
1

Mô hình AI trên FPGA: Mô hình CNN gọn nhẹ thông lượng
cao và công suất thấp cho bài toán nhận dạng chữ số

TÓM TẮT

Nghiên cứu này trình bày việc thiết kế và triển khai một mạng nơ-ron tích chập trên nền tảng SoC–FPGA để

phân loại chữ số viết tay sử dụng bộ dữ liệu MNIST. Mục tiêu là xây dựng một bộ gia tốc CNN gọn nhẹ và hiệu quả,

có dưới 1,000 tham số, hoạt động tương thích với bộ xử lý ARM trên bo mạch PYNQ-Z2 thông qua các giao tiếp

DMA và AXI. Bộ gia tốc được hiện thực ở mức RTL, với các giai đoạn mô phỏng, tổng hợp và tối ưu hóa tài nguyên,

đồng thời vẫn duy trì được độ chính xác của quá trình suy luận. Trên 10,000 ảnh kiểm thử MNIST, hệ thống đạt độ

chính xác 91.28%—thấp hơn khoảng 5% so với mô hình chạy trên CPU hai nhân ARM Cortex-A9 (96.26%)—nhưng

lại mang lại tốc độ xử lý nhanh hơn 7 lần và giảm 36% mức tiêu thụ điện năng. Thiết kế cho thấy hiệu quả của việc

song song hóa và pipeline hóa các phép tích chập trực tiếp trên FPGA, giúp giảm đáng kể mức sử dụng tài nguyên và

công suất tiêu thụ. Những kết quả này cung cấp một nền tảng thực tiễn cho các ứng dụng AI nhúng thời gian thực—

chẳng hạn như nhận dạng ký tự, giám sát hình ảnh, hệ thống IoT thông minh và tính toán biên—trên các nền tảng

SoC–FPGA.

Từ khóa: Bộ tăng tốc Mạng Nơ-ron Tích chập (Convolutional Neural Networks Accelerator), FPGA, Hệ thống trên

Chip (System on Chip), MNIST, Phân loại ảnh.

2

Practical Embedded AI on FPGA: A Compact CNN Achieving
High Throughput and Low Power for Digit Recognition

ASTRACT

This work presents the design and deployment of a Convolutional Neural Network on an SoC–FPGA platform

for handwritten digit classification using the MNIST dataset. The goal is a compact, efficient FPGA-based CNN

accelerator with fewer than 1,000 parameters that integrates seamlessly with the ARM processor on the PYNQ-Z2

board via DMA and AXI interfaces. The accelerator is realized at the register-transfer level and undergoes simulation,

synthesis, and resource-focused optimization while preserving inference accuracy. On 10,000 MNIST test images, the

system attains 91.28% accuracy—about 5 percentage points below a CPU implementation on dual ARM Cortex-A9

cores (96.26%)—but delivers a 7–8× speedup and a 36% reduction in power consumption. The design highlights

effective parallelization and pipelining of convolution operations directly on the FPGA, achieving low resource usage

and power draw. These results provide a practical foundation for real-time embedded AI applications—such as

character recognition, image monitoring, intelligent IoT systems, and edge computing—on SoC–FPGA platforms.

Keywords: Convolutional Neural Networks Accelerator, FPGA, System on Chip, MNIST, Image Classification.

