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TÓM TẮT

Bài báo này liên quan đến việc chia tách các đường cong Bézier từng khúc bậc ba và các mối quan hệ tương đương
của một số chuẩn được định nghĩa bởi các điểm điều khiển. Các đường cong Bézier từng khúc bậc ba được sử dụng
phổ biến nhất để xấp xỉ các đường cong. Chúng được hình thành từ các điểm điều khiển. Các chuẩn ∥·∥BN,3

p và ∥·∥B2N,3
p

trong không gian BN,3 được xác định bởi các điểm điều khiển. Với mục tiêu giữ bậc của đường cong và thêm tính linh
hoạt trong việc thiết kế đường cong, chúng ta thường chia tách một đường cong Bézier N khúc bậc ba thành một đường
cong Bézier 2N khúc bậc ba. Chúng ta sẽ tập trung vào các hằng số tương đương cho chuẩn ∥ · ∥BN,3

p và ∥ · ∥B2N,3
p trong

không gian BN,3 của các đường cong Bézier N khúc bậc ba. Do đó, chúng ta có thể sử dụng chuẩn ∥ · ∥BN,3
p để kiểm

tra sự hội tụ của chuỗi các đường cong Bézier từng khúc bậc ba. Kết quả này là quan trọng trong việc áp dụng đường
cong Bézier từng khúc bậc ba để tìm ra quỹ đạo tối ưu.
Từ khóa: Đường cong Bezier bậc ba, hằng số tương đương, chuẩn, chia tách, từng khúc.
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ABSTRACT

This article is concerned with splitting piecewise cubic Bézier curves and the equivalence relations for some
norms defined through control points. Piecewise cubic Bézier curves are most common to approximate curves. These
curves are established by control points. The norms ∥ · ∥BN,3

p and ∥ · ∥B2N,3
p on the space BN,3 are determined through

control points. With the purpose of keeping the degree of the curves and offering additional flexibility for curve
design, we often split N-piece cubic Bézier curves to become 2N−piece cubic Bézier curves. We will concentrate
on the equivalence constants for the norm ∥ · ∥BN,3

p and the norm ∥ · ∥B2N,3
p on the space BN,3 of N-piece cubic Bézier

curves. So, we can use the norm ∥ · ∥BN,3
p to check the convergence for sequences of piecewise cubic Bézier curves.

This result is important for applying piecewise cubic Bézier curves to detect optimal orbits.
Key words: Cubic Bézier curves, equivalence constants, norm, split, piecewise.

1. INTRODUCTION

In mathematics and engineering, there are many
curves which has complex shapes or curves which given
by a set of points. To overcome this difficulty, we create
a new curve that closely matches an existing one, often
to simplify a complex shape or to fit a set of data points.
Some methods to approximate the curve include using
simpler curves or interpolating polynomials or Bézier
curves.

In the method using simpler curves to approximate
the curve, we divide the curve into a series of points and
connect them with straight lines or circular arcs, with
more points resulting in a closer approximation. The
main advantage of approximating curves with straight
lines or circular arcs is computational simplicity and ef-
ficiency, as line segments are defined by fewer parame-
ters than higher-order curves. This method is also useful
for data compression and noise reduction by simplify-
ing complex curves. However, approximating a curve
with simple curves can lead to inaccuracies, especially
in areas of high curvature, and may result in poor extrap-
olation beyond the measured data range. (1–9)

Beside, a curve can be approximated by an interpo-
lating polynomial such as a Lagrange polynomial or a
Newton polynomial, which fits a curve through a set of
known points on the curve. This method improve the ap-
proximation as the degree of the polynomial increases.
Interpolating polynomials passing exactly through spec-
ified points. The main advantages of using interpolating
polynomials for approximation include their high accu-
racy for small datasets, the ability to obtain an explicit
function for calculations, and the ease of differentiation
and integration. They also provide exact results at the
given data points and can be used for data points that
are not equally spaced. The main disadvantages of us-

ing interpolating polynomials for curve approximation
are Runge’s phenomenon (oscillations, especially at the
endpoints), computational expense for high-degree poly-
nomials, and poor extrapolation properties, where the
curve can behave erratically outside the range of the data
points (see10–12).

