output: Label of x

Begin:

For each point xi in D:

 Compute distance d(x, xi)

 // e.g., Euclidean distance

End For

Sort the distances in ascending order

Select the first K points with smallest distances

Count the frequency of each label in the K points

Return the label with the highest frequency //

majority vote

End

3. EXPERIMENTAL SETUP

3.1. System Overview

To evaluate the performance of the KNN

algorithm in web environments, we propose a

workflow consisting of three phases: (i)

implementing a basic KNN in Rust, (ii)

compiling it to WebAssembly (WASM) for

browser execution, and (iii) measuring

performance against other KNN implementations

in browsers on the same device. The system is

designed to focus on evaluating the capabilities

of programming languages for the same

algorithm (WASM compiled from Rust

compared to JavaScript and Python server-side),

rather than assessing optimized versions of the

algorithm. The goal is to demonstrate WASM's

potential in applications with limited hardware,

such as web browsers or edge devices,

particularly in the field of machine learning for

classification tasks. Figure 2 illustrates the

overall architecture: input data (from the Wine

Quality and Covertype datasets) is processed by

the KNN module in Rust, compiled to WASM

via WASM-pack, and integrated into browsers

through JavaScript bindings to invoke functions.

Figure 2 KNN model used for experimentation

3.2. Implementation of the KNN Algorithm

We implement KNN using its basic version,

computing Euclidean distances between all data

points without any algorithmic optimizations

(such as search trees or approximations), to

purely assess the capabilities of the programming

language. Rust is selected for implementation due

to its memory safety, computational capabilities

comparable to C/C++, and straightforward

compilation to WASM.9-11 We use the ndarray

library to handle multi-dimensional arrays for

input data and distance calculations, as this

library supports WASM compilation.

5

Pseudo-code KNN Algorithm on RUST.

struct KnnModel{

 Array1: 1D array y_train // labels of n training

samples

 Array2: 2D array X_train // matrix n x d with

n rows (training samples), d columns (features in

the dataset) }

}

Function Predict

Input: x_test: One row of test data (vector of d

features), k

Output: Label of x_test

Begin:

 Convert x_test to a 1D array (Array1)

 Create Vector distances (Vec<(f64, i32)>)

 For each xi in X_train (zip with y_train):

 Compute distance d(x_test, xi)

 Add(dist, x_test[label_i]) in distances

 End For

 Sort the Vector distances in ascending order

by dist

 Get k_labels = [label for (dist, label) in

distances[0:k]]

 Create Hashmap counts // count frequency of

labels in k_labels

 For each label in k_labels:

 counts[label] += 1

 End For

 Return the label with the highest frequency or

0 // majority vote

End

3.3. Compilation to WebAssembly and

Deployment in Web Browsers

After implementing the basic KNN source code

in Rust (as described in Section 3.2), the

compilation to WebAssembly (WASM) is

performed to create a module that can be

integrated into web browsers, enabling

comparisons with JavaScript or Python server

versions. WASM-pack, a CLI tool from the Rust

community, compiles Rust to WASM binaries,

standardizing WASM for web, Node.js, and other

environments. WASM-bindgen then exports Rust

functions (e.g., knn_predict) and provides bridges

for interaction between the compiled module and

JavaScript.5-6

Once the WASM code is obtained after

compilation, we deploy it in web browsers via an

HTML/JS interface. We import the WASM code

to load and initialize the WASM runtime in

browser engines like V8, then shuffle the data

with a seed and split it into 80% training and

20% testing. To simulate a process similar to

receiving input data from real devices, we do not

perform classification on the entire 20% test set

but process each data row as a stream from IoT

(e.g., sensor data transmitted continuously via

WebSocket).

3.4. Evaluation Methods

To evaluate performance, we use the following

metrics:

• Latency: The time to execute one KNN

query, measured using performance.now() in

JavaScript. This method returns time values

accurate to microseconds (based on

DOMHighResTimeStamp), suitable for

benchmarking KNN queries without external

influences like garbage collection.

• Memory Usage: Maximum RAM usage

(MB), measured using performance.memory.