1. INTRODUCTION

In recent years, Convolutional Neural Networks

(CNNs) have become the dominant approach for

image recognition and classification owing to

their efficient spatial feature extraction and high

accuracy.1 However, CNN models typically

require substantial computation and memory,

which makes deployment challenging on

embedded systems with limited hardware

resources.2 Field-Programmable Gate Arrays

(FPGAs)—with their flexibility, massive

parallelism, and low power consumption—have

proven to be effective platforms for accelerating

CNNs in embedded applications.1,3

Implementing CNNs on FPGAs can reduce

inference latency relative to CPU- or GPU-based

software while efficiently utilizing hardware

resources such as DSP slices, Lookup Tables

(LUTs), and block RAM (BRAM). To achieve

high performance on FPGAs, many studies

quantize weights and activations to replace

floating-point operations with integer arithmetic,

thereby reducing hardware complexity while

maintaining accuracy.2 In addition, techniques

such as parallelization, pipelining, and data reuse

are commonly applied to increase throughput and

optimize memory bandwidth.3 In SoC–FPGA

architectures, the integration of FPGA

Programmable Logic (PL) and the embedded

ARM Processing System (PS) provides a balance

between performance and flexibility.4 The PL

handles computationally intensive kernels, while

the PS manages control and data movement via

direct memory access (DMA) over the Advanced

eXtensible Interface (AXI) interconnect.5,6 On

the PYNQ-Z2 platform, the Python Productivity

for Zynq (PYNQ) framework enables direct

control and testing of the CNN accelerator from

Python, facilitating data transfer between Double

Data Rate (DDR) memory and the FPGA and

thereby simplifying system development and

evaluation.6,7

This work presents the design and

implementation of a lightweight CNN accelerator

on an SoC–FPGA platform for handwritten-digit

classification using the Modified National

Institute of Standards and Technology (MNIST)

dataset. The model is optimized to fewer than

1,000 parameters to balance accuracy, memory

footprint, and hardware feasibility on the PYNQ-

Z2. The system employs DMA/AXI for data

exchange between the CPU and FPGA and

integrates the PYNQ framework for control and

real-time inference. Experimental results

demonstrate that the proposed design delivers

high performance, efficient resource utilization,

and low power consumption, confirming the

feasibility of FPGA-based real-time embedded

AI systems.

2. DESIGN METHODOLOGY

3

Figure 1. Design Implementation Flow

As shown in Figure 1, the design process

comprises four stages: first, we specify the

MNIST classification task, target performance

and accuracy, hardware resource constraints, and

the PS–PL communication scheme within the

Zynq SoC to guide subsequent decisions. Next,

we design, train, and quantize the CNN in

PyTorch, convert the quantized weights to 8-bit

integers (int8), and export them as HEX files for

the hardware stage. We then implement the CNN

functional blocks at the Register-Transfer Level

(RTL), perform simulation and synthesis to

evaluate resource usage (LUTs, DSPs, BRAM),

and integrate the accelerator into the Zynq SoC

via the AXI4-Stream interface to enable high-

throughput PS–PL data movement. Finally, we

deploy the generated bitstream on the PYNQ-Z2,

control execution through the PYNQ framework

on the ARM Cortex-A9, and evaluate the system

using 10,000 MNIST test images to measure

performance, accuracy, and hardware resource

utilization.

2.1 CNNs for Hand-written digit classification

Selecting an appropriate CNN model is pivotal to

the overall system design because it directly

influences accuracy, processing latency, and

hardware resource utilization on the FPGA. On

an SoC–FPGA platform constrained by DSP

slices, LUTs, and BRAM, the model must

balance computational complexity with hardware

feasibility: an excessive parameter count can

exceed on-chip storage, increase DDR access

latency, and impede pipelining, whereas an

overly simplified network may weaken feature

extraction and reduce accuracy. Accordingly, the

research team aims to develop a compact,

efficient CNN architecture that enables high-

throughput inference in a RTL implementation.

As shown in Figure 2, the designed CNN model

comprises two convolutional layers, two pooling

layers with Rectified Linear Unit (ReLU)

activation, and a single fully connected layer. The

architecture follows the LeNet-5 paradigm but is

simplified for FPGA deployment. A 5×5 kernel is

employed to balance feature extraction quality

with streamlined, pipelined Multiply–

Accumulate (MAC) operations on DSP units.

After the two convolution–pooling stages, the

output is flattened into a 48×1 feature vector and

passed to a fully connected layer that produces

class scores over ten outputs corresponding to

digits 0–9.

As shown in Figure 2, the proposed CNN

contains a small number of parameters across all

layers, reflecting its lightweight design for FPGA

deployment. The CNN adopts a minimalist

architecture with an optimized dataflow tailored

to the FPGA’s bandwidth and buffering

constraints. The pooling layers progressively

reduce the spatial dimensions of the feature maps,

which facilitates deep pipelining and lowers the

computational load of subsequent layers. With a

total of 796 parameters, the model attains

approximately 96% accuracy in single-precision

(float32), providing a robust foundation for

quantization and hardware implementation.