Approximating a curve with a Bézier curve involves
selecting key points on the original curve to serve as
control points and endpoints for the Bézier curve(s).
For a given curve, this is often achieved by dividing it
into segments and approximating each segment with a
Bézier curve, using techniques like the de Casteljau’s
algorithm for subdivision or fitting algorithms like the
Adaptive Extension Fitting Scheme to find the optimal
control points for a set of segments. Béziers’ construc-
tion has many benefits. Initially, each Bézier curves is
presented by a few control points, then it need very lit-
tle memory. Besides, these curves is intuitive, compact
and beautiful. It’s easy to compute and design, so the
designer without mathematical background can be use
them. More, we can easily change, move, turn Bézier
curves just by changing, moving, turning their control
points. (see1,13–17).

In 1959, the mathematician Paul de Casteljau built
Bézier curve by using de Casteljau’s algorithm while
working for the French automaker Citroën. He was
the first to apply this method to computer-aided de-
sign (CAD). However, his work remained a company
secret and was not published for many years. So, his
contributions were not widely known at the time. The
Bézier curve was publicized by the French engineer
Pierre Bézier in 1962. He defined the Bézier curve
based on Bernstein polynomials. Pierre Bézier applied
Bézier curves for designing the bodywork of Renault
cars. Bézier built definitions, symbols, formulas and spe-
cially control points of Bézier curves. These things make
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it easy and convenient to represent curves in computers
software.

The computer program language PostScript uses
Bézier curves as the standard curve. Many vector graph-
ics editor and design software such as CorelDRAW,
Adobe Illustrator and Inkscape apply Bézier curves. Its
importance is due to the fact that, Bézier curves are
used in many areas of life,not only mathematics. Bézier
curves are applied in computer graphics, computer-aided
design system, robotic, industry, walking, communica-
tion, path-planning and aerospace (see15–22). Bézier
curves are also used to find plane shape optimization
which appears in many fields such as environment de-
sign, aerospace, structural mechanics, networks, auto-
motive, hydraulic, oceanology and wind engineering
(see23–28).

Bézier curves are presented in many books and arti-
cles for instance1,13,14. A continuous curve can be ap-
proximated by a Bézier curve. However, when the curve
is long and complex, the degree of the Bézier curve is
high. As a result, the computation is more difficult.
Then, the most common use of Bézier curves is as N-
piece cubic Bézier curves. We will focus uniform N-
piece cubic Bézier curves.

From29, we have the norm ∥ ·∥Bm
p on the space Bm of

Bézier curves of degree m and the norm ∥ · ∥BN,m
p on the

space BN,m of uniform N-piece Bézier curves of degree
m. These norms are computed through control points.

With the purpose of keeping the degree of the curves
and offering additional flexibility for curve design, we
often split N-piece uniform cubic Bézier curves to be-
come 2N−piece uniform cubic Bézier curves. Splitting
piecewise cubic Bézier curves keep huge part of apply-
ing these curves. Then, we study the equivalence con-
stants for the norm ∥ ·∥B2N,3

p and the norm ∥ ·∥BN,3
p on the

space of piecewise cubic Bézier curves.

Theorem 1. Let p ∈ [1,∞[∪{∞} and let β ∈ BN,3 be an
N-piece cubic Bézier curve. Then

min
{ 1

241/p ,
1
4

}
∥β∥BN,3

p ≤ ∥β∥B2N,3
p ≤ 31/p ∥β∥BN,3

p .

2. PRELIMINARIES

For the readers can follow along easily, we recall
some definitions and notations that will be used through
the article.

