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TÓM TẮT

Trong lĩnh vực Xử lý ngôn ngữ tự nhiên (Natural Language Processing - NLP), các mô hình dựa trên
Transformer đã mang lại những kết quả hấp dẫn về khả năng hiểu và sinh ngôn ngữ. Tuy nhiên, số lượng tham
số cực lớn và chi phí tính toán cao của các mô hình này gây khó khăn cho việc triển khai trên các thiết bị hạn
chế về tài nguyên. Điều này thúc đẩy việc nghiên cứu phát triển các phương pháp hiệu quả, mang lại sự cân bằng
giữa kích thước mô hình và hiệu suất. Bài báo này đề xuất một tiếp cận học đa nhiệm mới, dựa trên mô hình ngôn
ngữ nhỏ như TinyBERT cho một số bài toán (tác vụ) NLP, bao gồm: phân tích cảm xúc, phát hiện diễn giải và độ
tương đồng ngữ nghĩa của văn bản. Chúng tôi thực hiện huấn luyện ban đầu thông qua cơ chế học đa nhiệm để
nắm bắt các đặc trưng ngôn ngữ chung. Sau đó, mô hình huấn luyện trước này được tinh chỉnh cho từng tác vụ cụ
thể. Chúng tôi tiến hành các thực nghiệm để đánh giá hiệu quả của phương pháp này trên bộ dữ liệu chuẩn GLUE.
Kết quả chứng minh tính hiệu quả của phương pháp của chúng tôi trong thiết lập học đa nhiệm cho các tác vụ NLP
khác nhau. Chúng tôi cung cấp cài đặt thực nghiệm của nghiên cứu này trên kho lưu trữ Github1.

Từ khóa: NLP, học đa nhiệm, tinh chỉnh, TinyBERT, phân tích cảm xúc, phát hiện diễn giải, độ tương đồng ngữ
nghĩa.
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ABSTRACT

In the field of Natural Language Processing (NLP), Transformer-based models have yielded appealing re-
sults in language understanding and generation. However, these models’ extremely high number of parameters and
computationally expensive are challenging to deployment on resource-constrained devices. This motivates research
in the development of efficient methods that offer an attractive balance between model size and performance. This
paper proposes a novel multi-task learning approach, which relies on a small language model like TinyBERT for
NLP tasks, including: sentiment analysis, paraphrase detection, and semantic textual similarity. We perform ini-
tial training through a Multi-Task Learning (MTL) mechanism to capture general language features. Subsequently,
this pre-trained model is fine-tuned for each specific task. We conduct experiments to evaluate the effect of this
approach on the GLUE benchmark dataset. The results demonstrate the effectiveness of our method within a multi-
task learning setup for diverse NLP tasks. We provide an implementation of this work on Github repository1.

Keyworks: NLP, multi-task learning, fine-tuning, TinyBERT, sentiment analysis, paraphrase detection, semantic
similarity.

1. INTRODUCTION

Large language models such as BERT1,
RoBERTa2, T53, XLNet4, ELECTRA5, and
GPT6 have revolutionized the field of NLP,
achieving state-of-the-art performance on a wide
range of tasks. However, their massive size
and high computational requirements pose sig-
nificant barriers to deployment on resource-
constrained devices. TinyBERT7, a compact ver-
sion of BERT created through knowledge distil-
lation, has emerged as a potential solution, of-
fering an attractive balance between model size
and performance. To fully exploit the potential
of these compact models, multi-task fine-tuning
(MT-FT) has become an increasingly popular

research direction in the field of NLP8. The
primary goal of MTL is to improve the perfor-
mance of multiple related tasks by leveraging
useful information shared among them10. Instead
of training separate models for each task, MTL
allows a single model to learn simultaneously
from multiple tasks, thereby promoting knowl-
edge sharing and improving generalization capa-
bilities8,9. Various multi-task architectures and
strategies have been proposed10, from shared en-
coder layers with task-specific output layers as
in multi-task deep neural networks8, to unified
"text-to-text" approaches like T53,11, or efficient
adapter-based techniques13. Although modern
NLP models continually push the boundaries of
performance, the effective application of MT-FT,
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especially on compact models like TinyBERT,
still faces many challenges. Key challenges in-
clude selecting and balancing tasks to avoid
negative transfer14, designing optimal network
architectures for efficient parameter sharing10,
dealing with catastrophic forgetting when learn-
ing multiple tasks14, and particularly addressing
the limited capacity of small models when han-
dling the complexity of multiple data sources and
learning objectives13. Building on these consid-
erations, we pose three research questions (RQ)
and present main contributions to address them.