4

Figure 2. CNN Model Architecture for MNIST Classification

To reduce hardware cost and accelerate

computation, we apply quantization-aware

training (QAT) to convert the model to int8,

reducing memory usage by approximately 4×

while preserving accuracy close to the floating-

point baseline. Quantized weights and biases are

exported per layer to enable direct inference on

the FPGA. The quantization pipeline consists of

three steps: (1) normalize weights and biases to

the range [−1, 1]; (2) scale by 128 to map values

to the int8 range [−128, 127]; and (3) encode

negative values in two’s-complement form for

FPGA storage. The resulting quantized

parameters are written as .mem files (one per

layer) and loaded directly into BRAM or register

files within the RTL design. This workflow yields

a CNN optimized for both accuracy and hardware

deployability and is ready for accelerator

construction and on-FPGA inference. As shown

in Fig. 3, the quantization process follows a

structured three-step pipeline that ensures

numerical consistency between software

simulation and hardware implementation.

Figure 3. Quantization Process of the CNN Model

2.2 Implementation of CNN Accelerator

Core on FPGA

After completing the CNN model, the next step is

the design of the RTL module. A CNN

architecture can be implemented using various

approaches, including Naive Convolution,

Matrix Multiplication, or Winograd Convolution.

In this work, the basic Naive Convolution method

is adopted to construct the CNN hardware

architecture.

Figure 4 illustrates the overall system

architecture, in which the Buffer, Conv Calc,

Maxpooling, ReLU, Fully Connected, and

Comparator modules are independently designed

and then integrated into a complete CNN block.

5

Figure 4. Block Diagram of the CNN Accelerator

The Input Buffer Block stores incoming image

pixels. The accelerator ingests a 28×28 MNIST

bitmap (784 pixels), with each pixel represented

in 8 bits. Pixels arrive as a stream—one pixel per

clock cycle—in raster-scan order from the top-

left corner, proceeding left-to-right and top-to-

bottom. This serial loading scheme avoids

allocating on-chip memory for the entire image

and allows computation to begin immediately,

without waiting for full-frame capture. The line

buffer holds 140 entries of 8 bits each

(corresponding to 5 rows × 28 columns). After a

row is processed, the buffer is overwritten with

the next row until the entire image is consumed.

For convolution, 5×5 pixel windows are extracted

from the buffer and shifted by one pixel

horizontally at each cycle, repeating until the end

of the row. In every clock cycle, one 5×5 window

is emitted and forwarded to the convolution stage.

With a 5×5, stride-1, valid convolution on a

28×28 input, the first layer produces 24×24 = 576

windows (each containing 25 pixels), matching

the output feature-map dimensions of the layer.

Figure 5. Pipeline Stages of the Convolution Module

The Convolution Calculation Module performs

the convolution between the input data stream

from the buffer block and the 5×5 kernel weights.

Its input is a stream of 576 windows, each

containing 25 parallel pixels, supplied by the

buffer. At each clock cycle, one 5×5 window is

consumed to compute a dot product with the 5×5

kernel, followed by addition of the bias term.

Because arithmetic operations on the FPGA incur

propagation delay, the datapath is pipelined to

sustain high throughput. Figure 5 illustrates the

pipelined structure, realized by inserting registers

to partition the computation into multiple stages,

thereby shortening the critical path and increasing

the achievable clock frequency. With a four-stage

pipeline, the first valid output appears four cycles

after the corresponding input window is received;

thereafter, the module produces one output per

cycle.

For Max-Pooling and ReLU Modules, the first

convolution layer yields a 24×24 feature map,

emitted as 576 sequential values in a continuous

stream, which serves as the input to the

MaxPooling and ReLU modules. The 2×2

MaxPooling unit processes pixels in pairs of rows

(two from the first row and two from the second

row), outputs the maximum among the four, and

advances by one pooling stride. The result is then

passed to the ReLU activation, which preserves

non-negative values and sets negative values to

zero. A line buffer stores 12 elements—one

output row of the resulting 12×12 feature map

from the MaxPooling–ReLU stage. For each 2×2

cell, the running maximum is updated in the

buffer when the current value exceeds the stored

value; otherwise, the stored value is retained. The

buffered value is then compared with zero to

apply ReLU. Pointers and control flags step

through the buffer in sync with the 576-pixel

input stream, producing a 12×12 feature map with

144 outputs.

