M6 hinh Al trén FPGA: M6 hinh CNN gon nhe thong Iwgng
cao va cdng suat thap cho bai toan nhan dang chir so

TOM TAT

Nghién ctru nay trinh bay viéc thiét ké va trién khai mot mang no-ron tich chép trén nén tang SoOC-FPGA dé
phan loai chir s6 viét tay sir dung bo dir liu MNIST. Muyc tiu la xay dung mot bo gia tc CNN gon nhe va hi¢u qua,
¢6 dudi 1,000 tham s6, hoat dong twong thich v6i bo xur Iy ARM trén bo mach PYNQ-Z2 thong qua cac giao tiép
DMA va AXI. B0 gia toc duoc hién thyc & mirc RTL, véi cac giai doan mo phong, tong hop va ti wu hoa tai nguyén,
dong thoi van duy tri dugce do chinh x4c ctia qué trinh suy luan. Trén 10,000 anh kiém thir MNIST, hé thong dat do
chinh xac 91.28%—thap hon khoang 5% so v&i mé hinh chay trén CPU hai nhan ARM Cortex-A9 (96.26%)—nhung
lai mang lai toc do xir Iy nhanh hon 7 1an va giam 36% mic tiéu thy dién nang. Thiét ké cho thdy hiéu qua cua viéc
song song hoa va pipeline hoa cac phép tich chap truc tlep trén FPGA, gitp giam déng ké muc sir dung tai nguyén va
cong sudt tiéu thu. Nhing két qua nay cung cdp mét nén tang thyc tién cho cac tmg dung Al nhing thoi gian thye—
chang han nhu nhan dang ky tu, giam sat hinh anh, hé théng IoT thong minh va tinh toan bién—trén cac nén tang
SoC-FPGA.

Tir khéa: B ting toc Mang No-ron Tich chdp (Convolutional Neural Networks Accelerator), FPGA, Hé théng trén
Chip (System on Chip), MNIST, Phdn loai danh.



Practical Embedded Al on FPGA: A Compact CNN Achieving
High Throughput and Low Power for Digit Recognition

ASTRACT

This work presents the design and deployment of a Convolutional Neural Network on an SoOC—FPGA platform
for handwritten digit classification using the MNIST dataset. The goal is a compact, efficient FPGA-based CNN
accelerator with fewer than 1,000 parameters that integrates seamlessly with the ARM processor on the PYNQ-Z2
board via DMA and AXI interfaces. The accelerator is realized at the register-transfer level and undergoes simulation,
synthesis, and resource-focused optimization while preserving inference accuracy. On 10,000 MNIST test images, the
system attains 91.28% accuracy—about 5 percentage points below a CPU implementation on dual ARM Cortex-A9
cores (96.26%)—but delivers a 7-8x speedup and a 36% reduction in power consumption. The design highlights
effective parallelization and pipelining of convolution operations directly on the FPGA, achieving low resource usage
and power draw. These results provide a practical foundation for real-time embedded Al applications—such as
character recognition, image monitoring, intelligent IoT systems, and edge computing—on SoC—FPGA platforms.

Keywords: Convolutional Neural Networks Accelerator, FPGA, System on Chip, MNIST, Image Classification.

1. INTRODUCTION

In recent years, Convolutional Neural Networks
(CNNs) have become the dominant approach for
image recognition and classification owing to
their efficient spatial feature extraction and high
accuracy.! However, CNN models typically
require substantial computation and memory,
which makes deployment challenging on
embedded systems with limited hardware
resources.” Field-Programmable Gate Arrays
(FPGAs)—with  their flexibility, massive
parallelism, and low power consumption—have
proven to be effective platforms for accelerating
CNNs in embedded applications.'*
Implementing CNNs on FPGAs can reduce
inference latency relative to CPU- or GPU-based
software while efficiently utilizing hardware
resources such as DSP slices, Lookup Tables
(LUTs), and block RAM (BRAM). To achieve
high performance on FPGAs, many studies
quantize weights and activations to replace
floating-point operations with integer arithmetic,
thereby reducing hardware complexity while
maintaining accuracy.” In addition, techniques
such as parallelization, pipelining, and data reuse
are commonly applied to increase throughput and
optimize memory bandwidth.> In SoC-FPGA
architectures, the integration of FPGA
Programmable Logic (PL) and the embedded
ARM Processing System (PS) provides a balance
between performance and flexibility.* The PL
handles computationally intensive kernels, while

the PS manages control and data movement via
direct memory access (DMA) over the Advanced
eXtensible Interface (AXI) interconnect.>® On
the PYNQ-Z2 platform, the Python Productivity
for Zynq (PYNQ) framework enables direct
control and testing of the CNN accelerator from
Python, facilitating data transfer between Double
Data Rate (DDR) memory and the FPGA and
thereby simplifying system development and
evaluation.®’