• RQ1: How can TinyBERT be leveraged in
a multi-task learning architecture to simul-
taneously learn these three tasks, exploit-
ing their commonalities to improve gener-
alization and computational efficiency?

• RQ2: After initial multi-task training, to
what extent can individual fine-tuning for
each task improve performance compared
to traditional single-task training?

• RQ3: How does this approach balance
performance and computational efficiency
compared to larger models (like BERT-
base) or other approaches in current re-
search?

To answer these questions, we design a
multi-task learning framework built upon Tiny-
BERT7 to tackle multiple NLP tasks including:
sentiment analysis, paraphrase detection, and se-
mantic textual similarity. Our main contributions
are summarized as follows:

• First, we propose a novel multi-task learn-
ing approach, which relies on a small lan-
guage model for NLP tasks, aiming to ad-
dress the efficiency-performance trade-off
under resource constraints.

• Second, we demonstrate that leveraging
shared representations through MTL fol-
lowed by individual task-specific fine-
tuning significantly enhances the overall
performance on sentiment analysis, para-
phrase detection, and semantic textual sim-
ilarity tasks.

• Third, we provide empirical evidence
showing that despite its compact size,
TinyBERT can achieve competitive perfor-
mance with considerably lower computa-
tional cost, offering a practical alternative
to larger models such as BERT-base in
real-world applications.

The rest of this paper is organized as fol-
lows. Section 2 provides preliminaries on prob-
lem statement, multi task learning, fine tuning,
and TinyBERT that form the basis for the de-
velopment of the proposed method detailed in
Section 3. Section 4 describes the experimen-
tal setup, results and comparing the result with
BERT-base in Section 5. Section 6 briefly recalls
some related work. Finally, Section 7 wraps up
the paper with conclusions and future work.

2. BACKGROUND

2.1. Multi-Task Learning

Multi-task learning (MTL for short) is a ma-
chine learning approach in which a single model
is trained to perform multiple related tasks si-
multaneously15. The core idea is that different
tasks can share information or common repre-
sentations, which helps to improve overall perfor-
mance, enhance generalization capabilities, and
reduce the risk of overfitting, especially when
data for individual tasks is limited16. In NLP,
MTL is often applied by sharing the encoder lay-
ers of the model across multiple tasks, while hav-
ing separate output layers for each specific task8.

Formally, the total loss in MTL can be de-
fined as:

Ltotal =

T∑
i=1

Li (1)

where Li denotes the task-specific loss for the i-
th task, and T is the number of tasks. To better
balance task learning, dynamic weighting strate-
gies have been proposed14. One such formulation
is:

Ltotal =

T∑
i=1

wiLi with wi =
Ltotal

T × Li
(2)

This joint learning allows the model to capture
fundamental language features useful for various
objectives.
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2.2. Problem Statement

Let D be the set of input texts (or text pairs, de-
pending on the specific task), where each element
x ∈ D is a sentence, a text passage, or a pair of
sentences/words. For each text x (or text pair),
there will be corresponding labels for each task:

• Sentiment analysis (SA): ysa ∈ (0; 1)
where ysa = 0 if the text has negative sen-
timent, and ysa = 1 if positive.

• Paraphrase detection (PD): For a pair of
texts (x1;x2), the label ypd ∈ (0; 1), where
ypd = 0 if the two texts are not paraphrases
of each other, and ypd = 1 if they are para-
phrases.