This method returns JavaScript heap sizes with

parameters like usedJSHeapSize for used heap,

totalJSHeapSize for total heap, and

jsHeapSizeLimit for heap limit, helping monitor

memory for web apps on Chromium-based

browsers to determine maximum RAM when

running KNN. The baselines for comparison

include five versions:

• KNN by JavaScript: Basic

implementation using JavaScript.

• KNN by TensorFlow.js: KNN

implementation using the TensorFlow.js

library.

• KNN Server-Side by Python: KNN

implementation using scikit-learn via a

server-side model.

• KNN on WASM from Rust in Web

Browser: WASM version compiled from

Rust.

• KNN on WASM from Rust on NodeJS:

WASM version compiled from Rust for

edge devices.

During experimentation, we observed that the

TensorFlow.js KNN version utilizes both CPU

and GPU in parallel, so we customized an

6

additional version using only CPU to establish

comparable metrics with other implementations.

4. RESULTS

4.1. Datasets

To evaluate the performance of the basic KNN

algorithm, we utilize two datasets from the UCI

Machine learning Repository, focusing on

classification tasks to test the capabilities of the

implementations across web clients and server-

side setups. The first dataset is Wine Quality

White, consisting of 4898 samples representing

white wine samples from the Vinho Verde region

in Portugal, with 11 features related to wine

physicochemical properties. This dataset is

selected for its moderate size (4898 samples, 11

features), allowing latency benchmarking without

excessive overhead in browsers. The second

dataset is Covertype, comprising 581012 samples

describing forest cover types from four

wilderness areas in the Roosevelt National

Forest, USA, with 54 features. This dataset

includes information on tree type, shadow

coverage, distance to nearby landmarks (roads,

etc.), soil type, and local topography. With its

large size (581012 samples, 54 features), this

dataset is more challenging than Wine Quality

White, enabling scalability evaluation of KNN

across versions without algorithmic

optimizations. Both datasets are split into 80%

training and 20% testing, with k=5 for KNN.

Table 1 Description of the Wine Quality White and

Forest Cover-Type Datasets

Dataset
Featu

res
Samples Description

Wine

Quality

White

11 4898

Multiclass classification

(wine quality from 3-9

classes, based on

physicochemical features

like acidity, sugar,

alcohol)

Forest

Cover-

Type

54 581012

Multiclass classification (7

forest cover classes, based

on geographic features like

elevation, slope, soil

types)

4.2. Devices

The experiments are conducted on a Dell

Latitude 7320 laptop with an Intel Core i5-

1140G7 processor (base speed 1.10 GHz, turbo

up to 4.20 GHz, 4 cores 8 threads), 16 GB DDR4

RAM, running Windows 11, and using Microsoft

Edge version 140.0 for browser-based versions

(WASM in Browser, JS, TFJS). The Python

server runs locally on the same device via the

Flask API Framework, with Node.js 22.15 for

WASM on NodeJS. This configuration represents

a typical client-side device in edge computing,

with moderate resources to assess KNN overhead

without hardware optimizations. Metrics are

measured using Chromium DevTools and

performance APIs, with 10 iterations per version

to compute averages.

4.3. Experimental Results

The results are presented for the two datasets

across five implementations: KNN by JavaScript

(basic JavaScript implementation), KNN by

TensorFlow.js (using TFJS), KNN Server-Side

by Python (using scikit-learn locally), KNN on

WASM from Rust in Web Browser (WASM in

browsers), and KNN on WASM from Rust on

NodeJS (WASM on Node.js). We do not evaluate

memory usage for the KNN Server-Side by

Python version due to inconsistent measurement

methods compared to others.

Table 2 Results on Wine Quality White (4898

samples, 11 features, k=5).