This work presents the design and
implementation of a lightweight CNN accelerator
on an SoC-FPGA platform for handwritten-digit
classification using the Modified National
Institute of Standards and Technology (MNIST)
dataset. The model is optimized to fewer than
1,000 parameters to balance accuracy, memory
footprint, and hardware feasibility on the PYNQ-
Z2. The system employs DMA/AXI for data
exchange between the CPU and FPGA and
integrates the PYNQ framework for control and
real-time inference. Experimental results
demonstrate that the proposed design delivers
high performance, efficient resource utilization,
and low power consumption, confirming the
feasibility of FPGA-based real-time embedded
Al systems.

2. DESIGN METHODOLOGY
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Figure 1. Design Implementation Flow

As shown in Figure 1, the design process
comprises four stages: first, we specify the
MNIST classification task, target performance
and accuracy, hardware resource constraints, and
the PS—PL communication scheme within the
Zynq SoC to guide subsequent decisions. Next,
we design, train, and quantize the CNN in
PyTorch, convert the quantized weights to 8-bit
integers (int8), and export them as HEX files for
the hardware stage. We then implement the CNN
functional blocks at the Register-Transfer Level
(RTL), perform simulation and synthesis to
evaluate resource usage (LUTs, DSPs, BRAM),
and integrate the accelerator into the Zynq SoC
via the AXI4-Stream interface to enable high-
throughput PS—PL data movement. Finally, we
deploy the generated bitstream on the PYNQ-Z2,
control execution through the PYNQ framework
on the ARM Cortex-A9, and evaluate the system

using 10,000 MNIST test images to measure
performance, accuracy, and hardware resource
utilization.

2.1 CNN:s for Hand-written digit classification

Selecting an appropriate CNN model is pivotal to
the overall system design because it directly
influences accuracy, processing latency, and
hardware resource utilization on the FPGA. On
an SoC-FPGA platform constrained by DSP
slices, LUTs, and BRAM, the model must
balance computational complexity with hardware
feasibility: an excessive parameter count can
exceed on-chip storage, increase DDR access
latency, and impede pipelining, whereas an
overly simplified network may weaken feature
extraction and reduce accuracy. Accordingly, the
research team aims to develop a compact,
efficient CNN architecture that enables high-
throughput inference in a RTL implementation.
As shown in Figure 2, the designed CNN model
comprises two convolutional layers, two pooling
layers with Rectified Linear Unit (ReLU)
activation, and a single fully connected layer. The
architecture follows the LeNet-5 paradigm but is
simplified for FPGA deployment. A 5x5 kernel is
employed to balance feature extraction quality
with  streamlined,  pipelined = Multiply—
Accumulate (MAC) operations on DSP units.
After the two convolution—pooling stages, the
output is flattened into a 48x1 feature vector and
passed to a fully connected layer that produces
class scores over ten outputs corresponding to
digits 0-9.

As shown in Figure 2, the proposed CNN
contains a small number of parameters across all
layers, reflecting its lightweight design for FPGA
deployment. The CNN adopts a minimalist
architecture with an optimized dataflow tailored
to the FPGA’s bandwidth and buffering
constraints. The pooling layers progressively
reduce the spatial dimensions of the feature maps,
which facilitates deep pipelining and lowers the
computational load of subsequent layers. With a
total of 796 parameters, the model attains
approximately 96% accuracy in single-precision
(float32), providing a robust foundation for
quantization and hardware implementation.
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Figure 2. CNN Model Architecture for MNIST Classification