• Semantic textual similarity (STS): For a
pair of words (w1;w2), the label ypd ∈
(0; 1), where ysts = 0 if the two words
are antonyms, and ysts = 1 if they are
synonyms (in some cases, this task might
involve determining if a word in a spe-
cific context can be replaced by another
word without significantly changing the
sentence’s meaning).

The MTL problem with TinyBERT can be mod-
eled as a function fmtl:

fmtl : D → (ysa, ypd, ysts) (3)

Here, fmtl(x) includes the model’s predicted la-
bels (ysa, ypd, ysts) or the input x across all three
tasks. (ysa, ypd, ysts) represents the set of possi-
ble labels for each task.

2.3. Fine-Tuning

Fine-tuning (FT for short) is a popular transfer
learning technique17,18 where a model that has
been pre-trained on a large amount of data (of-
ten self-supervised tasks like language model-
ing) is then adjusted or “fine-tuned” on a smaller,
task-specific dataset for a target task19. The pre-
training process helps the model learn rich and
contextual language representations20.

The fine-tuning step allows the model to
adapt this learned knowledge to the nuances of
the specific task, often leading to much better

performance than training a model from scratch
on limited task data1. In classification tasks, the
typical loss function used during fine-tuning is
the cross-entropy loss:

LCE = −
C∑
c=1

yc log(pc) (4)

where C is the number of classes, yc is the true
label distribution, and pc is the predicted prob-
ability for class c. In more recent setups, super-
vised contrastive learning 22,23 is also applied to
encourage discriminative feature learning:

LSCL = − 1

N

N∑
i=1

1

|P (i)|
∑

p∈P (i)

log
exp(si,p/τ)∑

a∈A(i) exp(si,a/τ)

(5)
where:

• N : total samples in a batch.

• P (i): set of positives (samples with the
same label as i, excluding i).

• |P (i)|: number of positives for anchor i.

• A(i): set of all samples in the batch exclud-
ing i (positives and negatives).

• si,p: cosine similarity between embeddings
of i and p.

• τ : temperature parameter controlling
sharpness of the distribution.

2.4. TinyBERT

While large models like BERT1,12 achieve im-
pressive performance, their size and computa-
tional cost are significant barriers to deployment
on resource-constrained devices. To address this
issue, more compact models have been devel-
oped. TinyBERT7,21 utilizes knowledge distilla-
tion to reduce the size of BERT while retaining a
large portion of its performance.

This distillation process involves transfer-
ring knowledge from a large teacher model (the
original BERT) to a smaller student model (Tiny-
BERT) during both the pre-training and task-
specific fine-tuning stages.
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Figure 1. Overview of proposed method

The knowledge distillation loss in Tiny-
BERT typically integrates several components:

LKD = αLemb + βLhidden + γLlogit (6)

where Lemb, Lhidden, and Llogit refer to the
embedding-level, hidden-state-level, and output-
level distillation losses, respectively.

3. METHODOLOGY

This section presents the architecture and
training process of our proposed approach, which
combines MTL and fine-tuning strategies using
the TinyBERT model. First, we detail the archi-
tecture that supports shared learning across mul-
tiple tasks. Then, we describe how the TinyBERT
backbone is trained in a multi-task setting. Fi-
nally, we explain the individual fine-tuning phase
applied after MTL for task-specific optimization.

3.1. Model Architecture

Our architecture utilizes TinyBERT as a shared
backbone to extract contextual representations
across all tasks. As shown in Fig 1, raw text data
is fed into the system as character strings. This
text is pre-processed by the TinyBERT-Tokenizer
to convert it into corresponding tokens. The en-
coded tokens from each task are then passed
to the TinyBERT backbone. This is the shared
architectural component, sharing weights across
all tasks. TinyBERT processes these token se-
quences and generates contextual representations
at the last hidden layer. Specifically, the embed-
ding vector corresponding to the special [CLS]
token from the last hidden layer is usually taken
as a representation for the entire input sequence.
This vector is expected to capture the composite
information of the sentence. A dropout layer is
applied after extracting the [CLS] vector to help
the model prevent overfitting during the MTL
training process. The [CLS] representation (after
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the dropout layer) is then fed into separate heads,
each designed for a specific task within the set
of MTL tasks. The loss function from each task
head is computed independently. These loss func-
tions are then combined to form a joint loss func-
tion for the entire MTL model.

