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Tự động nhận dạng và đánh giá mức độ nghiêm trọng của 
khối u não bằng các phương pháp học sâu 

 
 

 

 

 

TÓM TẮT 

Nghiên cứu này đề xuất một phương pháp tự động để phát hiện và đánh giá mức độ nghiêm trọng của khối u 

não từ ảnh cộng hưởng từ (MRI) bằng cách sử dụng mô hình học sâu ResU-Net. Dữ liệu MRI, được lấy từ bộ dữ 

liệu LGG Segmentation trên Kaggle, bao gồm hình ảnh của các bệnh nhân được chẩn đoán mắc khối u não. Sau 

bước tiền xử lý, dữ liệu được chia thành các tập huấn luyện, xác thực và kiểm thử. Mô hình ResU-Net được huấn 

luyện để phân đoạn và phát hiện sự hiện diện của khối u não. Ngoài ra, diện tích vùng khối u cũng được tính toán 

nhằm hỗ trợ đánh giá mức độ nghiêm trọng của bệnh. Hiệu suất của ResU-Net được so sánh với các kiến trúc học 

sâu khác, bao gồm U-Net, FC-DenseNet và DeepLabv3+. Kết quả thực nghiệm cho thấy ResU-Net đạt độ chính xác 

phát hiện cao nhất (94%) và Điểm Dice ấn tượng (92%), cùng với sai số ước lượng diện tích khối u thấp nhất trong 

số các mô hình được đánh giá. Những phát hiện này nhấn mạnh tiềm năng mạnh mẽ của ResU-Net trong việc hỗ trợ 

hiệu quả quá trình chẩn đoán và lập kế hoạch điều trị cho các trường hợp u não. 

Từ khóa: Phát hiện khối u tự động, Khối u não, Học sâu, Ảnh cộng hưởng từ (MRI), ResU-Net. 
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ABSTRACT 

This study proposes an automated method for detecting and assessing the severity of brain tumors from 

magnetic resonance imaging (MRI) using a deep learning model, ResU-Net. The MRI data, sourced from the LGG 

Segmentation dataset on Kaggle, consist of images from patients diagnosed with brain tumors. After pre-processing, 

the data were split into training, validation, and testing sets. The ResU-Net model was trained to segment and detect 

the presence of brain tumors. Additionally, the tumor region area was calculated to support the evaluation of disease 

severity. The performance of ResU-Net was compared with other deep learning architectures, including U-Net, FC-

DenseNet, and DeepLabv3+. Experimental results show that ResU-Net achieved the highest detection accuracy 

(94%) and an impressive Dice Score (92%), along with the lowest tumor area estimation error among the models 

evaluated. These findings highlight the strong potential of ResU-Net in effectively supporting the diagnosis and 

treatment planning of brain tumor cases. 

Keywords: Automatic tumor detection, Brain tumor, Deep learning, Magnetic Resonance Imaging (MRI), ResU-

Net. 

1. INTRODUCTION 

Brain tumors result from the abnormal and 

uncontrolled growth of cells within the brain.1-3 

They are generally classified into two 

categories: benign and malignant. Both types 

can pose serious health risks, with malignant 

tumors typically exhibiting rapid growth and the 

potential to invade or metastasize to other parts 

of the body. Brain tumors are commonly 

diagnosed through imaging techniques such as 

CT, MRI, and PET, or via clinical tests 

including biopsy and cerebrospinal fluid 

analysis.4-6 Early detection plays a critical role in 

improving treatment outcomes and increasing 

the survival rate of patients. 

In recent years, artificial intelligence (AI), 

particularly deep learning techniques, has 

experienced rapid advancements and opened up 

a wide range of applications across various 

domains, especially in healthcare.7,8 In the field 

of medical imaging, deep learning architectures 

such as GoogLeNet, U-Net, VGG, ResNet, 

Inception, DenseNet, and DeepLab have been 

widely adopted for brain tumor detection and 

classification tasks.9-12 One of the most 

prominent applications is the identification and 

classification of brain tumors from magnetic 

resonance imaging (MRI), which greatly assists 

physicians in making accurate diagnoses and 

formulating effective treatment plans.13,14 The 

integration of deep learning into medical 

practice promises higher diagnostic accuracy, 

reduced processing time, and minimized 

subjectivity compared to traditional diagnostic 

approaches. 