Definition 2. (1 chapter 6, p. 141) Given four points
W0,W1,W2 and W3, the cubic Bézier curve associated
with the four control points W0, . . . ,W3 is defined by

B([W0, . . . ,W3], t) :=
3

∑
i=0

Wibi,3(t) for t ∈ [0,1], (1)

where bi,3(t) =
(3

i

)
t i (1− t)3−i is the Bernstein polyno-

mial.

𝑊0

𝑊1

𝑊2

𝑊3

𝐵 𝑊0,𝑊1,𝑊2,𝑊3 , 𝑡 , 𝑡 ∈ [0,1]

Figure 1. A cubic Bézier curve

The points W0,W1,W2 and W3 are control points of
the cubic Bézier curve. The pentagon W0W1W2W3 is the
control polygon of the curve. The cubic Bézier curve lies
in its control polygon.

For any cubic Bézier curve

β (t) =B([W0,W1,W2,W3], t) =
3

∑
i=0

Wibi,3(t),

=(1− t)3W0 +3(1− t)2tW1 +3(1− t)t2W2 + t3W3,

for t ∈ [0,1].

Form the recursive property of Bernstein polynomi-
als, a cubic Bézier curve can be recursively determined
as a convex combination of two quadratic Bezier curves
as

β (t) =B([W0,W1,W2,W3], t)

=(1− t)
(
(1− t)2W0 +2(1− t)tW1 + t2W2

)
+ t
(
(1− t)2W1 +2(1− t)tW2 + t2W3

)
=(1− t)B([W0,W1,W2], t)+ tB([W1,W2,W3], t) .

Since b′i,n(x) = n(bi−1,n−1(x)−bi,n−1(x)) , The
derivative with respect to t of the cubic Bézier curve
is another Bezier curve which has a lower degree as
follows

d
dt

β (t) =
d
dt

B([W0,W1,W2,W3], t)

=3(1− t)2(W1 −W0)+6(1− t)t(W2 −W1)+3t2(W3 −W2)

=3B([W1 −W0,W2 −W1,W3 −W2], t) .

A uniform N-piece cubic Bézier curve is formed by
the combination of N cubic Bézier curves and the con-
necting points of the pieces are the points at t = j

N for
j = 1, . . . ,N −1. For convenient, we will omit the word
“uniform".

Definition 3. (1 chapter 7, p. 169) Let N be positive in-
tegers and W0, . . . ,WN3 be N3+ 1 points in Rn. The N-
piece cubic Bézier curve associated with control points
W0, . . . ,WN3 is defined by

β : [0,1]→ Rn

t 7→ β (t) = B
(
[Wj3, . . . ,Wj3+3],Nt − j

)
if t ∈

[ j
N
,

j+1
N

]
.
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𝑊0

𝑊1

𝑊2
𝑊3

𝑊4

𝑊5

𝑊6

𝛽 𝑡 =

𝐵 𝑊0, 𝑊1, 𝑊2, 𝑊3 , 2𝑡 = ෍

𝑖=0

3

𝑊𝑖𝑏𝑖,3 2𝑡  if 𝑡 ∈ 0,1/2

𝐵 𝑊3, 𝑊4, 𝑊5, 𝑊6 , 2𝑡 − 1 = ෍

𝑖=0

3

𝑊3+𝑖𝑏𝑖,3 2𝑡 − 1  if 𝑡 ∈ 1/2,1

Figure 2. A two-piece cubic Bézier curve

Notation 4.

• The vector space of cubic Bézier curves is denoted
by the symbol B3.

• The vector space of N-piece cubic Bézier curves
is denoted by the symbol BN,3.

We define some norms and distances through control
points on the space of cubic Bézier curves and on the
space of N-piece cubic Bézier curves.