Ltotal = wsaLsa + wpdLpd + wsiLsi (7)

where wsa, wpd, wsi are weights to balance the
contribution of each task. The optimization pro-
cess relies on this joint loss function to simul-
taneously update the weights of the TinyBERT
backbone and the task-specific heads. This al-
lows TinyBERT to learn robust and flexible lan-
guage representations from various information
sources. After TinyBERT has been pre-trained
with MTL and possesses good language under-
standing capabilities, it is then fine-tuned for the
specific task of interest. In here, we fine-tune
for all three aforementioned tasks to compare
the model’s performance after fine-tuning with
the model after multi-task training. After fine-
tuning, the complete TinyBERT model (includ-
ing the TinyBERT backbone and the classifica-
tion layer for the target task) is used to make pre-
dictions. With a new input text, the system will
process it through the tokenizer, feed it into Tiny-
BERT, pass it through the classification layer, and
finally predict the label based on the class with
the highest probability. The training process com-
prises two main phases:

• Phase 1: Multi-task Training. The input
text x (or its components, such as x1;x2 for
PD, or words w1;w2 in context for SI) is fed
through the TinyBERT model. TinyBERT
generates contextual embeddings (or a set
of embeddings). The key point of MTL is
that most of TinyBERT’s parameters (the
Transformer layers) are shared across all
tasks, allowing the model to learn general
representations useful for multiple tasks.

• Phase 2: Fine-tuning for Specific NLP
Tasks. From the shared representation ex
obtained from TinyBERT separate output
layers are used for each task. A classifi-
cation layer is applied to the representa-
tion of the [CLS] token from ex to pre-
dict the sentiment label ysa. The represen-
tation of the sentence pair from TinyBERT

(typically the [CLS] token’s representation
when the two sentences are concatenated
and fed into the model) is passed through a
classification layer to predict the label ypd.
Similarly, the representation of the word
pair from TinyBERT is passed through a
classification layer to predict the label ysts.

This architecture enables TinyBERT to
learn generalized features that are beneficial
across tasks, while still allowing task-level spe-
cialization through individual fine-tuning.

3.2. Multi-task TinyBERT Training

Algorithm 1 describes the training procedure
for the multi-task TinyBERT model. First, the
TinyBERT model is initialized with pre-trained
weights. Then, appropriate labels and classifica-
tion layers are added for each task. Data is di-
vided into batches, and each batch is tokenized
using TinyBERT’s tokenizer to convert text into
a suitable tokenized format. Subsequently, the
TinyBERT model extracts an embedding repre-
senting the entire sentence from the [CLS] token.
Next, the [CLS] token (after the dropout layer) is
fed into separate heads, each designed for a spe-
cific task within the set of MTL tasks. Finally,
the loss for each task is calculated based on its
type, and model parameters are updated through
a gradient descent algorithm. This process is re-
peated over multiple epochs, and the AdamW op-
timizer24 is used to optimize the model’s. The
TinyBERT backbone is shared among tasks, al-
lowing the model to learn general representa-
tions useful for multiple tasks, while separate
outputs enable the model to adjust predictions
for each specific task. During training, the model
receives input as input-ids and attention-mask,
along with a task parameter specifying the cur-
rent task. Based on the task, the model uses the
corresponding classification or regression layer
to produce output. With the provided labels,
the model calculates the appropriate loss func-
tion (crossEntropyLoss for classification (3)(4),
MSELoss for regression (5)) for use during train-
ing. This architecture allows the model to learn
shared general representations through the shared
TinyBERT layer and then specialize for each task
through separate output layers.
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Algorithm 1 Multi-task TinyBERT Training