Among deep learning models, the U-Net is one 

of the most pioneering and widely adopted 

architectures for brain tumor segmentation in 

medical imaging.15 Variants of U-Net, such as 

ResU-Net16, FC-DenseNet17, and DeepLabv3+18, 

have been developed to further enhance feature 

extraction capabilities and improve 

segmentation accuracy. However, the 

performance of each model varies depending on 

the dataset characteristics and training 

conditions. 

U-Net follows a symmetric encoder–decoder 

architecture, connected through a central 

bottleneck. The encoder is responsible for 

extracting hierarchical features via convolutional 

blocks (ConvBlock) and progressively reducing 

spatial resolution using max pooling layers 19. 

Conversely, the decoder restores the original 

image resolution through upsampling layers 

(UpConv), while incorporating corresponding 

features from the encoder via skip connections. 

These skip connections help retain important 
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spatial details that may be lost during 

downsampling. Typically, the input MRI image 

has a size of 256×256×3, and the output is a 

binary segmentation map of size 256×256×120, 

representing the tumor region. 

ResU-Net is constructed based on a symmetric 

encoder–decoder architecture similar to U-Net, 

with the key distinction being the replacement of 

standard convolutional blocks by ResNet 

blocks.21 The integration of internal residual 

connections enhances feature extraction 

capability and mitigates information loss during. 

The image resolution is progressively 

downsampled from 256×256 → 128×128 → 

64×64 → 32×32 → 16×16, while the number of 

feature maps increases accordingly to capture 

deeper semantic representations. 

On the other hand, FC-DenseNet leverages 

Dense Blocks to promote feature reuse.22,23 Its 

architecture also comprises three main 

components: encoder, bottleneck, and decoder. 

The encoder processes the input image of size 

256×256×3 using a 3×3 convolution layer with 

48 filters to extract initial features. This is 

followed by multiple Dense Blocks, each 

consisting of densely connected convolutional 

layers, which significantly enhance feature 

learning. Between these blocks, Transition 

Down layers (composed of convolution and 

pooling) is applied to reduce spatial resolution. 

The bottleneck section utilizes a specialized 

Dense Block with a higher number of filters to 

optimize deep feature learning before 

transitioning to the decoder.24,25 The decoder 

includes Transition Up layers (via upsampling or 

transposed convolution) to restore the image 

resolution, followed by Dense Blocks to recover 

detailed information. Skip connections from the 

encoder are incorporated to retain essential 

spatial features. The final output is a binary 

segmentation map of size 256×256×1, 

accurately highlighting the tumor region in the 

brain image. 

DeepLabV3+ adopts an encoder–decoder 

architecture but introduces several notable 

enhancements compared to previous models.16,26 

(1) The input image of size 256×256×3 is passed 

through a pre-trained Xception feature extractor, 

a deep neural network known for its strong 

feature extraction capability. The model 

incorporates two skip connections from 

intermediate layers (16×16×1024 and 

32×32×256) to retain multi-scale spatial 

information. (2) A key component of this 

architecture is the Atrous Spatial Pyramid 

Pooling (ASPP) module, which captures global 

contextual information at multiple scales using 

atrous (dilated) convolutions. This design 

improves the model’s ability to detect objects of 

varying sizes and shapes, such as brain tumors. 

(3) After merging the features from ASPP and 

the skip connections, the model applies further 

convolutional layers and a final upsampling step 

to produce a binary output image of size 

256×256×1 representing the segmented tumor 

region. 

This study proposes a deep learning-based 

approach using the ResU-Net model for brain 

tumor classification and severity assessment 

based on tumor area. MRI brain images from the 

publicly available LGG Segmentation dataset 

were preprocessed through contrast 

enhancement, normalization to the range [0, 1], 

and binary labeling (tumor vs. non-tumor). The 

processed data were split into training, 

validation, and test sets for training the ResU-

Net model. Tumor area was computed as an 

indicator of disease severity. To evaluate the 

effectiveness of the proposed method, ResU-Net 

was compared with other deep learning models 

using the same dataset. Experimental results 

demonstrate that ResU-Net outperformed other 

models in both classification accuracy and tumor 

area estimation. These findings underscore the 

potential of ResU-Net for real-time automatic 

brain tumor detection and severity evaluation in 

clinical applications. 