Definition 5. Let p ∈ [1,∞]. The function ∥ ·∥B3
p : Bm →

R is defined by: For any β (t) =
m
∑

i=0
Wibi,m(t) ∈ B3,

∥β∥B3
p :=


( 3

∑
i=0

∥Wi∥p
p

)1/p
if p ∈ [1,∞[

max
i=0,...,3

{∥Wi∥∞} if p = ∞,

where ∥ · ∥p is the p-norm on Rn.

Using the Minkowski inequality and the properties
of the p-norm on n−dimensional Euclidean space Rn,

we can easily show that ∥ · ∥B3
p is a norm on the vector

space B3 of cubic Bézier curves. Indeed, this is a norm
of their control polygons. Naturally, we get an induced
distance on B3 by dB3

p (β ,γ) := ∥β − γ∥B3
p , for β ,γ ∈ B3.

Definition 6. Let p ∈ [1,∞]. The function ∥ · ∥BN,3
p :

BN,3 → R is defined by: For any β (t) = β ( j)(Nt − j) =
3
∑

i=0
Wj3+ibi,3(Nt − j) if t ∈

[
j

N
,

j+1
N

]
, j = 0, . . . ,N −1,

∥β∥BN,3
p :=


1

N1/p

(
N−1
∑
j=0

(
∥β ( j)∥B3

p

)p
)1/p

if p ∈ [1,∞[

max
j=0,...,N−1

{
∥β ( j)∥B3

∞

}
if p = ∞.

By ∥ · ∥B3
p is a norm on B3 and the Minkowski in-

equality, it is easily seen that ∥ · ∥BN,3
p is a norm on the

vector space BN,3 of N-piece cubic Bézier curves. Natu-
rally, we get an induced distance on BN,3 determined by
d

BN,3
p (β ,γ) := ∥β − γ∥BN,3

p for any β ,γ ∈ BN,3.

The norm ∥ · ∥BN,3
p is determined through the control

points. It is more convenient than the Lp norm. From29,
we have the equivalence relations between the norms
∥ · ∥BN,3

p and Lp as follows:

For p ∈ [1,∞]. The inequalities

∥β∥Lp ≤ ∥β∥BN,3
p ≤ 210 ∥β∥Lp .

hold for any β ∈ BN,3.

We can present an N-piece cubic Bézier curve as an
N-piece Bézier curve of degree 4 (see more29). So, The
norm ∥ · ∥BN,3

p and the norm ∥ · ∥BN,4
p are two norms on

the space BN,3 of N-piece cubic Bézier curves. By29,
we get a corollary about equivalence constants between
these norms as follows:

For p ∈ [1,∞]. The inequalities

1
8
∥β∥BN,3

p ≤ ∥β∥BN,4
p ≤ 2∥β∥BN,3

p .

hold for any β ∈ BN,m.

When we need more freedom for designing the
curve, we will increase the number of piece in piecewise
cubic Bézier curves. To solve this problem, we will split
piecewise cubic Bézier curves. By (2 chapter 9, p. 201),
a Bézier curve β can be split at any t0 ∈ (0,1) to be-
come two piece Bézier curves. However, when splitting

at t ̸= 1
2
, the connecting points of the pieces do not coin-

cide with the point β

(1
2

)
. This means that the obtained

curve is not uniform. So, we need split a cubic Bézier

curves at t =
1
2

to get a uniform two-piece cubic Bézier
curve as follows:

For any cubic Bézier curve

β (t) = B([W0,W1,W2,W3], t) =
3

∑
i=0

Wibi,3(t), t ∈ [0,1],

we have

β (t)=


β (0)(2t) =

3
∑

i=0
Pibi,3(2t) if t ∈

[
0, 1

2

]
β (1)(2t −1) =

3
∑

i=0
P3+ibi,3(2t −1) if t ∈

[
1
2 ,1
]
,

(2)
where

Pi =
i

∑
l=0

bl,i

(1
2

)
Wi−l , i = 0, . . . ,3,

P3+i =
i

∑
l=0

bl,i

(1
2

)
W3−i+l , i = 0, . . . ,3.

