
1 

 

 

 

Mô hình AI trên FPGA: Mô hình CNN gọn nhẹ thông lượng 
cao và công suất thấp cho bài toán nhận dạng chữ số 

 

 

 

TÓM TẮT 

Nghiên cứu này trình bày việc thiết kế và triển khai một mạng nơ-ron tích chập trên nền tảng SoC–FPGA để 

phân loại chữ số viết tay sử dụng bộ dữ liệu MNIST. Mục tiêu là xây dựng một bộ gia tốc CNN gọn nhẹ và hiệu quả, 

có dưới 1,000 tham số, hoạt động tương thích với bộ xử lý ARM trên bo mạch PYNQ-Z2 thông qua các giao tiếp 

DMA và AXI. Bộ gia tốc được hiện thực ở mức RTL, với các giai đoạn mô phỏng, tổng hợp và tối ưu hóa tài nguyên, 

đồng thời vẫn duy trì được độ chính xác của quá trình suy luận. Trên 10,000 ảnh kiểm thử MNIST, hệ thống đạt độ 

chính xác 91.28%—thấp hơn khoảng 5% so với mô hình chạy trên CPU hai nhân ARM Cortex-A9 (96.26%)—nhưng 

lại mang lại tốc độ xử lý nhanh hơn 7 lần và giảm 36% mức tiêu thụ điện năng. Thiết kế cho thấy hiệu quả của việc 

song song hóa và pipeline hóa các phép tích chập trực tiếp trên FPGA, giúp giảm đáng kể mức sử dụng tài nguyên và 

công suất tiêu thụ. Những kết quả này cung cấp một nền tảng thực tiễn cho các ứng dụng AI nhúng thời gian thực—

chẳng hạn như nhận dạng ký tự, giám sát hình ảnh, hệ thống IoT thông minh và tính toán biên—trên các nền tảng 

SoC–FPGA. 

Từ khóa: Bộ tăng tốc Mạng Nơ-ron Tích chập (Convolutional Neural Networks Accelerator), FPGA, Hệ thống trên 

Chip (System on Chip), MNIST, Phân loại ảnh.
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ASTRACT 

This work presents the design and deployment of a Convolutional Neural Network on an SoC–FPGA platform 

for handwritten digit classification using the MNIST dataset. The goal is a compact, efficient FPGA-based CNN 

accelerator with fewer than 1,000 parameters that integrates seamlessly with the ARM processor on the PYNQ-Z2 

board via DMA and AXI interfaces. The accelerator is realized at the register-transfer level and undergoes simulation, 

synthesis, and resource-focused optimization while preserving inference accuracy. On 10,000 MNIST test images, the 

system attains 91.28% accuracy—about 5 percentage points below a CPU implementation on dual ARM Cortex-A9 

cores (96.26%)—but delivers a 7–8× speedup and a 36% reduction in power consumption. The design highlights 

effective parallelization and pipelining of convolution operations directly on the FPGA, achieving low resource usage 

and power draw. These results provide a practical foundation for real-time embedded AI applications—such as 

character recognition, image monitoring, intelligent IoT systems, and edge computing—on SoC–FPGA platforms. 

Keywords: Convolutional Neural Networks Accelerator, FPGA, System on Chip, MNIST, Image Classification.