2. RESEARCH METHODOLOGY 

The dataset used in this study is the LGG 

Segmentation Dataset (Low-Grade Glioma). It 

contains 3D MRI images of patients diagnosed 

with low-grade brain tumors. The data origin is 

detailed in the study conducted by the Cancer 

Genome Atlas Research Network. Both tumor 

and non-tumor images were split into training, 

testing, and validation sets in a (70:10:20) ratio, 

as illustrated in Figure 1. The entire workflow of 

the proposed method consists of data 

preprocessing, model construction, training, 

performance evaluation, and comparison. 
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Figure 1. The dataset is split into (Train:Test:Validation) in a (70:10:20) ratio. 

In this study, Google Colab is utilized as the 

programming environment, integrated with GPU 

hardware to optimize the training process of 

deep learning models. The hardware setup 

includes an NVIDIA A100-SXM4-40GB GPU 

with 42.5 GB of VRAM, an Intel(R) Xeon(R) 

CPU running at 2.20GHz, 89.6 GB of RAM, and 

50 GB of storage via Google Drive. The main 

programming language used is Python 3.10. The 

software stack includes TensorFlow 2.11, Keras, 

and PyTorch for deep learning, along with 

NumPy, Pandas, OpenCV, Matplotlib, and 

Seaborn for data processing and visualization.  

2.1. Data pre-processing 

Figure 2 illustrates an example of an original 

MRI scan (Figure 2(a)) and its corresponding 

mask (Figure 2(b)) from the LGG Segmentation 

Dataset. The 3D MRI volumes in the dataset are 

sliced into 2D images and resized to a 

standardized resolution of 256×256 pixels. The 

preprocessing steps include intensity 

normalization to balance the image contrast, 

scaling pixel values to the [0, 1] range, and 

converting labels into binary format to 

distinguish between tumor and non-tumor brain 

images. 

 

 

Figure 2. Original MRI image (a) and its 

corresponding mask (b) from the LGG 

segmentation dataset. 

In this study, the ResU-Net model is employed 

for brain tumor segmentation and tumor area 

estimation. Its performance is compared against 

three other models: U-Net, FC-DenseNet, and 

DeepLabV3+. All models are trained under the 

same conditions, including 200 training epochs, 

an initial learning rate of 0.001, the Adam 

optimizer, and the Dice Loss function as the 

evaluation metric. 

2.2. ResU-Net deep learning architecture 

ResU-Net is an enhanced variant of the U-Net 

architecture that incorporates residual blocks to 

improve gradient flow during deep network 

training. Figure 3 illustrates the overall structure 

of the ResU-Net model. Similar to U-Net, ResU-

Net consists of two main components: an 

encoder and a decoder. In the encoder block, 

ResNetConv modules are employed to enhance 

feature extraction capabilities and mitigate 
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information loss during backpropagation, thanks 

to internal residual connections [10, 11]. The 

spatial resolution of the feature maps is 

progressively reduced through the layers: from 

256×256 → 128×128 → 64×64 → 32×32 → 

16×16, while the number of feature channels 

increases. 

 

Figure 3. Architecture of the ResU-Net model31 

The decoder block utilizes up-sampling layers to 

restore the original image resolution and 

integrates contextual information from the 

encoder via skip connections, which help to 

accurately recover fine image details. The final 

output of the ResU-Net model is a binary image 

of size 256×256×1, representing the segmented 

brain tumor region. 

2.3. Model evaluation metrics 

To evaluate the performance of the segmentation 

models, this study employs commonly used 

metrics, including Accuracy, Precision, Recall, 

F1-Score, IoU, and Dice Coefficient.27,28 The 

formulas for these metrics are presented as 

follows: 

Accuracy: The ratio of correctly classified 

pixels (both tumor and non-tumor regions) to the 

total number of pixels. However, accuracy can 

be misleading in the case of imbalanced data 

(e.g., the tumor region is much smaller than the 

background). 

Precision (Positive Predictive Value): 

Indicates how many of the pixels predicted as 

tumor by the model is actually tumor pixels. 

High precision means the model generates fewer 

false positives. 

Recall (Sensitivity): The proportion of actual 

tumor pixels correctly identified by the model. 

High recall ensures that tumor regions are not 

missed. 

F1-Score: The harmonic mean of Precision and 

Recall, providing a balanced assessment 

between false positives and false negatives. 