Require: Multi-task dataset D for SST-2, QQP,

and STS-B; pre-trained TinyBERT model;

number of tasks NC ; task-specific weights

W = {wsa, wpd, wsts}, initially set to 1.0;

hyperparameters: number of epochs E, batch

size B, embedding size f

Ensure: Trained multi-task TinyBERT model

with shared backbone and task-specific

heads; optimized combined loss function

Ltotal

1: Load pre-trained TinyBERT as shared back-

bone

2: Add task-specific heads:

- SST-2: Linear + Softmax for binary classi-

fication (ysa ∈ {0, 1})
- QQP: Linear + Softmax for binary classifi-

cation (ypd ∈ {0, 1})
- STS-B: Linear layer for regression (ysts ∈
[0, 5])

3: Load and preprocess dataset D
4: Tokenize text using TinyBERT-Tokenizer

5: for epoch e = 1 to E do
6: Divide D into mini-batches of size B

7: for each mini-batch do
8: Pass input through TinyBERT to obtain

[CLS] embeddings

9: Apply dropout to [CLS] embeddings

10: Compute predictions from task-specific

heads

Lsa = − 1
B

∑B
i=1

∑1
c=0 yi,c log(Pi,c)

Lpd = − 1
B

∑B
i=1

∑1
c=0 yi,c log(Pi,c)

Lsts =
1
B

∑B
i=1(scorests,i − ysts,i)

2

11: Combined Loss:

12: Ltotal = wsaLsa + wpdLpd + wstsLsts

13: Compute gradients of Ltotal

14: Update model parameters using opti-

mizer

15: end for
16: end for
17: return Trained TinyBERT model, Ltotal,

task-specific head parameters

Algorithm 2 Fine-tuning TinyBERT for Specific

NLP Tasks
Require: Pre-trained multi-task TinyBERT

model, task-specific dataset Dtask, loss

function Ltask, hyperparameters: number of

epochs E, batch size B

Ensure: Fine-tuned TinyBERT model opti-

mized for the specific task

1: Initialize: Load pre-trained TinyBERT

(shared backbone + task-specific head)

2: Prepare Dataset: Load and preprocess Dtask

using TinyBERT tokenizer to get input IDs

and attention masks

3: for epoch e = 1 to E do
4: Divide Dtask into mini-batches of size B

5: for each mini-batch do
6: Forward pass:

- Pass tokenized inputs through Tiny-

BERT to get [CLS] embeddings

- Feed embeddings to task-specific head

to get predictions

7: Compute loss Ltask:

-SST-2 or QQP (classification):

Ltask = − 1
B

∑B
i=1

∑1
c=0 yi,c log(Pi,c)

-STS-B (regression):

Ltask = 1
B

∑B
i=1(scorepred,i − ytrue,i)

2

8: Backward pass: Compute gradients of

Ltask

9: Update model parameters using opti-

mizer

10: end for
11: end for
12: return Fine-tuned TinyBERT model

3.3. Fine-tuning TinyBERT for Specific NLP
Tasks

Algorithm 2 describes the process of fine-tuning
TinyBERT for specific NLP tasks. After being
pre-trained using MTL acquiring strong language
understanding capabilities, TinyBERT is further

7



QUY NHON UNIVERSITY
JOURNAL OF SCIENCE

fine-tuned on the target task of interest. Here,
we fine-tune the model for all three aforemen-
tioned tasks to compare its performance after
fine-tuning with its performance immediately af-
ter multi-task training. We use the multi-task
trained TinyBERT model as the starting point
and further train it on data specific to each indi-
vidual task, utilizing the corresponding loss func-
tion. The model’s weights are updated to opti-
mize performance for that task. This fine-tuning
process allows the model to adapt the represen-
tations learned during the MTL phase to better
fit the unique characteristics and requirements
of each task, thereby enhancing overall accuracy
and performance.

4. EXPERIMENTS

In this section, we present the experimen-
tal implementation based on the method de-
scribed in Section 3. Our aim is to explore the ef-
fectiveness of using a small language model like
TinyBERT in a multi-task learning setup for di-
verse NLP tasks.