1. INTRODUCTION 

In recent years, Convolutional Neural Networks 

(CNNs) have become the dominant approach for 

image recognition and classification owing to 

their efficient spatial feature extraction and high 

accuracy.1 However, CNN models typically 

require substantial computation and memory, 

which makes deployment challenging on 

embedded systems with limited hardware 

resources.2 Field-Programmable Gate Arrays 

(FPGAs)—with their flexibility, massive 

parallelism, and low power consumption—have 

proven to be effective platforms for accelerating 

CNNs in embedded applications.1,3 

Implementing CNNs on FPGAs can reduce 

inference latency relative to CPU- or GPU-based 

software while efficiently utilizing hardware 

resources such as DSP slices, Lookup Tables 

(LUTs), and block RAM (BRAM). To achieve 

high performance on FPGAs, many studies 

quantize weights and activations to replace 

floating-point operations with integer arithmetic, 

thereby reducing hardware complexity while 

maintaining accuracy.2 In addition, techniques 

such as parallelization, pipelining, and data reuse 

are commonly applied to increase throughput and 

optimize memory bandwidth.3 In SoC–FPGA 

architectures, the integration of FPGA 

Programmable Logic (PL) and the embedded 

ARM Processing System (PS) provides a balance 

between performance and flexibility.4 The PL 

handles computationally intensive kernels, while 

the PS manages control and data movement via 

direct memory access (DMA) over the Advanced 

eXtensible Interface (AXI) interconnect.5,6 On 

the PYNQ-Z2 platform, the Python Productivity 

for Zynq (PYNQ) framework enables direct 

control and testing of the CNN accelerator from 

Python, facilitating data transfer between Double 

Data Rate (DDR) memory and the FPGA and 

thereby simplifying system development and 

evaluation.6,7 

This work presents the design and 

implementation of a lightweight CNN accelerator 

on an SoC–FPGA platform for handwritten-digit 

classification using the Modified National 

Institute of Standards and Technology (MNIST) 

dataset. The model is optimized to fewer than 

1,000 parameters to balance accuracy, memory 

footprint, and hardware feasibility on the PYNQ-

Z2. The system employs DMA/AXI for data 

exchange between the CPU and FPGA and 

integrates the PYNQ framework for control and 

real-time inference. Experimental results 

demonstrate that the proposed design delivers 

high performance, efficient resource utilization, 

and low power consumption, confirming the 

feasibility of FPGA-based real-time embedded 

AI systems. 

2. DESIGN METHODOLOGY 
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Figure 1. Design Implementation Flow 

As shown in Figure 1, the design process 

comprises four stages: first, we specify the 

MNIST classification task, target performance 

and accuracy, hardware resource constraints, and 

the PS–PL communication scheme within the 

Zynq SoC to guide subsequent decisions. Next, 

we design, train, and quantize the CNN in 

PyTorch, convert the quantized weights to 8-bit 

integers (int8), and export them as HEX files for 

the hardware stage. We then implement the CNN 

functional blocks at the Register-Transfer Level 

(RTL), perform simulation and synthesis to 

evaluate resource usage (LUTs, DSPs, BRAM), 

and integrate the accelerator into the Zynq SoC 

via the AXI4-Stream interface to enable high-

throughput PS–PL data movement. Finally, we 

deploy the generated bitstream on the PYNQ-Z2, 

control execution through the PYNQ framework 

on the ARM Cortex-A9, and evaluate the system 

using 10,000 MNIST test images to measure 

performance, accuracy, and hardware resource 

utilization. 

2.1 CNNs for Hand-written digit classification 

Selecting an appropriate CNN model is pivotal to 

the overall system design because it directly 

influences accuracy, processing latency, and 

hardware resource utilization on the FPGA. On 

an SoC–FPGA platform constrained by DSP 

slices, LUTs, and BRAM, the model must 

balance computational complexity with hardware 

feasibility: an excessive parameter count can 

exceed on-chip storage, increase DDR access 

latency, and impede pipelining, whereas an 

overly simplified network may weaken feature 

extraction and reduce accuracy. Accordingly, the 

research team aims to develop a compact, 

efficient CNN architecture that enables high-

throughput inference in a RTL implementation. 

As shown in Figure 2, the designed CNN model 

comprises two convolutional layers, two pooling 

layers with Rectified Linear Unit (ReLU) 

activation, and a single fully connected layer. The 

architecture follows the LeNet-5 paradigm but is 

simplified for FPGA deployment. A 5×5 kernel is 

employed to balance feature extraction quality 

with streamlined, pipelined Multiply–

Accumulate (MAC) operations on DSP units. 

After the two convolution–pooling stages, the 

output is flattened into a 48×1 feature vector and 

passed to a fully connected layer that produces 

class scores over ten outputs corresponding to 

digits 0–9. 