Implementation
Latency

(ms)

Memory

(MB)
Accuracy

KNN by

JavaScript
2.56 9.54 0.549

KNN by

TensorFlow.js
8.58 12.78 0.559

KNN Server-

Side by Python
165.33 N/A 0.572

KNN on WASM

Rust in Browser
1.99 13.88 0.547

KNN on WASM

Rust on NodeJS
0.67 41.21 0.547

During experimentation on the Wine Quality

White dataset, the accuracy results were

approximately 0.57 due to class imbalance (class

6 dominates, extreme classes like 3-4 or 8-9 are

scarce), outliers in features like residual sugar

(high IQR leading to noise), and low correlations

of some features (e.g., density, pH with quality).

To address this, we performed data preprocessing

by converting the quality label to binary (bad =6)

to reduce class complexity from 7 to 2; removing

outliers using IQR across all features to eliminate

7

noise. After preprocessing, accuracy increased to

approximately 0.75, while other metrics remained

as in Table 2.

Figure 3 Distribution of the Quality column in the

Wine Quality White dataset

Table 3 Results on Preprocessed Wine Quality White

(normalized edge data).

Implementation
Latency

(ms)

Memory

(MB)
Accuracy

KNN by

JavaScript
2.45 9.54 0.7557

KNN by

TensorFlow.js
7.17 13.64 0.7557

KNN Server-

Side by Python
168.68 N/A 0.7604

KNN on WASM

Rust in Browser
2.10 13.94 0.7557

KNN on WASM

Rust on NodeJS
0.73 41.72 0.7557

Table 4 Results on Covertype (581012 samples, 54

features, 100 queries, k=5)

Implementation
Latency

(ms)

Memory

(MB)
Accuracy

KNN by

JavaScript
560.72 756.26 0.9435

KNN by

TensorFlow.js
35.98 953.67 0.9432

KNN by

TensorFlow.js

without GPU

3328.00 527.38 0.9432

KNN Server-

Side by Python
260.88 N/A 0.9353

KNN on WASM

Rust in Browser
227.75 1433.42 0.9432

KNN on WASM

Rust on NodeJS
109.55 1504.59 0.9432

5. DISCUSSION

5.1. Analysis of Results

Figure 4 Chart illustrating experimental results from

Table 2 (Wine Quality White dataset)

The experimental results from Table 2 (Wine

Quality White) demonstrate the capabilities of

WebAssembly (WASM) in executing KNN, with

significantly lower latency compared to the

JavaScript version and the implementation using

the TensorFlow.js library. For the Python server-

side version, although network dependency was

eliminated (running locally on the same

machine), latency remains very high.

Specifically, the WASM in Browser version

achieves an average of 1.99 ms, reducing 22.3%

compared to the JavaScript version at 2.56 ms

and 76.8% compared to the TensorFlow.js

version at 8.58 ms. Notably, the execution delay

is 83 times shorter than the Server-Side by

Python version at 165.33 ms. Running the KNN

WASM on NodeJS version directly from the V8

Engine (0.67 ms) provides nearly 3 times better

performance compared to running the same

WASM in the browser's sandbox.

However, in terms of system resource usage, the

WASM on NodeJS version consumes the most

8

memory, three times more than the WASM in

Browser version. Meanwhile, the WASM in

Browser version only consumes 8.6% more than

the TensorFlow.js version and 45.5% more than

the JavaScript version.

Considering the balance between response time

and memory efficiency on the Wine Quality

White dataset, the KNN WASM in Browser

version performs best.

Figure 5 Chart illustrating experimental results from

Table 4 (Forest Cover-Type dataset)

The results on the Covertype dataset (Table 4,

581012 samples) offer additional insights for an

objective evaluation of the implementation. We

selected the Covertype dataset due to its larger

number of samples and dimensions to approach

the limitations regarding the complexity of the

KNN algorithm. This allows assessing

computational capabilities on WASM compared

to other KNN versions. In the experimental

results, we observed that the latency of KNN on

the TensorFlow.js version is very low, as the

KNN algorithm from this library is optimized to

run in parallel on CPU and GPU. To avoid bias in

the evaluation while maintaining objectivity in

the experiments, we added a version that disables

GPU processing in this setup. The results were

surprising, with execution delay increasing

abnormally, to nearly 6 times that of the

JavaScript version (the second-highest latency

version). In particular, when experimenting with

larger datasets on KNN, which implies greater

algorithmic complexity, the latency results of the

WASM versions show superior advantages over

the other versions. Specifically, the WASM in

Browser version (227.75 ms) reduces time by

59.4% compared to the JavaScript version and is

12.7% faster than the KNN Server-Side by

Python version; the WASM Rust on NodeJS

version (109.55 ms) is still more than 2 times

faster than the WASM in Browser version.