4.1. Dataset

The GLUE benchmark (General Language Un-
derstanding Evaluation)1 is a widely recognized
collection of diverse NLP tasks designed to as-
sess the language understanding capabilities of
machine learning models. This benchmark com-
prises various tasks that test different aspects of
natural language understanding. The study uti-
lizes three datasets from GLUE benchmark:

• SST-2 (Stanford Sentiment Treebank)2: A
sentiment classification dataset compris-
ing sentences from movie reviews, labeled
as either positive or negative. It includes
approximately 67,000 sentences for train-
ing and about 872 sentences for develop-
ment (validation) and 1,821 sentences for
testing.

• QQP (Quora Question Pairs)3: A para-
phrase detection dataset containing pairs
of questions from the Quora website, la-
beled to indicate whether the two questions
are semantically equivalent. This is a large
dataset with over 363,780 question pairs
for training and around 40,431 pairs for de-
velopment and 390,965 pairs for testing.
Question pairs can have different phrasing
but still convey similar meanings, or vice
versa. It uses binary labels: duplicate or
non-duplicate.

• STS-B (Semantic Textual Similarity
Benchmark)4: A semantic textual similar-
ity dataset containing sentence pairs from
various sources, labeled with scores from
1 to 5 indicating their degree of semantic
similarity. It includes approximately 7,000
sentence pairs for training, 1,500 pairs for
development, and 1,400 pairs for testing.
Unlike SST-2 and QQP with discrete la-
bels, STS-B uses a continuous scale, re-
quiring the model to understand a more
detailed level of semantic correlation.

The dataset is visualized in the following Fig 2.

1https://h2o.ai/wiki/glue/
2https://paperswithcode.com/sota/text-classification-
on-glue-sst2

3https://paperswithcode.com/dataset/glue
4https://medium.com/nlplanet/two-minutes-nlp-glue-
tasks-and-2022-leaderboard-517baedfa597
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Figure 2. Dataset visualization.

4.2. Evaluation

We evaluate the model’s performance on the val-
idation sets for each task. For sentiment analy-
sis and paraphrase detection, we use evaluate-
classification:

Accuracy =
number of correct predictions

total number of samples
(8)

And for semantic textual similarity, we use
evaluate-STS, which calculates the Pearson cor-
relation coefficient:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(9)

• xi: Predicted score (scoresi).

• yi: Actual score (ysi).

• x̄, ȳ: Mean values of predicted and actual
scores.

4.3. Experimental Setup

The experiments were conducted using Py-
Torch and the Hugging Face Transformers li-

brary on a single GPU. The pre-trained Tiny-
BERT model ”huawei-noah/TinyBERT-General-
4L-312D”7 was used as the backbone. The spe-
cific version TinyBERT-General-4L-312D refers
to a TinyBERT model with a general configura-
tion (“General”), comprising 4 Transformer lay-
ers and a hidden dimension size of 312 7. Com-
bining MTL with fine-tuning of a compact model
like TinyBERT-General-4L-312D promises to
leverage the advantages of both approaches: the
ability to learn rich representations from multiple
tasks and the deployment efficiency of a small
model. The batch size was set to 16. The AdamW
optimizer24 was employed with a learning rate
of 1e-5 and a dropout rate of 0.01. The number
of training epochs for both the initial multi-task
training and individual fine-tuning for each task
was 5. Early stopping was triggered if the vali-
dation score did not improve for 2 consecutive
epochs. Mixed precision training was utilized to
accelerate training and reduce memory consump-
tion.

5. RESULTS AND DISCUSSION

The model’s validation performance at dif-
ferent training stages is presented in Table 1 and
visualized in the following Fig 3.

Table 1. Validation performance at different training stages

Task Measure After MTL After FT
Sentiment analysis Accuracy 0.8704 0.8922

Paraphrase detection Accuracy 0.8737 0.8822

Semantic textual similarity Pearson 0.8624 0.8690
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Figure 3. Performance comparison across tasks.