As shown in Figure 2, the proposed CNN 

contains a small number of parameters across all 

layers, reflecting its lightweight design for FPGA 

deployment. The CNN adopts a minimalist 

architecture with an optimized dataflow tailored 

to the FPGA’s bandwidth and buffering 

constraints. The pooling layers progressively 

reduce the spatial dimensions of the feature maps, 

which facilitates deep pipelining and lowers the 

computational load of subsequent layers. With a 

total of 796 parameters, the model attains 

approximately 96% accuracy in single-precision 

(float32), providing a robust foundation for 

quantization and hardware implementation.
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Figure 2. CNN Model Architecture for MNIST Classification

To reduce hardware cost and accelerate 

computation, we apply quantization-aware 

training (QAT) to convert the model to int8, 

reducing memory usage by approximately 4× 

while preserving accuracy close to the floating-

point baseline. Quantized weights and biases are 

exported per layer to enable direct inference on 

the FPGA. The quantization pipeline consists of 

three steps: (1) normalize weights and biases to 

the range [−1, 1]; (2) scale by 128 to map values 

to the int8 range [−128, 127]; and (3) encode 

negative values in two’s-complement form for 

FPGA storage. The resulting quantized 

parameters are written as .mem files (one per 

layer) and loaded directly into BRAM or register 

files within the RTL design. This workflow yields 

a CNN optimized for both accuracy and hardware 

deployability and is ready for accelerator 

construction and on-FPGA inference. As shown 

in Fig. 3, the quantization process follows a 

structured three-step pipeline that ensures 

numerical consistency between software 

simulation and hardware implementation.

 

Figure 3. Quantization Process of the CNN Model 

2.2 Implementation of CNN Accelerator 

Core on FPGA 

After completing the CNN model, the next step is 

the design of the RTL module. A CNN 

architecture can be implemented using various 

approaches, including Naive Convolution, 

Matrix Multiplication, or Winograd Convolution. 

In this work, the basic Naive Convolution method 

is adopted to construct the CNN hardware 

architecture. 

Figure 4 illustrates the overall system 

architecture, in which the Buffer, Conv Calc, 

Maxpooling, ReLU, Fully Connected, and 

Comparator modules are independently designed 

and then integrated into a complete CNN block.
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Figure 4. Block Diagram of the CNN Accelerator 

The Input Buffer Block stores incoming image 

pixels. The accelerator ingests a 28×28 MNIST 

bitmap (784 pixels), with each pixel represented 

in 8 bits. Pixels arrive as a stream—one pixel per 

clock cycle—in raster-scan order from the top-

left corner, proceeding left-to-right and top-to-

bottom. This serial loading scheme avoids 

allocating on-chip memory for the entire image 

and allows computation to begin immediately, 

without waiting for full-frame capture. The line 

buffer holds 140 entries of 8 bits each 

(corresponding to 5 rows × 28 columns). After a 

row is processed, the buffer is overwritten with 

the next row until the entire image is consumed. 

For convolution, 5×5 pixel windows are extracted 

from the buffer and shifted by one pixel 

horizontally at each cycle, repeating until the end 

of the row. In every clock cycle, one 5×5 window 

is emitted and forwarded to the convolution stage. 

With a 5×5, stride-1, valid convolution on a 

28×28 input, the first layer produces 24×24 = 576 

windows (each containing 25 pixels), matching 

the output feature-map dimensions of the layer. 

 

Figure 5. Pipeline Stages of the Convolution Module 

The Convolution Calculation Module performs 

the convolution between the input data stream 

from the buffer block and the 5×5 kernel weights. 

Its input is a stream of 576 windows, each 

containing 25 parallel pixels, supplied by the 

buffer. At each clock cycle, one 5×5 window is 

consumed to compute a dot product with the 5×5 

kernel, followed by addition of the bias term. 

Because arithmetic operations on the FPGA incur 

propagation delay, the datapath is pipelined to 

sustain high throughput. Figure 5 illustrates the 

pipelined structure, realized by inserting registers 

to partition the computation into multiple stages, 

thereby shortening the critical path and increasing 

the achievable clock frequency. With a four-stage 

pipeline, the first valid output appears four cycles 

after the corresponding input window is received; 

thereafter, the module produces one output per 

cycle. 