The Fully Connected and Comparator Module

Block receives input from the second convolution

and MaxPooling layers. The 4×4 feature maps

with three channels are flattened into a 48×1

vector, multiplied by the corresponding weights,

6

and summed with bias terms to produce ten

output neurons. Arithmetic operations in the

Fully Connected module are pipelined similarly

to the convolution module to optimize

performance. After computing the ten neuron

outputs, the Comparator identifies the neuron

with the highest value (argmax). A ten-element

line buffer temporarily stores the neuron values

from the Fully Connected module, and the index

of the maximum value is emitted as the predicted

class (digits 0–9).

2.3 Integration of CNN Accelerator Core into

Zynq SoC

After completing the CNN-accelerator hardware

core, we integrated it with the ARM processor on

the Zynq SoC. Image data (pixels) are stored in

off-chip DDR memory and streamed to the

accelerator for processing. A Xilinx intellectual

property (IP) core provides the interface between

the accelerator and the DDR memory system, as

illustrated in Fig. 6. To enable standard

communication, we implemented a high-level

wrapper that exposes an AXI-Stream interface to

the accelerator core. Because the accelerator

already operates on streaming inputs, the

corresponding AXI-Stream signals were defined

and connected to the SoC interconnect to ensure

correct operation. Fig. 6 illustrates the input–

output operation flow of the CNN accelerator

integrated within the SoC. First, the CPU in the

processing system (PS) configures the AXI DMA

via the S_AXI_LITE interface, specifying DDR

memory addresses for both the input image and

the output-result buffers. The DMA then reads

the image data from DDR through the

M_AXI_MM2S port and converts it to AXI4-

Stream via M_AXIS_MM2S. This stream is

temporarily buffered by axis_data_fifo_0 before

being delivered to the CNN accelerator core

(axis_cnn_mnist_0) for processing. The

inference results produced by the accelerator are

emitted through axis_data_fifo_1 and transferred

back to the DMA via S_AXIS_S2MM. Finally,

the DMA writes the output data to DDR through

M_AXI_S2MM, and the PS CPU retrieves the

results for display or further processing.

Figure 6. System Block Diagram for implementation in Xilinx Vivado

3. RESULTS

This work implements a CNN hardware

accelerator on the PYNQ-Z2 board operating at

100 MHz. As summarized in Table 1, after

simulating the accelerator with 10,000 MNIST

test images, the classification accuracy reached

approximately 91%. The implementation on the

PYNQ-Z2 utilized 37.48% of LUTs, 100% of

DSPs, and 2.5% of BRAM. Full utilization of

DSP slices reflects the dominance of multiply–

accumulate (MAC) operations in the

convolutional layers, whereas the moderate LUT

usage and minimal BRAM consumption indicate

an efficient architecture with well-optimized data

reuse and pipelining. To evaluate performance,

we executed the classification function on both

the PL-based accelerator and the dual-core ARM

Cortex-A9 CPU (650 MHz) for comparison.

Power consumption was measured as total board

power during continuous inference on 10,000

MNIST test images over a 15-minute interval to

ensure stable operating conditions. The baseline

(idle) power was recorded with the board

powered on and no inference running; the

7

average processing power was then computed by

subtracting this idle power from the total

measured power.

Table 1. CNN Accelerator Hardware Synthesis Results

 LUTs DSPs BRAM

CNN core
17052

(32.05%)

220

(100%)
0

PL
19942

(37.48%)

220

(100%)

3.5

(2.5%)

Fig. 7a shows the instantaneous power profile of

the PYNQ-Z2 board during inference on a single

input image, highlighting the transient transition

between idle and active states. Besides, Fig. 7

further compares the average power consumption

under three conditions: (b) idle (baseline), (c)

inference on the ARM CPU, and (d) inference on

the PL/SoC accelerator.

Figure 7. Measurement of instantaneous and average power consumption during CNN inference on the PYNQ-Z2

platform. (a) Instantaneous power profile for a single input image, illustrating the transient from idle to active

operation. (b), (c), (d) Average power consumption comparison for idle, CPU-based inference, and PL/SoC accelerator

inference.

