Tw doéng nhan dang va danh gia mc d6 nghiém trong cua
khoi u nao bang cac phwong phap hoc sau

TOM TAT

Nghién ciru nay dé xuit mot phuong phap tu dong dé phat hién va danh gia mic d nghiém trong ciia khdi u
ndo tr anh cdng huong tir (MRI) bé“mg cach st dyng moé hinh hoc sau ResU-Net. Dir liéu MRI, duogc léy tr bo dir
lidu LGG Segmentation trén Kaggle, bao gdm hinh anh ctia cdc bénh nhan dugc chan doan méc khéi u ndo. Sau
budc tién xur 1y, dit liéu dugc chia thanh céc tap huén luyén, xac thyc va kiém thtr. M6 hinh ResU-Net duoc huin
luyén dé phéan doan va phat hién sy hién dién cia khdi u ndo. Ngoai ra, di¢n tich vung khéi u cling dugc tinh toan
nham hd tro danh gia muc do nghiém trong cua bénh. Hi¢u suit cua ResU-Net duoce so sanh véi cac kién triic hoc
sau khac, bao gom U-Net, FC-DenseNet va DeepLabv3+. Két qua thuc nghiém cho thay ResU-Net dat d chinh xac
phat hién cao nhét (94%) va Piém Dice an twong (92%), ciing v&i sai sé wdc lwong dién tich khéi u thip nhit trong
s6 cac mo hinh dugc danh gia. Nhitng phat hién ndy nhan manh tiém ning manh mé& cua ResU-Net trong viéc hd trg
hiéu qua qua trinh chan doan va lap ké hoach diéu tri cho cac trudng hop u néo.

Tir khéa: Phdt hién khéi u tw dong, Khoi u ndo, Hoc sdu, Anh cong hwong tir (MRI), ResU-Net.



Automatic Detection and Severity Assessment of Brain
Tumors Using Deep Learning Approaches

ABSTRACT

This study proposes an automated method for detecting and assessing the severity of brain tumors from
magnetic resonance imaging (MRI) using a deep learning model, ResU-Net. The MRI data, sourced from the LGG
Segmentation dataset on Kaggle, consist of images from patients diagnosed with brain tumors. After pre-processing,
the data were split into training, validation, and testing sets. The ResU-Net model was trained to segment and detect
the presence of brain tumors. Additionally, the tumor region area was calculated to support the evaluation of disease
severity. The performance of ResU-Net was compared with other deep learning architectures, including U-Net, FC-
DenseNet, and DeepLabv3+. Experimental results show that ResU-Net achieved the highest detection accuracy
(94%) and an impressive Dice Score (92%), along with the lowest tumor area estimation error among the models
evaluated. These findings highlight the strong potential of ResU-Net in effectively supporting the diagnosis and

treatment planning of brain tumor cases.

Keywords: Automatic tumor detection, Brain tumor, Deep learning, Magnetic Resonance Imaging (MRI), ResU-

Net.

1. INTRODUCTION

Brain tumors result from the abnormal and
uncontrolled growth of cells within the brain.'
They are generally classified into two
categories: benign and malignant. Both types
can pose serious health risks, with malignant
tumors typically exhibiting rapid growth and the
potential to invade or metastasize to other parts
of the body. Brain tumors are commonly
diagnosed through imaging techniques such as
CT, MRI, and PET, or via clinical tests
including biopsy and cerebrospinal fluid
analysis.*¢ Early detection plays a critical role in
improving treatment outcomes and increasing
the survival rate of patients.

In recent years, artificial intelligence (Al),
particularly deep learning techniques, has
experienced rapid advancements and opened up
a wide range of applications across various
domains, especially in healthcare.”® In the field
of medical imaging, deep learning architectures
such as GoogleNet, U-Net, VGG, ResNet,
Inception, DenseNet, and DeepLab have been
widely adopted for brain tumor detection and
classification tasks.”!> One of the most
prominent applications is the identification and
classification of brain tumors from magnetic
resonance imaging (MRI), which greatly assists

physicians in making accurate diagnoses and
formulating effective treatment plans.'*!* The
integration of deep learning into medical
practice promises higher diagnostic accuracy,
reduced processing time, and minimized
subjectivity compared to traditional diagnostic
approaches.