To reduce hardware cost and accelerate
computation, we apply quantization-aware
training (QAT) to convert the model to intS§,
reducing memory usage by approximately 4x
while preserving accuracy close to the floating-
point baseline. Quantized weights and biases are
exported per layer to enable direct inference on
the FPGA. The quantization pipeline consists of
three steps: (1) normalize weights and biases to
the range [—1, 1]; (2) scale by 128 to map values
to the int8 range [—128, 127]; and (3) encode
negative values in two’s-complement form for

weight/bias . weight/bias
float32 N Scallr;gamur 3 inte
[-1:1] (128) [128:127]

—>

FPGA storage. The resulting quantized
parameters are written as .mem files (one per
layer) and loaded directly into BRAM or register
files within the RTL design. This workflow yields
a CNN optimized for both accuracy and hardware
deployability and is ready for accelerator
construction and on-FPGA inference. As shown
in Fig. 3, the quantization process follows a
structured three-step pipeline that ensures
numerical  consistency between  software
simulation and hardware implementation.
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Figure 3. Quantization Process of the CNN Model

2.2 Implementation of CNN Accelerator
Core on FPGA

After completing the CNN model, the next step is
the design of the RTL module. A CNN
architecture can be implemented using various
approaches, including Naive Convolution,
Matrix Multiplication, or Winograd Convolution.
In this work, the basic Naive Convolution method

is adopted to construct the CNN hardware
architecture.

Figure 4 illustrates the overall system
architecture, in which the Buffer, Conv Calc,
Maxpooling, ReLU, Fully Connected, and
Comparator modules are independently designed
and then integrated into a complete CNN block.
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Figure 4. Block Diagram of the CNN Accelerator

The Input Buffer Block stores incoming image
pixels. The accelerator ingests a 28x28 MNIST
bitmap (784 pixels), with each pixel represented
in 8 bits. Pixels arrive as a stream—one pixel per
clock cycle—in raster-scan order from the top-
left corner, proceeding left-to-right and top-to-
bottom. This serial loading scheme avoids
allocating on-chip memory for the entire image
and allows computation to begin immediately,
without waiting for full-frame capture. The line
buffer holds 140 entries of 8 bits each
(corresponding to 5 rows x 28 columns). After a
row is processed, the buffer is overwritten with
the next row until the entire image is consumed.
For convolution, 5x5 pixel windows are extracted
from the buffer and shifted by one pixel
horizontally at each cycle, repeating until the end
of the row. In every clock cycle, one 5x5 window
is emitted and forwarded to the convolution stage.
With a 5x5, stride-1, valid convolution on a
28%28 input, the first layer produces 24x24 =576
windows (each containing 25 pixels), matching
the output feature-map dimensions of the layer.
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Figure 5. Pipeline Stages of the Convolution Module

The Convolution Calculation Module performs
the convolution between the input data stream
from the buffer block and the 5x5 kernel weights.
Its input is a stream of 576 windows, each
containing 25 parallel pixels, supplied by the

buffer. At each clock cycle, one 5x5 window is
consumed to compute a dot product with the 5x5
kernel, followed by addition of the bias term.
Because arithmetic operations on the FPGA incur
propagation delay, the datapath is pipelined to
sustain high throughput. Figure 5 illustrates the
pipelined structure, realized by inserting registers
to partition the computation into multiple stages,
thereby shortening the critical path and increasing
the achievable clock frequency. With a four-stage
pipeline, the first valid output appears four cycles
after the corresponding input window is received;
thereafter, the module produces one output per
cycle.

For Max-Pooling and ReL.U Modules, the first
convolution layer yields a 24x24 feature map,
emitted as 576 sequential values in a continuous
stream, which serves as the input to the
MaxPooling and ReLU modules. The 2x2
MaxPooling unit processes pixels in pairs of rows
(two from the first row and two from the second
row), outputs the maximum among the four, and
advances by one pooling stride. The result is then
passed to the ReLU activation, which preserves
non-negative values and sets negative values to
zero. A line buffer stores 12 elements—one
output row of the resulting 12x12 feature map
from the MaxPooling—ReLU stage. For each 2x2
cell, the running maximum is updated in the
buffer when the current value exceeds the stored
value; otherwise, the stored value is retained. The
buffered value is then compared with zero to
apply ReLU. Pointers and control flags step
through the buffer in sync with the 576-pixel
input stream, producing a 12x12 feature map with
144 outputs.