Thus, we can consider a cubic Bézier curve as a uniform
two-piece cubic Bézier curve.

More generally, let β ∈ BN,3 be an N-piece cubic
Bézier curve with control points Wj3+i ∈Rn, i= 0, . . . ,3,
j = 0, . . . ,N −1. We have

β (t) =β
( j)(Nt − j) =

3

∑
i=0

Wj3+ibi,3(Nt − j)

if t ∈
[ j

N
,

j+1
N

]
, j = 0, . . . ,N −1.
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In order to get a uniform 2N-piece cubic Bézier curve β ,
we need split at the middle point of each piece.

β (t)=



Γ(2 j)(2Nt −2 j) =
3
∑

i=0
P2 j3+ibi,3(2Nt −2 j)

if t ∈
[

2 j
2N ,

2 j+1
2N

]
Γ(2 j+1)(2Nt −2 j−1)

=
3
∑

i=0
P(2 j+1)3+ibi,3(2Nt −2 j−1)

if t ∈
[

2 j+1
2N , 2 j+2

2N

]
,

j = 0, . . . ,N −1,
(3)

where 
P2 j3+i =

i
∑

l=0
bl,i

(1
2

)
Wj3+i−l ,

P(2 j+1)3+i =
i

∑
l=0

bl,i

(1
2

)
Wj3+3−i+l ,

i = 0, . . . ,3, j = 0, . . . ,N −1.

So, β is also a 2N-piece cubic Bézier curve and the space
BN,3 of N-piece cubic Bézier curves is a subspace of the
space B2N,3 of 2N-piece cubic Bézier curves. Therefore,
the norms ∥ · ∥B2N,3

p and ∥ · ∥BN,3
p are two norms on the

space BN,3. Next, we will consider the equivalence rela-
tions between theses norms.

3. EQUIVALENCE CONSTANTS FOR THE

NORMS ∥ · ∥B2N,3
p AND ∥ · ∥BN,3

p ON BN,3

We first show a constant K such that ∥ · ∥B2N,3
p ≤

K∥ · ∥BN,3
p on BN,3. We will consider two cases p ∈ [1,∞[

and p = ∞.

Lemma 7. Let p ∈ [1,∞] and let β ∈ BN,3, we have

∥β∥B2N,3
p ≤ 31/p ∥β∥BN,3

p .

Proof. For any N-piece cubic Bézier curve β associ-
ated with control points Wj3+i ∈ Rn, i = 0, . . . ,3, j =
0, . . . ,N −1. We have

β (t) =β
( j)(Nt − j) =

3

∑
i=0

Wj3+ibi,3(Nt − j)

if t ∈
[ j

N
,

j+1
N

]
, j = 0, . . . ,N −1.

By (3), we split β to become a 2N-piece cubic Bézier
curve as follows

β (t)=



Γ(2 j)(2Nt −2 j) =
3
∑

i=0
P2 j3+ibi,3(2Nt −2 j)

if t ∈
[

2 j
2N ,

2 j+1
2N

]
Γ(2 j+1)(2Nt −2 j−1)

=
3
∑

i=0
P(2 j+1)3+ibi,3(2Nt −2 j−1)

if t ∈
[

2 j+1
2N , 2 j+2

2N

]
,

j = 0, . . . ,N −1,

where 
P2 j3+i =

i
∑

l=0
bl,i

(1
2

)
Wj3+i−l ,

P(2 j+1)3+i =
i

∑
l=0

bl,i

(1
2

)
Wj3+3−i+l ,

i = 0, . . . ,3, j = 0, . . . ,N −1.