Among deep learning models, the U-Net is one
of the most pioneering and widely adopted
architectures for brain tumor segmentation in
medical imaging.!” Variants of U-Net, such as
ResU-Net!®, FC-DenseNet'’, and DeepLabv3+!8,
have been developed to further enhance feature
extraction capabilities and improve
segmentation  accuracy. However,  the
performance of each model varies depending on
the dataset characteristics and training
conditions.

U-Net follows a symmetric encoder—decoder
architecture, connected through a central
bottleneck. The encoder is responsible for
extracting hierarchical features via convolutional
blocks (ConvBlock) and progressively reducing
spatial resolution using max pooling layers .
Conversely, the decoder restores the original
image resolution through upsampling layers
(UpConv), while incorporating corresponding
features from the encoder via skip connections.
These skip connections help retain important
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spatial details that may be lost during
downsampling. Typically, the input MRI image
has a size of 256x256x3, and the output is a
binary segmentation map of size 256x256x1%,
representing the tumor region.

ResU-Net is constructed based on a symmetric
encoder—decoder architecture similar to U-Net,
with the key distinction being the replacement of
standard convolutional blocks by ResNet
blocks.?! The integration of internal residual
connections  enhances feature  extraction
capability and mitigates information loss during.
The image resolution is  progressively
downsampled from 256x256 — 128%128 —
64x64 — 32%32 — 16x16, while the number of
feature maps increases accordingly to capture
deeper semantic representations.

On the other hand, FC-DenseNet leverages
Dense Blocks to promote feature reuse.?? Its
architecture also comprises three main
components: encoder, bottleneck, and decoder.
The encoder processes the input image of size
256x256x%3 using a 3x3 convolution layer with
48 filters to extract initial features. This is
followed by multiple Dense Blocks, each
consisting of densely connected convolutional
layers, which significantly enhance feature
learning. Between these blocks, Transition
Down layers (composed of convolution and
pooling) is applied to reduce spatial resolution.
The bottleneck section utilizes a specialized
Dense Block with a higher number of filters to
optimize deep feature learning before
transitioning to the decoder.’*?* The decoder
includes Transition Up layers (via upsampling or
transposed convolution) to restore the image
resolution, followed by Dense Blocks to recover
detailed information. Skip connections from the
encoder are incorporated to retain essential
spatial features. The final output is a binary
segmentation map of size 256x256x1,
accurately highlighting the tumor region in the
brain image.

DeepLabV3+ adopts an encoder—decoder
architecture but introduces several notable
enhancements compared to previous models.!®
(1) The input image of size 256x256x3 is passed
through a pre-trained Xception feature extractor,
a deep neural network known for its strong
feature extraction capability. The model

incorporates two skip connections from
intermediate layers  (16x16x1024  and
32x32x256) to retain multi-scale spatial
information. (2) A key component of this
architecture is the Atrous Spatial Pyramid
Pooling (ASPP) module, which captures global
contextual information at multiple scales using
atrous (dilated) convolutions. This design
improves the model’s ability to detect objects of
varying sizes and shapes, such as brain tumors.
(3) After merging the features from ASPP and
the skip connections, the model applies further
convolutional layers and a final upsampling step
to produce a binary output image of size
256x256%1 representing the segmented tumor
region.

This study proposes a deep learning-based
approach using the ResU-Net model for brain
tumor classification and severity assessment
based on tumor area. MRI brain images from the
publicly available LGG Segmentation dataset
were preprocessed through contrast
enhancement, normalization to the range [0, 1],
and binary labeling (tumor vs. non-tumor). The
processed data were split into training,
validation, and test sets for training the ResU-
Net model. Tumor area was computed as an
indicator of disease severity. To evaluate the
effectiveness of the proposed method, ResU-Net
was compared with other deep learning models
using the same dataset. Experimental results
demonstrate that ResU-Net outperformed other
models in both classification accuracy and tumor
area estimation. These findings underscore the
potential of ResU-Net for real-time automatic
brain tumor detection and severity evaluation in
clinical applications.

2. RESEARCH METHODOLOGY

The dataset used in this study is the LGG
Segmentation Dataset (Low-Grade Glioma). It
contains 3D MRI images of patients diagnosed
with low-grade brain tumors. The data origin is
detailed in the study conducted by the Cancer
Genome Atlas Research Network. Both tumor
and non-tumor images were split into training,
testing, and validation sets in a (70:10:20) ratio,
as illustrated in Figure 1. The entire workflow of
the proposed method consists of data
preprocessing, model construction, training,
performance evaluation, and comparison.
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Figure 1. The dataset is split into (Train:Test: Validation) in a (70:10:20) ratio.