8

Table 2 presents the summarized results—

including classification accuracy, frame rate, and

average power. The proposed CNN accelerator

achieves a classification accuracy of 91.28%,

which is approximately 5% lower than the CPU

implementation (96.26%). However, processing

latency is significantly reduced—from 4.25 ms

on the CPU to 0.54 ms on the FPGA—

representing a 7–8× speedup, despite the FPGA

operating at a much lower frequency (100 MHz

vs. 650 MHz). This improvement highlights the

benefits of parallel computation and deep

pipelining inherent in FPGA-based architectures.

In terms of power efficiency, the FPGA

implementation consumes 186 mW on average,

compared with 291 mW for the CPU, resulting in

an overall 36% reduction in power consumption.

The corresponding energy per inference

decreases from 1.234 mJ per image on the CPU

to 0.102 mJ per image on the FPGA,

demonstrating a substantial improvement in

energy efficiency. Overall, these results indicate

that the proposed CNN accelerator offers a

favorable balance between performance and

energy consumption, making it well suited for

real-time embedded AI applications on resource-

constrained edge devices.

Table 2. Experimental results and performance comparison

Platform Latency Accuracy FPS Power Efficiency

FPGA (100 MHz) 0.54 ms

91.28% 1852 186 mW 0.102 mJ/pic

CPU (ARM)

Cortex A9 (650 MHz)

4.25 ms

96.26% 235 291 mW 1.234 mJ/pic

4. CONCLUSION

This study completes an end-to-end workflow—

from CNN construction and weight quantization

to RTL design, SoC–FPGA integration, and

deployment on the PYNQ-Z2 board.

Experiments on 10,000 MNIST test images show

that the CNN implemented in the FPGA’s

programmable logic (PL) achieves 91.28%

accuracy—approximately 5 percentage points

lower than the dual ARM Cortex-A9 CPU base-

line—while delivering a 7–8× speedup and a

substantial reduction in power consumption.

These results demonstrate the effectiveness of

FPGA-based acceleration for CNNs in both

performance and energy efficiency, making the

approach well suited to real-time embedded AI

applications such as character recognition, image

monitoring, and intelligent IoT systems. The

implementation process provided comprehensive

experience in CNN training and quantization,

RTL development, pipeline optimization,

resource management, and system integration

using the PYNQ framework. Despite limitations

imposed by the PYNQ-Z2’s constrained

resources (few DSP slices and limited BRAM)

and the modest accuracy drop due to int8

quantization, this work lays the groundwork for

further optimizations—such as layer folding,

deeper pipelining, additional parallel processing

elements, and scaling to more capable FPGAs to

support larger models. Overall, the results are

academically meaningful and indicate strong

potential for practical deployment in recognition,

autonomous robotics, and edge data processing,

underscoring FPGAs as promising platforms for

intelligent, energy-efficient, and scalable AI

systems.

9

Acknowledgments

REFERENCES

1. A. Shawahna, S. Sait, A. El-Maleh. “FPGA-

based accelerators of deep learning networks for

learning and classification: A review,” IEEE Access,

2019, 7, 7823-7859.

2. V. K. Pham, N. Q. Tran, N. L. Nguyen.

“Optimizing the convolutional neural networks for

resource-constrained hardwares,” Science &

Technology Development Journal – Engineering and

Technology, 2022, 4(4), 906.

3. S. Bouguezzi, H. B. Fredj, T. Belabed, C.

Valderrama, H. Faiedh, C. Souani. “An efficient

FPGA-based convolutional neural network for

classification: Ad-MobileNet,” Electronics, 2021,

10(18), 2272.

4. M. Faizan, I. Intzes, I. Cretu, H. Meng.

Implementation of deep learning models on an SoC-

FPGA device for real-time music genre classification,

Technologies, 2023, 11(4), 91.

5. Anjali, J. P. Anita. AXI based DMA Memory

System Testbench Architecture Using UVM Harness

Technique, The 9th International Conference on

Advances in Computing and Communication, ICACC

2019, Kochi, India, 2019.

6. A. Sharma. Evaluation of AXI-Interfaces for

Hardware Software Communication,Master’s thesis,

Technische Universität Chemnitz, Chemnitz, 2019.

7. S. Sun, J. Zou, Z. Zou, S. Wang (eds.).

Experience of PYNQ: Tutorials for PYNQ-Z2,

Springer Nature Singapore, Singapore, 2023.