For Max-Pooling and ReLU Modules, the first 

convolution layer yields a 24×24 feature map, 

emitted as 576 sequential values in a continuous 

stream, which serves as the input to the 

MaxPooling and ReLU modules. The 2×2 

MaxPooling unit processes pixels in pairs of rows 

(two from the first row and two from the second 

row), outputs the maximum among the four, and 

advances by one pooling stride. The result is then 

passed to the ReLU activation, which preserves 

non-negative values and sets negative values to 

zero. A line buffer stores 12 elements—one 

output row of the resulting 12×12 feature map 

from the MaxPooling–ReLU stage. For each 2×2 

cell, the running maximum is updated in the 

buffer when the current value exceeds the stored 

value; otherwise, the stored value is retained. The 

buffered value is then compared with zero to 

apply ReLU. Pointers and control flags step 

through the buffer in sync with the 576-pixel 

input stream, producing a 12×12 feature map with 

144 outputs. 

The Fully Connected and Comparator Module 

Block receives input from the second convolution 

and MaxPooling layers. The 4×4 feature maps 

with three channels are flattened into a 48×1 

vector, multiplied by the corresponding weights, 
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and summed with bias terms to produce ten 

output neurons. Arithmetic operations in the 

Fully Connected module are pipelined similarly 

to the convolution module to optimize 

performance. After computing the ten neuron 

outputs, the Comparator identifies the neuron 

with the highest value (argmax). A ten-element 

line buffer temporarily stores the neuron values 

from the Fully Connected module, and the index 

of the maximum value is emitted as the predicted 

class (digits 0–9). 

2.3 Integration of CNN Accelerator Core into 

Zynq SoC 

After completing the CNN-accelerator hardware 

core, we integrated it with the ARM processor on 

the Zynq SoC. Image data (pixels) are stored in 

off-chip DDR memory and streamed to the 

accelerator for processing. A Xilinx intellectual 

property (IP) core provides the interface between 

the accelerator and the DDR memory system, as 

illustrated in Fig. 6. To enable standard 

communication, we implemented a high-level 

wrapper that exposes an AXI-Stream interface to 

the accelerator core. Because the accelerator 

already operates on streaming inputs, the 

corresponding AXI-Stream signals were defined 

and connected to the SoC interconnect to ensure 

correct operation. Fig. 6 illustrates the input–

output operation flow of the CNN accelerator 

integrated within the SoC. First, the CPU in the 

processing system (PS) configures the AXI DMA 

via the S_AXI_LITE interface, specifying DDR 

memory addresses for both the input image and 

the output-result buffers. The DMA then reads 

the image data from DDR through the 

M_AXI_MM2S port and converts it to AXI4-

Stream via M_AXIS_MM2S. This stream is 

temporarily buffered by axis_data_fifo_0 before 

being delivered to the CNN accelerator core 

(axis_cnn_mnist_0) for processing. The 

inference results produced by the accelerator are 

emitted through axis_data_fifo_1 and transferred 

back to the DMA via S_AXIS_S2MM. Finally, 

the DMA writes the output data to DDR through 

M_AXI_S2MM, and the PS CPU retrieves the 

results for display or further processing.

 

Figure 6. System Block Diagram for implementation in Xilinx Vivado

3. RESULTS 

This work implements a CNN hardware 

accelerator on the PYNQ-Z2 board operating at 

100 MHz. As summarized in Table 1, after 

simulating the accelerator with 10,000 MNIST 

test images, the classification accuracy reached 

approximately 91%. The implementation on the 

PYNQ-Z2 utilized 37.48% of LUTs, 100% of 

DSPs, and 2.5% of BRAM. Full utilization of 

DSP slices reflects the dominance of multiply–

accumulate (MAC) operations in the 

convolutional layers, whereas the moderate LUT 

usage and minimal BRAM consumption indicate 

an efficient architecture with well-optimized data 

reuse and pipelining. To evaluate performance, 

we executed the classification function on both 

the PL-based accelerator and the dual-core ARM 

Cortex-A9 CPU (650 MHz) for comparison. 

Power consumption was measured as total board 

power during continuous inference on 10,000 

MNIST test images over a 15-minute interval to 

ensure stable operating conditions. The baseline 

(idle) power was recorded with the board 

powered on and no inference running; the 
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average processing power was then computed by 

subtracting this idle power from the total 

measured power. 