This experiment also highlights issues in device

resource usage, with KNN on WASM Rust in

Browser (using 1433.42 MB) consuming

approximately 1.9 times more than the KNN by

JavaScript version and 2.72 times more than the

KNN by TensorFlow.js without GPU version.

The KNN on WASM Rust on NodeJS version

(1504.59 MB) uses memory comparable to the

WASM Rust in Browser version (an increase of

5.0%).

One point of concern in this experiment is that

the latency of the KNN Server-Side by Python

version is very stable, increasing only 57.8%

from the Wine Quality White dataset experiment

to the Covertype dataset. In contrast, KNN on

WASM (Rust) shows execution times that are

more than 114 times longer in browsers and more

than 163 times longer on Node.js compared to the

baseline. This indicates that the KNN

implementation from the scikit-learn library in

Python is highly optimized, and the observed

latency in the original comparison primarily

stems from the client-to-server connection

process.

5.2. Significance and Practical Applications

Through the experiments and analysis, we

observe that the WASM implementation from

Rust outperforms in latency compared to

JavaScript-based versions in web browsers. This

also serves as a basis to affirm the transition from

traditional model implementations to direct

implementations on edge devices to address the

practical requirements of edge computing.

Particularly in machine learning problems related

to product classification, decision-making, early

warnings, etc., which are often performed using

Python models on servers. However,

considerations and optimizations are needed

when processing large datasets on edge devices

with small memory (under 2 GB).

5.3. Limitations

In our paper, we have not yet proposed diverse

experiments on different devices such as

smartphones,Raspberry Pi or ESP32, which are

edge devices used in edge computing. The

research also has not approached real data sent

from cameras or sensors to enhance the practical

applicability of the paper. In the KNN Server-

Side by Python implementation, we have not

used a reasonable measurement method aligned

with performance.memory in JavaScript,

resulting in no memory usage data for this

version in the experimental results. Conducting

experiments on multiple client machines in

different network environments should also be

considered to make the latency results more

representative.

6. CONCLUSION 6.1. Summary

9

This study has evaluated the performance of the

basic K-Nearest Neighbors (KNN) algorithm

across five implementation versions: KNN by

JavaScript, KNN by TensorFlow.js, KNN Server-

Side by Python, KNN on WASM from Rust in

Web Browser, and KNN on WASM from Rust

on NodeJS, using two datasets from UCI: Wine

Quality White and Forest Cover-Type. The

experimental results show that WASM from Rust

is a reasonable choice to replace other

implementations in web browser environments in

particular and edge devices in general, with lower

latency than other versions using JavaScript,

especially in the trend of shifting processing to

edge devices.

6.2. Future Directions

In the future, the research can be expanded to

address current limitations and integrate new

technologies to enhance the performance of

WebAssembly (WASM) in machine learning on

edge devices. First, to increase diversity and

practicality, we plan to conduct experiments on

various edge devices, including smartphones

(such as Android/iOS models supporting modern

browsers), Raspberry Pi, and ESP32. These

devices represent real-world edge computing

environments with limited resources, helping

evaluate KNN on WASM under constraints

related to CPU, memory, and battery power. For

example, on ESP32, we can compile Rust to

WASM and run it via runtimes like WASMtime

or WASMEdge, focusing on benchmarks for

latency and power consumption.8-10

Second, to enhance practical applicability, the

research will integrate real-time data from

sources like cameras or IoT sensors, instead of

relying solely on static UCI datasets.