The Fully Connected and Comparator Module
Block receives input from the second convolution
and MaxPooling layers. The 4x4 feature maps
with three channels are flattened into a 48x1
vector, multiplied by the corresponding weights,
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and summed with bias terms to produce ten
output neurons. Arithmetic operations in the
Fully Connected module are pipelined similarly
to the convolution module to optimize
performance. After computing the ten neuron
outputs, the Comparator identifies the neuron
with the highest value (argmax). A ten-element
line buffer temporarily stores the neuron values
from the Fully Connected module, and the index
of the maximum value is emitted as the predicted
class (digits 0-9).

2.3 Integration of CNN Accelerator Core into
Zynq SoC

After completing the CNN-accelerator hardware
core, we integrated it with the ARM processor on
the Zynq SoC. Image data (pixels) are stored in
off-chip DDR memory and streamed to the
accelerator for processing. A Xilinx intellectual
property (IP) core provides the interface between
the accelerator and the DDR memory system, as
illustrated in Fig. 6. To enable standard

communication, we implemented a high-level
wrapper that exposes an AXI-Stream interface to

smartconnect_0

processing_system7_0

the accelerator core. Because the accelerator
already operates on streaming inputs, the
corresponding AXI-Stream signals were defined
and connected to the SoC interconnect to ensure
correct operation. Fig. 6 illustrates the input—
output operation flow of the CNN accelerator
integrated within the SoC. First, the CPU in the
processing system (PS) configures the AXI DMA
via the S AXI LITE interface, specifying DDR
memory addresses for both the input image and
the output-result buffers. The DMA then reads
the image data from DDR through the
M_AXI MM2S port and converts it to AXI4-
Stream via M_AXIS MM2S. This stream is
temporarily buffered by axis_data fifo 0 before
being delivered to the CNN accelerator core
(axis_cnn_mnist 0) for processing.  The
inference results produced by the accelerator are
emitted through axis_data_fifo 1 and transferred
back to the DMA via S_AXIS S2MM. Finally,
the DMA writes the output data to DDR through
M _AXI S2MM, and the PS CPU retrieves the
results for display or further processing.
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Figure 6. System Block Diagram for implementation in Xilinx Vivado

3. RESULTS

This work implements a CNN hardware
accelerator on the PYNQ-Z2 board operating at
100 MHz. As summarized in Table 1, after
simulating the accelerator with 10,000 MNIST
test images, the classification accuracy reached
approximately 91%. The implementation on the
PYNQ-Z2 utilized 37.48% of LUTs, 100% of
DSPs, and 2.5% of BRAM. Full utilization of
DSP slices reflects the dominance of multiply—
accumulate (MAC) operations in the
convolutional layers, whereas the moderate LUT

usage and minimal BRAM consumption indicate
an efficient architecture with well-optimized data
reuse and pipelining. To evaluate performance,
we executed the classification function on both
the PL-based accelerator and the dual-core ARM
Cortex-A9 CPU (650 MHz) for comparison.
Power consumption was measured as total board
power during continuous inference on 10,000
MNIST test images over a 15-minute interval to
ensure stable operating conditions. The baseline
(idle) power was recorded with the board
powered on and no inference running; the
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average processing power was then computed by
subtracting this idle power from the total
measured power.

Table 1. CNN Accelerator Hardware Synthesis Results
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Fig. 7a shows the instantaneous power profile of
the PYNQ-Z2 board during inference on a single
input image, highlighting the transient transition
between idle and active states. Besides, Fig. 7
further compares the average power consumption
under three conditions: (b) idle (baseline), (c)
inference on the ARM CPU, and (d) inference on
the PL/SoC accelerator.
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Figure 7. Measurement of instantaneous and average power consumption during CNN inference on the PYNQ-Z2
platform. (a) Instantaneous power profile for a single input image, illustrating the transient from idle to active
operation. (b), (¢), (d) Average power consumption comparison for idle, CPU-based inference, and PL/SoC accelerator

inference.