IoU (Intersection over Union): Measures the 

overlap between the predicted segmentation and 

the ground truth, calculated as the ratio of their 

intersection over their union. It is widely used in 

segmentation tasks. 

Dice Coefficient: Similar to IoU but places 

more emphasis on the overlapping region. It is 

frequently used in medical image analysis due to 

its ability to accurately evaluate small lesion 

regions. 

All these metrics are calculated on the test set 

and are used to objectively compare the 

performance of different models.  

2.4. Tumor severity assessment 

To evaluate the severity of a brain tumor, one of 

the key metrics is its area. By comparing the 

tumor area in the current MRI scan with 

previous scans, specialists can assess the 

effectiveness of the treatment. For instance, if 

the tumor area remains unchanged, it suggests 
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that the treatment is effectively halting tumor 

growth. Conversely, an increase in tumor size 

indicates disease progression and implies that 

the current treatment regimen may be ineffective 

and needs revision. 

In this study, two methods are proposed for 

calculating the tumor area. One of them involves 

calculating the area based on the number of 

pixels identified as tumor regions in the MRI 

image. To compute the tumor area, the 

resolution of the MRI image in DPI (Dots Per 

Inch) is considered. The total tumor area is then 

given by 

 T p pS N S=                          (1) 

Where, ST  is the tumor area (mm²), Np is the 

number of pixels identified as tumor tissue by 

the deep learning model. For MRI images with a 

DPI of 96, the side length of one pixel is 

calculated as 
25.4mm

1pixel 0.265mm
96

=  . 

Thus, the area of a single pixel is 
2 20.265 0.07mmpS =  . 

3. RESULTS AND DISCUSSION 

3.1 Training performance evaluation 

During the training phase, two key metrics were used 

to preliminarily assess the performance of the 

models: Dice Coefficient and Loss. Figure 4 and 5 

illustrate the evolution of the Dice Coefficient and 

Loss values, respectively, throughout the training and 

validation processes for the four segmentation 

models: U-Net, ResU-Net, FC-DenseNet, and 

DeepLabV3+. 

 

Figure 4. Dice Coefficient plots for (a) U-Net, (b) ResU-Net, (c) FC-DenseNet, and (d) DeepLabV3+. 

In terms of the Dice Coefficient, U-Net and FC-

DenseNet achieved faster convergence (within 

10 epochs) compared to ResU-Net and 

DeepLabV3+. Although ResU-Net required a 

longer convergence time, it achieved the highest 

segmentation accuracy of approximately 90% 

(see Figure 4b), while U-Net and FC-DenseNet 

both reached around 85% accuracy (Figure 4a 

and 4c). Among all models, DeepLabV3+ 

demonstrated the weakest performance, with 

slower convergence (around 25 epochs) and the 

lowest accuracy (approximately 70%) as shown 

in Figure 4d. Regarding the Loss metric, ResU-

Net again showed superior performance, with 

the loss value approaching zero (Figure 5b). In 

contrast, the other three models maintained 

higher loss values around 0.2 (Figure 5a, 5c, and 

5d). 
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Figure 5. Loss plots for (a) U-Net, (b) ResU-Net, (c) FC-DenseNet, and (d) DeepLabV3+. 

Table 1 presents a comparative analysis of Dice 

Coefficient and Intersection over Union (IoU) 

metrics for four deep learning models: U-Net, 

ResU-Net, FC-DenseNet, and DeepLabV3+, 

across training, validation, and testing datasets. 

Among these models, ResU-Net demonstrates 

superior performance across all three data splits. 

It achieves the highest Dice scores of 96% 

(Train), 90% (Validation), and 92% (Test), and 

corresponding IoU scores of 94%, 87%, and 

90%, respectively. These results indicate that 

ResU-Net not only learns effectively from the 

training data but also generalizes well to unseen 

data. 

Table 1. Dice Coefficient and IoU Scores of Different Models on Train, Validation, and Test Sets. 