Specifically, we can set up a system for

streaming data in real time via WebSocket, where

data from cameras (e.g., simple image

classification) or sensors (such as temperature,

humidity in IoT) is processed directly on the

client-side using KNN on WASM. This will help

evaluate stream data processing capabilities in

applications like anomaly detection or predictive

maintenance, while reducing latency compared to

server-side processing.2,3

Finally, a key development direction is

integrating WebGPU into WASM processing to

accelerate KNN computations, particularly

Euclidean distance calculations in high-

dimensional spaces. WebGPU, a new API

enabling GPU access in browsers, can be

combined with WASM via libraries like wgpu

(Rust-based) to parallelize vector operations,

reducing time complexity from O(n × d) to lower

levels through GPU acceleration. Recent studies

show that this combination can achieve speedups

of up to 10-20x for in-browser ML inference on

edge devices.1,4 This approache could not only

address performance limitations on large datasets

but also open potential for more complex

machine learning models, such as neural

networks or federated learning on client-side.3,12

Acknowledgment

REFERENCES

1. S. Kakati, M. Brorsson. WebAssembly Beyond

the Web: A Review for the Edge-Cloud

Continuum, International Conference on

Intelligent Technologies, 3rd, Karnataka, India,

2023.

2. O. Jouini, K. Sethom, A. Namoun, N. Aljohani,

M. H. Alanazi, M. N. Alanazi. A Survey of

Machine Learning in Edge Computing:

Techniques, Frameworks, Applications, Issues,

and Research Directions, Technologies Journal,

2024, 12(6), 81.

3. K. Hoffpauir, J. Simmons, N. Schmidt, R.

Pittala, I. Briggs, S. Makani, Y. Jararweh. A

Survey on Edge Intelligence and Lightweight

Machine Learning Support for Future

Applications and Services, ACM Journal of Data

and Information Quality, 2023, 15(2), 3581759.

4. F. Jia, S. Jiang, T. Cao, W. Cui, T. Xia, X. Cao,

Y. Li, Q. Wang, D. Zhang, J. Ren, Y. Liu, L.

Qiu, M. Yang. Empowering In-Browser Deep

Learning Inference on Edge Devices with Just-

in-Time Kernel Optimizations, The Annual

International Conference on Mobile Systems,

Applications and Services, 22nd, Tokyo, Japan,

2024.

5. M. Liu, H. Shen, Y. Zhang, H. Mei, Y. Ma.

WebAssembly for Container Runtime: Are We

There Yet?, ACM Transactions on Software

Engineering and Methodology, 2025, 34(6),

3712197.

6. Y. Yan, T. Tu, L. Zhao, Y. Zhou, W. Wang.

Understanding the Performance of WebAssembly

Applications, ACM Internet Measurement

Conference, 21st, Virtual Event, USA, 11-2021.

7. P. Cunningham, S. J. Delany. k-Nearest

Neighbour Classifiers - A Tutorial, ACM

Computing Surveys Journals (CSUR), 2021,

54(6), 3459665.

8. S. E. Khelifa, M. Bagaa, A. O. Messaoud, A.

Ksentini. Case study of WebAssembly Runtimes

for AI Applications on the Edge, Global

Information Infrastructure and Networking

Symposium (GIIS), 14th, Dubai, UAE, 2024.

10

9. P. Gackstatter, P. A. Frangoudis, S. Dustdar.

Pushing Serverless to the Edge with

WebAssembly Runtimes, International

Symposium on Cluster, Cloud and Internet

Computing, 22nd, Taormina , Italy, 2022.

10. P. P. Ray. An Overview of WebAssembly for

IoT: Background, Tools, State-of-the-Art,

Challenges, and Future Directions, Future

Internet journal, 2023, 15(8), 275.

11. K. Nakamura. Machine Learning with Rust: A

practical attempt to explore Rust and its libraries

across popular machine learning techniques,

GitforGits Publisher, British Columbia, Canada,

2024.

12. R. Jayanth, N. Gupta, V. Prasanna.

Benchmarking Edge AI Platforms for High-

Performance ML Inference, IEEE High

Performance Extreme Computing Conference,

28th, Wakefield, MA, USA, 2024.