Table 2 presents the summarized results—
including classification accuracy, frame rate, and
average power. The proposed CNN accelerator
achieves a classification accuracy of 91.28%,
which is approximately 5% lower than the CPU
implementation (96.26%). However, processing
latency is significantly reduced—ifrom 4.25 ms
on the CPU to 0.54 ms on the FPGA—
representing a 7-8x speedup, despite the FPGA
operating at a much lower frequency (100 MHz
vs. 650 MHz). This improvement highlights the
benefits of parallel computation and deep
pipelining inherent in FPGA-based architectures.
In terms of power efficiency, the FPGA

Table 2. Experimental results and performance comparison

implementation consumes 186 mW on average,
compared with 291 mW for the CPU, resulting in
an overall 36% reduction in power consumption.
The corresponding energy per inference
decreases from 1.234 mJ per image on the CPU
to 0.102 mJ per image on the FPGA,

demonstrating a substantial improvement in
energy efficiency. Overall, these results indicate
that the proposed CNN accelerator offers a
favorable balance between performance and
energy consumption, making it well suited for
real-time embedded Al applications on resource-
constrained edge devices.

Platform Latency Accuracy FPS Power Efficiency

FPGA (100 MHz) 0.54 ms .
91.28% | 1852 | 186mW | 0.102 mJ/pic

CPU (ARM) 4.25 ms 9626% | 235 | 291mW | 1.234 mlpi
Cortex A9 (650 MHz) =h70 m 2% mipie

4. CONCLUSION

This study completes an end-to-end workflow—
from CNN construction and weight quantization
to RTL design, SoC-FPGA integration, and
deployment on the PYNQ-Z2 board.
Experiments on 10,000 MNIST test images show
that the CNN implemented in the FPGA’s
programmable logic (PL) achieves 91.28%
accuracy—approximately 5 percentage points
lower than the dual ARM Cortex-A9 CPU base-
line—while delivering a 7-8x speedup and a
substantial reduction in power consumption.
These results demonstrate the effectiveness of
FPGA-based acceleration for CNNs in both
performance and energy efficiency, making the
approach well suited to real-time embedded Al
applications such as character recognition, image
monitoring, and intelligent IoT systems. The
implementation process provided comprehensive
experience in CNN training and quantization,
RTL development, pipeline optimization,
resource management, and system integration
using the PYNQ framework. Despite limitations
imposed by the PYNQ-Z2’s constrained
resources (few DSP slices and limited BRAM)
and the modest accuracy drop due to int8
quantization, this work lays the groundwork for
further optimizations—such as layer folding,
deeper pipelining, additional parallel processing
elements, and scaling to more capable FPGAs to
support larger models. Overall, the results are
academically meaningful and indicate strong
potential for practical deployment in recognition,

autonomous robotics, and edge data processing,
underscoring FPGAs as promising platforms for
intelligent, energy-efficient, and scalable Al
systems.



Acknowledgments

REFERENCES

1. A. Shawahna, S. Sait, A. El-Maleh. “FPGA-
based accelerators of deep learning networks for
learning and classification: A review,” IEEE Access,
2019, 7, 7823-7859.

2. V. K. Pham, N. Q. Tran, N. L. Nguyen.
“Optimizing the convolutional neural networks for
resource-constrained  hardwares,”  Science &
Technology Development Journal — Engineering and
Technology, 2022, 4(4), 906.

3. S. Bouguezzi, H. B. Fredj, T. Belabed, C.
Valderrama, H. Faiedh, C. Souani. “An efficient
FPGA-based convolutional neural network for
classification: Ad-MobileNet,” Electronics, 2021,
10(18), 2272.

4, M. Faizan, 1. Intzes, I. Cretu, H. Meng.
Implementation of deep learning models on an SoC-
FPGA device for real-time music genre classification,
Technologies, 2023, 11(4), 91.

5. Anjali, J. P. Anita. AXI based DMA Memory
System Testbench Architecture Using UVM Harness
Technique, The 9th International Conference on
Advances in Computing and Communication, ICACC
2019, Kochi, India, 2019.

6. A. Sharma. Evaluation of AXI-Interfaces for
Hardware Software Communication,Master’s thesis,
Technische Universitdt Chemnitz, Chemnitz, 2019.

7. S. Sun, J. Zou, Z. Zou, S. Wang (eds.).
Experience of PYNQ: Tutorials for PYNQ-Z2,
Springer Nature Singapore, Singapore, 2023.