In this study, Google Colab is utilized as the
programming environment, integrated with GPU
hardware to optimize the training process of
deep learning models. The hardware setup
includes an NVIDIA A100-SXM4-40GB GPU
with 42.5 GB of VRAM, an Intel(R) Xeon(R)
CPU running at 2.20GHz, 89.6 GB of RAM, and
50 GB of storage via Google Drive. The main
programming language used is Python 3.10. The
software stack includes TensorFlow 2.11, Keras,
and PyTorch for deep learning, along with
NumPy, Pandas, OpenCV, Matplotlib, and
Seaborn for data processing and visualization.

2.1. Data pre-processing

Figure 2 illustrates an example of an original
MRI scan (Figure 2(a)) and its corresponding
mask (Figure 2(b)) from the LGG Segmentation
Dataset. The 3D MRI volumes in the dataset are
sliced into 2D images and resized to a
standardized resolution of 256x256 pixels. The
preprocessing steps include intensity
normalization to balance the image contrast,
scaling pixel values to the [0, 1] range, and
converting labels into binary format to
distinguish between tumor and non-tumor brain
images.

(b)

Figure 2. Original MRI image (a) and its
corresponding mask (b) from the LGG
segmentation dataset.

In this study, the ResU-Net model is employed
for brain tumor segmentation and tumor area
estimation. Its performance is compared against
three other models: U-Net, FC-DenseNet, and
DeepLabV3+. All models are trained under the
same conditions, including 200 training epochs,
an initial learning rate of 0.001, the Adam
optimizer, and the Dice Loss function as the
evaluation metric.

2.2. ResU-Net deep learning architecture

ResU-Net is an enhanced variant of the U-Net
architecture that incorporates residual blocks to
improve gradient flow during deep network
training. Figure 3 illustrates the overall structure
of the ResU-Net model. Similar to U-Net, ResU-
Net consists of two main components: an
encoder and a decoder. In the encoder block,
ResNetConv modules are employed to enhance
feature extraction capabilities and mitigate
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information loss during backpropagation, thanks
to internal residual connections [10, 11]. The
spatial resolution of the feature maps is
progressively reduced through the layers: from

Input (256x256x3)

256x256 — 128%x128 — 64x64 — 32%x32 —
16x16, while the number of feature channels
increases.

Output (256x256x1)

Upsample 256x256
(256x256x64)

! i
ResNetConvt [ Skip > Upsample 128x128 + Concat
(128x128x64) (128x128x128)
ResNetConv2 | Skip S| Upsample 64x64 + Concat
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)
y
ResNetConvd [ Skp 5|  Upsample 32x32 + Concat
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)

¥
ResNetConv4 | Skip 5|  Upsample 16x16 + Concat
(16x16x1024) (16x16x1024)

\/

Bottieneck (Conv5)
(8x8x2048)

Figure 3. Architecture of the ResU-Net model*!

The decoder block utilizes up-sampling layers to
restore the original image resolution and
integrates contextual information from the
encoder via skip connections, which help to
accurately recover fine image details. The final
output of the ResU-Net model is a binary image
of size 256x256x%1, representing the segmented
brain tumor region.

2.3. Model evaluation metrics

To evaluate the performance of the segmentation
models, this study employs commonly used
metrics, including Accuracy, Precision, Recall,
F1-Score, IoU, and Dice Coefficient.?”?® The
formulas for these metrics are presented as
follows:

Accuracy: The ratio of correctly classified
pixels (both tumor and non-tumor regions) to the
total number of pixels. However, accuracy can
be misleading in the case of imbalanced data
(e.g., the tumor region is much smaller than the
background).

Precision (Positive Predictive Value):
Indicates how many of the pixels predicted as
tumor by the model is actually tumor pixels.
High precision means the model generates fewer
false positives.

Recall (Sensitivity): The proportion of actual
tumor pixels correctly identified by the model.
High recall ensures that tumor regions are not
missed.

F1-Score: The harmonic mean of Precision and
Recall, providing a balanced assessment
between false positives and false negatives.

IoU (Intersection over Union): Measures the
overlap between the predicted segmentation and
the ground truth, calculated as the ratio of their
intersection over their union. It is widely used in
segmentation tasks.