Case p ∈ [1,∞[. Since(
∥Γ

(2 j)∥B3
p

)p
=

3

∑
i=0

∥∥∥ i

∑
l=0

bl,i

(1
2

)
Wj3+i−l

∥∥∥p

p

≤3 max
i=0,...,3

∥Wj3+i∥p
p

≤3
3

∑
i=0

∥Wj3+i∥p
p = 3

(
∥β

( j)∥B3
p

)p
,

∀ j = 0, . . . ,N −1,

and similarly(
∥Γ

(2 j+1)∥B3
p

)p
=

3

∑
i=0

∥∥∥ i

∑
l=0

bl,i

(1
2

)
Wj03+3−i+l

∥∥∥p

p

≤3
(
∥β

( j)∥B3
p

)p
,∀ j = 0, . . . ,N −1,

we obtain

∥β∥B2N,3
p

=
1

(2N)1/p

( N

∑
j=0

(
∥Γ

(2 j)∥B3
p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p
)1/p

≤ 1
(2N)1/p

( N

∑
j=0

6
(
∥β

( j)∥B3
p

)p
)1/p

≤ 31/p ∥β∥BN,3
p .

Case p = ∞. Since

∥Γ
(2 j)∥B3

∞ = max
i=0,...,3

∥∥∥ i

∑
l=0

bl,i

(1
2

)
Wj3+i−l

∥∥∥
∞

≤ max
i=0,...,3

∥Wj3+i∥∞

=∥β
( j)∥B3

∞ , ∀ j = 0, . . . ,N −1

and similarly

∥Γ
(2 j+1)∥B3

∞ = max
i=0,...,3

∥∥∥ i

∑
l=0

bl,i

(1
2

)
Wj3+i−l

∥∥∥
∞

≤ ∥β
( j)∥B3

∞ ,

∀ j = 0, . . . ,N −1,

we obtain

∥β∥B2N,D
∞ = max

j=0,...,N−1
max

{
∥Γ

(2 j)∥BD
∞ ,∥Γ

(2 j+1)∥BD
∞

}
≤ max

j=0,...,N−1
∥β

( j)∥BD
∞ = ∥β∥BN,D

∞ .

From the above two cases, we have the proof of the
lemma.

In order to show a constant k such that k∥ · ∥B2N,3
p ≤

∥ · ∥BN,3
p on the space BN,3, we also study two cases

p ∈ [1,∞[ and p = ∞.

Lemma 8. Let p ∈ [1,∞[ and let β ∈ BN,3, we have

1
241/p ∥β∥BN,3

p ≤ ∥β∥B2N,3
p .
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Proof. For any N-piece cubic Bézier curve β associ-
ated with control points Wj3+i ∈ Rn, i = 0, . . . ,3, j =
0, . . . ,N −1. We have

β (t) =β
( j)(Nt − j) =

3

∑
i=0

Pj3+ibi,3(Nt − j)

if t ∈
[ j

N
,

j+1
N

]
, j = 0, . . . ,N −1.

By (3), we split β to become a 2N-piece cubic Bézier
curve as follows

β (t)=



Γ(2 j)(2Nt −2 j) =
3
∑

i=0
P2 j3+ibi,3(2Nt −2 j)

if t ∈
[

2 j
2N ,

2 j+1
2N

]
Γ(2 j+1)(2Nt −2 j−1)

=
3
∑

i=0
P(2 j+1)3+ibi,3(2Nt −2 j−1)

if t ∈
[

2 j+1
2N , 2 j+2

2N

]
,

j = 0, . . . ,N −1,

where 
P2 j3+i =

i
∑

l=0
bl,i

(1
2

)
Wj3+i−l ,

P(2 j+1)3+i =
i

∑
l=0

bl,i

(1
2

)
Wj3+3−i+l ,

i = 0, . . . ,3, j = 0, . . . ,N −1.

We first consider
(
∥Γ(2 j)∥B3

p

)p
+
(
∥Γ(2 j+1)∥B3

p

)p
, j =

0, . . . ,N −1. Set

A=max
{
∥Wj3∥p,

1
2
∥Wj3+1∥p,

1
2
∥Wj3+2∥p,∥Wj3+3∥p

}
.