The results show that initial multi-task
training enables the model to achieve significant
performance across all three tasks. After indi-
vidual fine-tuning, the accuracy for sentiment
and paraphrase tasks improved, while the Pear-
son correlation for the semantic textual similarity
task also slightly increased.

The high performance achieved after the
initial multi-task training phase indicates that the
TinyBERT model can effectively learn shared
representations beneficial for all three tasks: sen-
timent analysis, paraphrase detection, and se-
mantic textual similarity. This suggests that some
fundamental linguistic and semantic knowledge
can be transferred among these tasks. Thus, the
answer to RQ1 is that TinyBERT can learn effec-
tively from three tasks simultaneously, achieving
good performance with a compact model.

The improvement in performance after in-
dividual fine-tuning for each task demonstrates
that continuing to train the model on task-specific
data allows it to adjust its weights to better cap-
ture the specific nuances of each task, leading
to improved performance. From this, we derive
the answer to RQ2: Individual fine-tuning after
MTL is clearly effective, helping to optimize for
each task and narrowing the gap with larger mod-
els.

The initial MTL phase appears to have fa-
cilitated some positive knowledge transfer among
tasks, as evidenced by the reasonable perfor-
mance achieved across all three tasks with a
single shared model. The further improvements
observed during individual fine-tuning indicate
that additional specialization on each task is ben-
eficial for maximizing performance.

Comparing performance across tasks, the
paraphrase detection task achieved the highest
accuracy in both the initial multi-task training
phase and after individual fine-tuning. This could
be due to the clear binary nature of the task (du-
plicate or non-duplicate) and the relatively large
size of the QQP dataset. The semantic textual
similarity task, being a regression task predicting
a continuous score, had a slightly lower Pearson
correlation compared to the accuracy achieved in
the classification tasks.

Table 2. Comparing TinyBERT and BERT-base

Criteria TinyBERT BERT-base
Parameters ~14.5M ~110M

Transformer Layers 4 12

Hidden Dimensions 312 768

Inference Time ~4–6x faster Standard

Memory Required ~1/7 High

Table 2 compares TinyBERT and BERT-
base models, TinyBERT is significantly more
compact than BERT-base, featuring 7.6 times
fewer parameters. This leads to faster inference
speeds and lower memory requirements.

We compare our method and results with
related work on multi-task learning and Tiny-
BERT on GLUE tasks: Table 3 compares perfor-
mance.

10
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Table 3. Comparing TinyBERT and BERT-base performance

Tasks TinyBERT TinyBERT BERT-base BERT-base
(MTL) (FT) (Single) (MTL)

SST-2 0.8704 0.8922 0.927 0.913

QQP 0.8737 0.8822 0.913 0.904

STS-B 0.8624 0.8690 0.894 0.885

• BERT-base (single task): Devlin et al.1,
fine-tuned individually on each GLUE
task.

• BERT-base (MTL): Liu et al.8 multi-task
trained on similar tasks.

TinyBERT achieves quite good performance (87-
88%) even before fine-tuning, indicating that
MTL helps leverage common knowledge among
tasks. However, it is still about 3-4% lower than
BERT-base MTL (90-91%), reflecting the differ-
ence in representational capacity due to model
scale. This suggests that while TinyBERT can
learn common features, it’s not as robust as
BERT-base due to its limited number of lay-
ers and parameters. After fine-tuning, TinyBERT
improves by 1-2% across all three tasks, narrow-
ing the gap with BERT-base. However, it does not
surpass BERT-base.

Compared to BERT-base, multitask Tiny-
BERT achieves 2-4% lower performance across
all three tasks (SST-2, QQP, STS-B), even after
individual fine-tuning. However, it excels in com-
putational efficiency, being 7.6 times smaller and
4-6 times faster in inference. This makes Tiny-
BERT a reasonable choice in scenarios where
efficiency is prioritized over maximum perfor-
mance, such as deployment on edge devices or in
real-time applications. The combined MTL and
FT approach of this study also shows potential
in leveraging a single model for multiple tasks,
reducing training costs compared to individually
training separate BERT-base models. This di-
rectly answers RQ3: Our method achieves a rea-
sonable balance between performance and com-
putational efficiency, which is particularly useful
in practical applications requiring resource sav-
ings.