Dice Coefficient: Similar to IoU but places
more emphasis on the overlapping region. It is
frequently used in medical image analysis due to
its ability to accurately evaluate small lesion
regions.

All these metrics are calculated on the test set
and are used to objectively compare the
performance of different models.

2.4. Tumor severity assessment

To evaluate the severity of a brain tumor, one of
the key metrics is its area. By comparing the
tumor area in the current MRI scan with
previous scans, specialists can assess the
effectiveness of the treatment. For instance, if
the tumor area remains unchanged, it suggests
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that the treatment is effectively halting tumor
growth. Conversely, an increase in tumor size
indicates disease progression and implies that
the current treatment regimen may be ineffective
and needs revision.

In this study, two methods are proposed for
calculating the tumor area. One of them involves
calculating the area based on the number of
pixels identified as tumor regions in the MRI
image. To compute the tumor area, the
resolution of the MRI image in DPI (Dots Per
Inch) is considered. The total tumor area is then
given by

S, =N, xS, (1)

Where, St is the tumor area (mm?), N, is the
number of pixels identified as tumor tissue by
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3. RESULTS AND DISCUSSION
3.1 Training performance evaluation

During the training phase, two key metrics were used
to preliminarily assess the performance of the
models: Dice Coefficient and Loss. Figure 4 and 5
illustrate the evolution of the Dice Coefficient and
Loss values, respectively, throughout the training and
validation processes for the four segmentation

models: U-Net, ResU-Net, FC-DenseNet, and
DeepLabV3+.
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Figure 4. Dice Coefficient plots for (a) U-Net, (b) ResU-Net, (c) FC-DenseNet, and (d) DeepLabV3+.

In terms of the Dice Coefficient, U-Net and FC-
DenseNet achieved faster convergence (within
10 epochs) compared to ResU-Net and
DeepLabV3+. Although ResU-Net required a
longer convergence time, it achieved the highest
segmentation accuracy of approximately 90%
(see Figure 4b), while U-Net and FC-DenseNet
both reached around 85% accuracy (Figure 4a
and 4c). Among all models, DeepLabV3+

demonstrated the weakest performance, with
slower convergence (around 25 epochs) and the
lowest accuracy (approximately 70%) as shown
in Figure 4d. Regarding the Loss metric, ResU-
Net again showed superior performance, with
the loss value approaching zero (Figure 5b). In
contrast, the other three models maintained
higher loss values around 0.2 (Figure 5a, 5c, and
5d).
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Figure 5. Loss plots for (a) U-Net, (b) ResU-Net, (c) FC-DenseNet, and (d) DeepLabV3+.

Table 1 presents a comparative analysis of Dice
Coefficient and Intersection over Union (IoU)
metrics for four deep learning models: U-Net,
ResU-Net, FC-DenseNet, and DeepLabV3+,
across training, validation, and testing datasets.
Among these models, ResU-Net demonstrates
superior performance across all three data splits.

It achieves the highest Dice scores of 96%
(Train), 90% (Validation), and 92% (Test), and
corresponding IoU scores of 94%, 87%, and
90%, respectively. These results indicate that
ResU-Net not only learns effectively from the
training data but also generalizes well to unseen
data.

Table 1. Dice Coefficient and IoU Scores of Different Models on Train, Validation, and Test Sets.

Model DICE-COEF IoU
Train Val Test Train Val Test
U-Net 0.89 0.85 0.85 0.86 0.82 0.82
ResU-Net 0.96 0.90 0.92 0.94 0.87 0.90
FC- 0.92 0.87 0.89 0.89 0.83 0.87
DenseNet
DeepLabV3+ 0.89 0.85 0.88 0.84 0.80 0.85

FC-DenseNet also performs competitively,
achieving Dice scores of 92%, 87%, and 89%,
and IoU scores of 89%, 83%, and 87% for the
same respective datasets. While slightly lower
than ResU-Net, FC-DenseNet outperforms both
U-Net and DeepLabV3+. Despite being a state-
of-the-art segmentation model, DeepLabV3+
shows relatively moderate performance, with
Dice scores of 89%, 85%, and 88%, and IoU
scores of 84%, 80%, and 85%. These are

comparable to or slightly better than U-Net,
which scores 85%—89% (Dice) and 82%-86%
(IoU), but fall short of the results achieved by
ResU-Net and FC-DenseNet. In summary,
ResU-Net achieves the best balance between
learning capacity and generalization, making it
the most effective model for brain tumor
segmentation in this study.