Table 1. CNN Accelerator Hardware Synthesis Results 

 LUTs DSPs BRAM 

CNN core 
17052 

(32.05%) 

220 

(100%) 
0 

PL 
19942 

(37.48%) 

220 

(100%) 

3.5 

(2.5%) 

Fig. 7a shows the instantaneous power profile of 

the PYNQ-Z2 board during inference on a single 

input image, highlighting the transient transition 

between idle and active states. Besides, Fig. 7 

further compares the average power consumption 

under three conditions: (b) idle (baseline), (c) 

inference on the ARM CPU, and (d) inference on 

the PL/SoC accelerator.

 

Figure 7. Measurement of instantaneous and average power consumption during CNN inference on the PYNQ-Z2 

platform. (a) Instantaneous power profile for a single input image, illustrating the transient from idle to active 

operation. (b), (c), (d) Average power consumption comparison for idle, CPU-based inference, and PL/SoC accelerator 

inference. 
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Table 2 presents the summarized results—

including classification accuracy, frame rate, and 

average power. The proposed CNN accelerator 

achieves a classification accuracy of 91.28%, 

which is approximately 5% lower than the CPU 

implementation (96.26%). However, processing 

latency is significantly reduced—from 4.25 ms 

on the CPU to 0.54 ms on the FPGA—

representing a 7–8× speedup, despite the FPGA 

operating at a much lower frequency (100 MHz 

vs. 650 MHz). This improvement highlights the 

benefits of parallel computation and deep 

pipelining inherent in FPGA-based architectures. 

In terms of power efficiency, the FPGA 

implementation consumes 186 mW on average, 

compared with 291 mW for the CPU, resulting in 

an overall 36% reduction in power consumption. 

The corresponding energy per inference 

decreases from 1.234 mJ per image on the CPU 

to 0.102 mJ per image on the FPGA, 

demonstrating a substantial improvement in 

energy efficiency. Overall, these results indicate 

that the proposed CNN accelerator offers a 

favorable balance between performance and 

energy consumption, making it well suited for 

real-time embedded AI applications on resource-

constrained edge devices. 

Table 2. Experimental results and performance comparison 

Platform Latency Accuracy FPS Power Efficiency 

FPGA (100 MHz) 0.54 ms 

 
91.28% 1852 186 mW 0.102 mJ/pic 

CPU (ARM) 

Cortex A9 (650 MHz) 

4.25 ms 

 
96.26% 235 291 mW 1.234 mJ/pic 

4. CONCLUSION 

This study completes an end-to-end workflow—

from CNN construction and weight quantization 

to RTL design, SoC–FPGA integration, and 

deployment on the PYNQ-Z2 board. 

Experiments on 10,000 MNIST test images show 

that the CNN implemented in the FPGA’s 

programmable logic (PL) achieves 91.28% 

accuracy—approximately 5 percentage points 

lower than the dual ARM Cortex-A9 CPU base-

line—while delivering a 7–8× speedup and a 

substantial reduction in power consumption. 

These results demonstrate the effectiveness of 

FPGA-based acceleration for CNNs in both 

performance and energy efficiency, making the 

approach well suited to real-time embedded AI 

applications such as character recognition, image 

monitoring, and intelligent IoT systems. The 

implementation process provided comprehensive 

experience in CNN training and quantization, 

RTL development, pipeline optimization, 

resource management, and system integration 

using the PYNQ framework. Despite limitations 

imposed by the PYNQ-Z2’s constrained 

resources (few DSP slices and limited BRAM) 

and the modest accuracy drop due to int8 

quantization, this work lays the groundwork for 

further optimizations—such as layer folding, 

deeper pipelining, additional parallel processing 

elements, and scaling to more capable FPGAs to 

support larger models. Overall, the results are 

academically meaningful and indicate strong 

potential for practical deployment in recognition, 

autonomous robotics, and edge data processing, 

underscoring FPGAs as promising platforms for 

intelligent, energy-efficient, and scalable AI 

systems. 
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