• Case 1: A = ∥Wj3∥p.
We have(

∥Γ
(2 j)∥B3

p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p

≥
(
∥Γ

(2 j)∥B3
p

)p
≥ ∥Pj3∥p

p = ∥Wj3∥p
p

≥1
6

3

∑
i=3

∥Wj3+i∥p
p =

1
6

(
∥β

( j)∥B3
p

)p
.

• Case 2: A =
1
2
∥Wj3+1∥p.

We have(
∥Γ

(2 j)∥B3
p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p

≥
(
∥Γ

(2 j)∥B3
p

)p
≥ ∥P2 j3+1∥p

p

=
∥∥∥1

2
Wj3 +

1
2

Wj3+1

∥∥∥p

p
≥ 1

4
∥Wj3+1∥p

p

≥ 1
12

3

∑
i=3

∥Wj3+i∥p
p =

1
12

(
∥β

( j)∥B3
p

)p
.

• Case 3: A =
1
2
∥Wj3+2∥p.

We will estimate Γ(2 j+1) in this case. This case is
similar to Case 2. Then, we get(

∥Γ
(2 j)∥B3

p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p

≥
(
∥Γ

( j+1)∥B3
p

)p
≥ 1

12

(
∥β

( j)∥B3
p

)p
.

• Case 4: A = ∥Wj3+4∥p.

We will estimate Γ(2 j+1) in this case. This case is
similar to Case 1. Then, we get(

∥Γ
(2 j)∥B3

p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p

≥
(
∥Γ

(2 j+1)∥B3
p

)p
≥ 1

6

(
∥β

( j)∥B3
p

)p
.

From the results of the above four cases, we obtain(
∥Γ

(2 j)∥B3
p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p

≥ 1
12

(
∥β

( j)∥B3
p

)p
, ∀ j = 0, . . . ,N −1.

Thus

∥Γβ , j0∥
B2N,D
p

=
1

(2N)1/p

(
N−1

∑
j=0

(
∥Γ

(2 j)∥B3
p

)p
+
(
∥Γ

(2 j+1)∥B3
p

)p
)1/p

≥ 1
(2N)1/p

(N−1

∑
j=0

1
12

(
∥β

( j)∥B3
p

)p
)1/p

=
1

241/p ∥β∥BN,D
p .

Lemma 9. Let β ∈ BN,3, we get

1
4
∥β∥BN,3

∞ ≤ ∥β∥B2N,3
∞ .

Proof. For any N-piece cubic Bézier curve β associ-
ated with control points Wj3+i ∈ Rn, i = 0, . . . ,3, j =
0, . . . ,N −1. We have

β (t) =β
( j)(Nt − j) =

3

∑
i=0

Wj3+ibi,3(Nt − j)

if t ∈
[ j

N
,

j+1
N

]
, j = 0, . . . ,N −1.

By (3), we split β to become a 2N-piece cubic Bézier
curve as follows

β (t)=



Γ(2 j)(2Nt −2 j) =
3
∑

i=0
P2 j3+ibi,3(2Nt −2 j)

if t ∈
[

2 j
2N ,

2 j+1
2N

]
Γ(2 j+1)(2Nt −2 j−1)

=
3
∑

i=0
P(2 j+1)3+ibi,3(2Nt −2 j−1)

if t ∈
[

2 j+1
2N , 2 j+2

2N

]
,

j = 0, . . . ,N −1,

where 
P2 j3+i =

i
∑

l=0
bl,i

(1
2

)
Wj3+i−l ,

P(2 j+1)3+i =
i

∑
l=0

bl,i

(1
2

)
Wj3+3−i+l ,

i = 0, . . . ,3, j = 0, . . . ,N −1.