3.2 Brain tumor classification performance
evaluation

Figure 6 illustrates the confusion matrices for
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four models (U-Net, ResU-Net, FC-DenseNet,
and DeepLabv3+) in classifying brain MRI
images into two categories: "Tumor" and "No
Tumor." Each matrix presents the number of
correctly and incorrectly classified MRI images.
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The U-Net model correctly classified 247 non-
tumor images and 110 tumor images, but
misclassified 20 non-tumor images as tumors
and 16 tumor images as non-tumor (see Figure

6(a)).

Confusion Matrix (Image Level) - ResUNet

Pred cted Label

(b)

Confusion Matrix (Image Level) - DeepLabV3+
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No Tumor
Predicted Label

Tumor
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Figure 6. Confusion matrices of the models: (a) U-Net model; (b) resU-Net model; (¢) FC-DenseNet model; (d)
DeepLabv3+ model.

The ResU-Net model achieved better performance,
correctly identifying 260 non-tumor and 118 tumor
images, with only 7 non-tumor and 8 tumor images
misclassified (see Figure 6(b)). FC-DenseNet
correctly classified 253 non-tumor and 115 tumor
images, while misclassifying 14 non-tumor and 11
tumor images (see Fig. 6(c)).

DeepLabv3+ yielded the highest overall accuracy,
with 266 non-tumor and 112 tumor images correctly
identified. However, it still misclassified 1 non-tumor
and 14 tumor images (see Figure 6(d)). Generally,
ResU-Net demonstrated a balanced performance
across both classes, whereas DeepLabv3+ excelled in
detecting non-tumor images but was slightly less
accurate in identifying tumor cases. These results
suggest that selecting the appropriate model depends
on the dataset characteristics and application
priorities whether maximizing tumor detection or
minimizing false alarms.

3.3 Segmentation and prediction results
evaluation

Figure 7 shows the prediction results for two
brain MRI images without tumors (Fig. 7(a)),

using four deep learning models: U-Net (Figure
7(c)), ResU-Net (Figure 7(d)), FC-DenseNet
(Figure 7(e)), and DeepLabV3+ (Figure 7(f)).
The experimental results indicate that all four
models achieved 100% accuracy in correctly
identifying tumor-free MRI scans.

Figure 8 showcases the segmentation results of
brain tumors from three different MRI scans
using four deep learning models. For each case,
the figure displays the original MRI image, the
ground truth mask, and the predicted masks
from U-Net, ResU-Net, FC-DenseNet, and
DeepLabV3+. The findings reveal that while all
models can detect tumor regions, their accuracy
and consistency vary: (1) ResU-Net and FC-
DenseNet exhibit the closest agreement with the
ground truth, particularly for tumors with
regular, simple shapes; (2) U-Net sometimes
produces incomplete or irregular segmentations,
especially along tumor boundaries; and (3)
DeepLabV3+ delivers well-defined boundaries
for large tumors but tends to blur or



overestimate boundaries in cases of small or

MRI male

MRI Image U-Net - FP Pixels: 0

U-Net - FP Pixels: 0

ResUNet - FP Pixels: 0

irregularly shaped tumors.
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ResUNet - FP Pixels: 0 fc_densenet - FP Pixels: 0 deeplabv3plus - FP Pixels: 0

Figure 7. MRI images without brain tumors: (a) original MRI images; (b) ground truth masks; (c)
predicted masks by U-Net; (d) by ResU-Net; (e) by FC-DenseNet; (f) by DeepLabV3+.
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MRI Image

ResUNet FC-DenseNet

Dee|Labv3+
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Figure 8. MRI images with brain tumors: (a) original MRI images; (b) ground truth masks; (c)
predicted masks by U-Net; (d) by ResU-Net; (e) by FC-DenseNet; (f) by DeepLabV3+.

Figure 9 presents tumor segmentation results on
two MRI images, along with key quantitative
metrics including Tumor Pixel: the number of
pixels representing the tumor region in the
ground truth mask; Tumor Pred: the number of
tumor pixels predicted by the deep learning
models; Correct Pixel: the number of correctly
identified tumor pixels; Dice (%) — the Dice
coefficient indicating the overlap between
predicted and ground truth tumor regions; and
Area is the estimated tumor area. DeepLabv3+
tends to overestimate tumor size, as seen in the
first MRI image, where the actual tumor area is
about 2,900 pixels, but the model predicts over
4,000 pixels. Such overestimation may trigger
false alarms and affect clinical severity
assessment.