Model DICE-COEF IoU 

 Train Val Test Train Val Test 

U-Net 0.89 0.85 0.85 0.86 0.82 0.82 

ResU-Net 0.96 0.90 0.92 0.94 0.87 0.90 

FC-

DenseNet 
0.92 0.87 0.89 0.89 0.83 0.87 

DeepLabV3+ 0.89 0.85 0.88 0.84 0.80 0.85 

 

FC-DenseNet also performs competitively, 

achieving Dice scores of 92%, 87%, and 89%, 

and IoU scores of 89%, 83%, and 87% for the 

same respective datasets. While slightly lower 

than ResU-Net, FC-DenseNet outperforms both 

U-Net and DeepLabV3+. Despite being a state-

of-the-art segmentation model, DeepLabV3+ 

shows relatively moderate performance, with 

Dice scores of 89%, 85%, and 88%, and IoU 

scores of 84%, 80%, and 85%. These are 

comparable to or slightly better than U-Net, 

which scores 85%–89% (Dice) and 82%–86% 

(IoU), but fall short of the results achieved by 

ResU-Net and FC-DenseNet. In summary, 

ResU-Net achieves the best balance between 

learning capacity and generalization, making it 

the most effective model for brain tumor 

segmentation in this study. 

3.2 Brain tumor classification performance 

evaluation 

Figure 6 illustrates the confusion matrices for 
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four models (U-Net, ResU-Net, FC-DenseNet, 

and DeepLabv3+) in classifying brain MRI 

images into two categories: "Tumor" and "No 

Tumor." Each matrix presents the number of 

correctly and incorrectly classified MRI images. 

The U-Net model correctly classified 247 non-

tumor images and 110 tumor images, but 

misclassified 20 non-tumor images as tumors 

and 16 tumor images as non-tumor (see Figure 

6(a)). 

 

Figure 6. Confusion matrices of the models: (a) U-Net model; (b) resU-Net model; (c) FC-DenseNet model; (d) 

DeepLabv3+ model. 

The ResU-Net model achieved better performance, 

correctly identifying 260 non-tumor and 118 tumor 

images, with only 7 non-tumor and 8 tumor images 

misclassified (see Figure 6(b)). FC-DenseNet 

correctly classified 253 non-tumor and 115 tumor 

images, while misclassifying 14 non-tumor and 11 

tumor images (see Fig. 6(c)). 

DeepLabv3+ yielded the highest overall accuracy, 

with 266 non-tumor and 112 tumor images correctly 

identified. However, it still misclassified 1 non-tumor 

and 14 tumor images (see Figure 6(d)). Generally, 

ResU-Net demonstrated a balanced performance 

across both classes, whereas DeepLabv3+ excelled in 

detecting non-tumor images but was slightly less 

accurate in identifying tumor cases. These results 

suggest that selecting the appropriate model depends 

on the dataset characteristics and application 

priorities whether maximizing tumor detection or 

minimizing false alarms. 

3.3 Segmentation and prediction results 

evaluation 

Figure 7 shows the prediction results for two 

brain MRI images without tumors (Fig. 7(a)), 

using four deep learning models: U-Net (Figure 

7(c)), ResU-Net (Figure 7(d)), FC-DenseNet 

(Figure 7(e)), and DeepLabV3+ (Figure 7(f)). 

The experimental results indicate that all four 

models achieved 100% accuracy in correctly 

identifying tumor-free MRI scans. 

Figure 8 showcases the segmentation results of 

brain tumors from three different MRI scans 

using four deep learning models. For each case, 

the figure displays the original MRI image, the 

ground truth mask, and the predicted masks 

from U-Net, ResU-Net, FC-DenseNet, and 

DeepLabV3+. The findings reveal that while all 

models can detect tumor regions, their accuracy 

and consistency vary: (1) ResU-Net and FC-

DenseNet exhibit the closest agreement with the 

ground truth, particularly for tumors with 

regular, simple shapes; (2) U-Net sometimes 

produces incomplete or irregular segmentations, 

especially along tumor boundaries; and (3) 

DeepLabV3+ delivers well-defined boundaries 

for large tumors but tends to blur or 
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overestimate boundaries in cases of small or irregularly shaped tumors. 

 

Figure 7. MRI images without brain tumors: (a) original MRI images; (b) ground truth masks; (c) 

predicted masks by U-Net; (d) by ResU-Net; (e) by FC-DenseNet; (f) by DeepLabV3+. 

 

Figure 8. MRI images with brain tumors: (a) original MRI images; (b) ground truth masks; (c) 

predicted masks by U-Net; (d) by ResU-Net; (e) by FC-DenseNet; (f) by DeepLabV3+. 