6. RELATED WORK

Recent advances in NLP have explored
both large-scale pre-trained models and compact
architectures optimized for efficiency. In particu-
lar, MTL and model compression have emerged
as two key strategies to improve performance and
reduce computational costs.

Stickland and Murray introduced projected
attention layers to adapt BERT for MTL in8.
By adding lightweight task-specific adapters,
they achieved strong performance on the GLUE
benchmark while maintaining efficiency. Their
results confirmed that parameter-efficient adap-
tation strategies can make large models more
scalable across multiple tasks.

Jiao et al. proposed TinyBERT in7, which
applied a two-stage knowledge distillation ap-
proach first at the pre-training level and then at
the task-specific fine-tuning level to compress
BERT-base into a smaller model while retaining
competitive performance. TinyBERT-4L, in par-
ticular, achieved over 96% of BERT-base’s per-
formance on GLUE with only about 13% of its
parameters.

While TinyBERT was initially designed
for single-task fine-tuning, later studies have ex-
tended its application to MTL. A notable exam-
ple is the work by Yu et al.25, which explored
the effect of multi-task fine-tuning on small mod-
els such as Phi-3-Mini in the financial domain.
Their study revealed that combining related tasks
significantly improved performance even outper-
forming large models like GPT-4-o in domain-
specific benchmarks.

In addition, Houlsby et al.13 proposed
adapter layers for parameter-efficient fine-tuning,
enabling multitask training with minimal param-
eter overhead. The adapters can be selectively
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trained for new tasks, making them particularly
useful in low-resource and multi-domain settings.

Furthermore, a growing body of literature
focuses on dynamic task weighting to improve
MTL stability and mitigate negative transfer. For
instance, Kendall et al.27 proposed weighting
losses based on task uncertainty, while Lakkapra-
gada et al.14 used exponential moving average
loss strategies to maintain balance during train-
ing.

Some recent surveys, for example those by
Zhang and Yu10, Crawshaw26, and Yu et al.25,
Liu et al.28 have analyzed the training strate-
gies and task relatedness in MTL. These works
emphasize the importance of sharing knowledge
across tasks, selecting compatible task combina-
tions, and using dynamic weighting schemes to
mitigate negative transfer.

7. CONCLUSION

In this study, we proposed a novel multi-
task learning approach, which relies on a small
language model like TinyBERT for NLP tasks,
including: sentiment analysis, paraphrase detec-
tion, and semantic textual similarity. We first
trained a shared TinyBERT model using a multi-
task learning framework, then fine-tuned it in-
dividually for each task. The experimental re-
sults showed that the initial MTL phase enabled
the model to capture shared representations that
achieved strong performance across all tasks.
Subsequent task-specific fine-tuning further im-
proved accuracy and correlation scores, demon-
strating the value of combining MTL with fine-
tuning. Specifically, TinyBERT achieved com-
petitive performance—while remaining signifi-
cantly smaller and faster than BERT-base mak-
ing it suitable for resource-constrained environ-
ments. These findings highlighted the potential
of small language models like TinyBERT to serve
as efficient and effective solutions for multi-task
NLP scenarios. This approach also offers prac-
tical benefits in deployment settings, such as re-
duced memory usage and training costs, without
a significant compromise in task performance.

In the future, we will explore different task
balancing strategies in the initial MTL phase to
potentially improve learned shared representa-
tions. Investigating other fine-tuning techniques

and hyper parameters for each task could also
lead to better individually fine-tuned models,
which could then benefit the aggregation process.
Experimenting with more sophisticated methods
to determine task similarity, possibly considering
uncertainty or variance in individual model per-
formance, could also be valuable. Evaluating the
performance of all models on the held-out GLUE
test sets would provide a more comprehensive as-
sessment of their generalization capabilities.
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