FC-DenseNet exhibits a similar but less
pronounced overestimation, suggesting a
conservative coverage tendency that still
requires fine-tuning to avoid excessive
enlargement. ResU-Net delivers the most
accurate area estimation, closely matching the
ground truth while maintaining a high number of
Correct Pixels, demonstrating both precision and
stability. In contrast, U-Net often underestimates
tumor size, significantly reducing the detected
tumor pixel count, which risks missing small or
peripheral lesions potentially critical in early
diagnosis.

In medical applications, tumor area accuracy
plays a critical role in assessing the extent of
tumor invasion and supporting the development
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of effective treatment plans. An effective model
must not only correctly identify the tumor
location but also accurately estimate its area.
This ensures that physicians can avoid both
overestimating the tumor size, which may cause
unnecessary anxiety for the patient and hinder
effective treatment, and underestimating it,
which could lead to overlooking serious

U-Net
Mask v Correct: 2106

MRI Image Tumor Pixels: 2948 Tumor Pred: 2285

U-Net
Mask v Correct: 1091

MRI Image Tumor Pixels: 1152 Tumor Pred: 1357

conditions. Table 2 presents a comparative
analysis of tumor area estimations from the
brain tumor segmentation results shown in
Figure 9, obtained using different deep learning
models: U-Net, ResU-Net, FC-DenseNet, and
DeepLabv3+. Notably, tumor areas were
calculated using Eq. (1).

ResUNet FC-DenseNet
v Correct: 2935 v Correct: 2930
Tumor Pred: 3096

Deeplabv3+
v Correct: 2921

Tumor Pred: 3118 Tumor Pred: 4004

ResUNet FC-DenseNet
v Correct: 1055 v Correct: 1031
Tumor Pred: 1158 Tumor Pred: 1147

DeepLabv3+
v Correct: 1013
Tumor Pred: 1700

\"J
a b (v d e f

Figure 9. Tumor region estimation based on pixel count: (a) original MRI image; (b) ground truth mask;
(c) predicted mask from U-Net; (d) predicted mask from ResU-Net; (e) predicted mask from FC-
DenseNet; (f) predicted mask from DeepLabv3.

Table 2 presents a comparison of tumor area
estimation performance among four deep
learning models, U-Net, ResU-Net, FC-
DenseNet, and DeepLabv3+, applied to two
MRI cases (upper and lower panels of Figure 9).
Overall, ResU-Net achieves the highest
accuracy, yielding the smallest estimation errors
of 11.27 mm? and 7.21 mm? for the upper and
lower panels, respectively. This reflects its
strong agreement with the ground truth and its
ability to balance precise boundary detection
with accurate size estimation, making it highly
suitable for clinical applications. FC-DenseNet
produces slightly higher errors (13.16 mm? and
8.12 mm?) but still maintains good accuracy,
indicating that it can be a viable alternative with
further fine-tuning. In contrast, U-Net shows a
tendency to underestimate tumor areas, which,
despite a relatively low error in the upper panel
(12.53 mm?), risks missing tumor tissue,
particularly in the lower panel. DeepLabv3+, on
the other hand, consistently overestimates tumor
sizes, producing the largest errors (75.81 mm?
and 48.09 mm?) due to excessive segmentation,
which could lead to false alarms and
inappropriate treatment planning. These findings
highlight that ResU-Net offers the most reliable
tumor area estimation, with FC-DenseNet as a
potential backup option, while U-Net and
DeepLabv3+ require further adjustment to

mitigate underestimation and overestimation
issues, respectively.

3. CONCLUSION

This study implemented and evaluated the
performance of the ResU-Net deep learning
model for detecting and estimating the area of
brain tumors from MRI images. To validate the
effectiveness of the proposed approach, ResU-
Net was compared with established models,
including U-Net, FC-DenseNet, and
DeepLabv3+. Experimental results demonstrate
that ResU-Net not only achieves highly accurate
tumor localization but also provides precise area
estimation, outperforming the other models in
both aspects. These promising results indicate
that ResU-Net can significantly enhance brain
tumor diagnosis by improving detection
reliability and reducing human error in
interpretation. With accurate tumor area
estimation, clinicians can better assess disease
severity across MRI scans, enabling more
informed treatment planning and potentially
improving patient outcomes.
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