Figure 9 presents tumor segmentation results on 

two MRI images, along with key quantitative 

metrics including Tumor Pixel: the number of 

pixels representing the tumor region in the 

ground truth mask; Tumor Pred: the number of 

tumor pixels predicted by the deep learning 

models; Correct Pixel: the number of correctly 

identified tumor pixels; Dice (%) – the Dice 

coefficient indicating the overlap between 

predicted and ground truth tumor regions; and 

Area is the estimated tumor area. DeepLabv3+ 

tends to overestimate tumor size, as seen in the 

first MRI image, where the actual tumor area is 

about 2,900 pixels, but the model predicts over 

4,000 pixels. Such overestimation may trigger 

false alarms and affect clinical severity 

assessment. 

FC-DenseNet exhibits a similar but less 

pronounced overestimation, suggesting a 

conservative coverage tendency that still 

requires fine-tuning to avoid excessive 

enlargement. ResU-Net delivers the most 

accurate area estimation, closely matching the 

ground truth while maintaining a high number of 

Correct Pixels, demonstrating both precision and 

stability. In contrast, U-Net often underestimates 

tumor size, significantly reducing the detected 

tumor pixel count, which risks missing small or 

peripheral lesions potentially critical in early 

diagnosis. 

In medical applications, tumor area accuracy 

plays a critical role in assessing the extent of 

tumor invasion and supporting the development 
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of effective treatment plans. An effective model 

must not only correctly identify the tumor 

location but also accurately estimate its area. 

This ensures that physicians can avoid both 

overestimating the tumor size, which may cause 

unnecessary anxiety for the patient and hinder 

effective treatment, and underestimating it, 

which could lead to overlooking serious 

conditions. Table 2 presents a comparative 

analysis of tumor area estimations from the 

brain tumor segmentation results shown in 

Figure 9, obtained using different deep learning 

models: U-Net, ResU-Net, FC-DenseNet, and 

DeepLabv3+. Notably, tumor areas were 

calculated using Eq. (1). 

 

Figure 9. Tumor region estimation based on pixel count: (a) original MRI image; (b) ground truth mask; 

(c) predicted mask from U-Net; (d) predicted mask from ResU-Net; (e) predicted mask from FC-

DenseNet; (f) predicted mask from DeepLabv3.

Table 2 presents a comparison of tumor area 

estimation performance among four deep 

learning models, U-Net, ResU-Net, FC-

DenseNet, and DeepLabv3+, applied to two 

MRI cases (upper and lower panels of Figure 9). 

Overall, ResU-Net achieves the highest 

accuracy, yielding the smallest estimation errors 

of 11.27 mm² and 7.21 mm² for the upper and 

lower panels, respectively. This reflects its 

strong agreement with the ground truth and its 

ability to balance precise boundary detection 

with accurate size estimation, making it highly 

suitable for clinical applications. FC-DenseNet 

produces slightly higher errors (13.16 mm² and 

8.12 mm²) but still maintains good accuracy, 

indicating that it can be a viable alternative with 

further fine-tuning. In contrast, U-Net shows a 

tendency to underestimate tumor areas, which, 

despite a relatively low error in the upper panel 

(12.53 mm²), risks missing tumor tissue, 

particularly in the lower panel. DeepLabv3+, on 

the other hand, consistently overestimates tumor 

sizes, producing the largest errors (75.81 mm² 

and 48.09 mm²) due to excessive segmentation, 

which could lead to false alarms and 

inappropriate treatment planning. These findings 

highlight that ResU-Net offers the most reliable 

tumor area estimation, with FC-DenseNet as a 

potential backup option, while U-Net and 

DeepLabv3+ require further adjustment to 

mitigate underestimation and overestimation 

issues, respectively. 

3. CONCLUSION  

This study implemented and evaluated the 

performance of the ResU-Net deep learning 

model for detecting and estimating the area of 

brain tumors from MRI images. To validate the 

effectiveness of the proposed approach, ResU-

Net was compared with established models, 

including U-Net, FC-DenseNet, and 

DeepLabv3+. Experimental results demonstrate 

that ResU-Net not only achieves highly accurate 

tumor localization but also provides precise area 

estimation, outperforming the other models in 

both aspects. These promising results indicate 

that ResU-Net can significantly enhance brain 

tumor diagnosis by improving detection 

reliability and reducing human error in 

interpretation. With accurate tumor area 

estimation, clinicians can better assess disease 

severity across MRI scans, enabling more 

informed treatment planning and potentially 

improving patient outcomes. 
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