First, we will consider max
{
∥Γ(2 j)∥B3

∞ ,∥Γ(2 j+1)∥B3
∞

}
,

j = 0, . . . ,N −1. Set

A = max
{
∥Pj3∥∞,

1
2
∥Pj3+1∥∞,

1
2
∥Pj3+2∥∞,∥Pj3+3∥∞

}
.
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• Case 1: A = ∥Wj3∥∞.
We have

max
{
∥Γ

(2 j)∥B3
∞ ,∥Γ

(2 j+1)∥B3
∞

}
≥∥Γ

(2 j)∥B3
∞ ≥ ∥P2 j3∥∞ = ∥Wj3∥∞ = ∥β

( j)∥B3
∞ .

• Case 2: A =
1
2
∥Wj3+1∥∞.

We have

max
{
∥Γ

(2 j)∥B3
∞ ,∥Γ

(2 j+1)∥B3
∞

}
≥∥Γ

(2 j)∥B3
∞ ≥ ∥P2 j3+1∥∞ =

∥∥∥1
2

Pj3 +
1
2

Pj3+1

∥∥∥
∞

≥1
4
∥Wj3+1∥∞ =

1
4
∥β

( j)∥B3
∞ .

• Case 3: A =
1
2
∥Wj3+2∥∞.

We will estimate Γ(2 j+1) in this case. This case is
similar to Case 2. Thus, we get

max
{
∥Γ

(2 j)∥B3
∞ ,∥Γ

(2 j+1)∥B3
∞

}
≥∥Γ

(2 j+1)∥B3
∞ ≥ 1

4
∥β

( j0)∥B3
∞ .

• Case 4: A = ∥Wj3+3∥∞.

We estimate Γ(2 j+1) in this case. This case is sim-
ilar to Case 1. Then, we get

max
{
∥Γ

(2 j)∥B3
∞ ,∥Γ

(2 j+1)∥B3
∞

}
≥∥Γ

(2 j+1)∥B3
∞ ≥ ∥β

( j)∥B3
∞ .

From the results of the above four cases, we obtain

max
{
∥Γ

(2 j)∥B3
∞ ,∥Γ

(2 j+1)∥B3
∞

}
≥ 1

4
∥β

( j)∥B3
∞ . (4)

Thus

∥β∥B2N,D
∞ = max

j=0,...,N−1
max

{
∥Γ

(2 j)∥B3
∞ ,∥Γ

(2 j+1)∥B3
∞

}
≥ max

j=0,...,N−1

1
4
∥β

( j)∥B3
∞ =

1
4
∥β∥BN,D

∞ .

By the above results, we obtain the following theo-
rem.

Theorem 1. Let p ∈ [1,∞[∪{∞} and let β ∈ BN,3 be an
N-piece cubic Bézier curve. Then

min
{ 1

241/p ,
1
4

}
∥β∥BN,3

p ≤ ∥β∥B2N,3
p ≤ 31/p ∥β∥BN,3

p .

Proof. Using Lemmas 7, 8 and 9, we get the proof of
Theorem 1.

By the above theorem, we obtain the corollary as fol-
lows:

min
{ 1

241/p ,
1
4

}
d

BN,3
p (β − γ)

≤ d
B2N,3
p (β − γ)≤ 31/p d

BN,3
p (β −∆),

for any β ,γ ∈ BN,3.

4. CONCLUSION

This article presents the norm ∥ · ∥BN,3
p of piecewise cu-

bic Bézier curves which is defined by control points.
This norm is more convenient to compute than the lp
norm. An N-piece cubic Bézier curve can be split
and reparametrized to become a 2N-piece cubic Bézier
curve. This way creates extra control points in order
to give additional freedom for curve design and avoids
increasing the degree of the curve. We also show the
equivalence constants for the norm ∥·∥BN,3

p and the norm
∥ · ∥B2N,3

p . These equivalence constants do not depend on
the number of pieces. So, the norm ∥ · ∥BN,3

p can be ap-
plied to check the convergence for sequences of piece-
wise cubic Bézier curves. This result is important for
applying piecewise cubic Bézier curves to detect optimal
orbits.
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