Mot tiép can hoc da nhiém dwa trén mé hinh ngén ngivr nhé
cho mét so bai toan xtr ly ngén ngir tw nhién

TOM TAT

Trong linh vyc Xt Iy ngon ngli tu nhién (Natural Language Processing - NLP), cac m6 hinh dua trén
Transformer da mang lai nhiing két qua hip dan vé kha ning hiéu va sinh ngon ngtt. Tuy nhién, sO lugng tham sé
cyc 16n va chi phi tinh toan cao cua cac m6 hinh nay gy khé khan cho viéc trién khai trén cac thiét bi han ché vé
tai nguyén. Diéu nay thic day viéc nghién clru phat trlen cac phuong phéap hiéu qua, mang lai sy can bang gitra kich
thudc mo hinh va hiéu sut. Bai bao nay d& xuat mot tiép can hoc da nhiém méi, dya trén mé hinh ngdn ngir nhd nhu
TinyBERT cho mét sé bai toan (tac vu) NLP, bao gdm: phan tich cam xuc, phat hién dién giai va d6 twong dong ngir
nghia ctia vin ban. Chung t6i thuc hién huin luyén ban dau théng qua co ché hoc da nhiém dé nim bét cac dic trung
ngodn ngir chung. Sau d6, mé hinh huan luyén trude nay dugce tinh chinh cho timg tic vu cu thé. Chung toi tién hanh
céc thuc nghiém dé danh gia hiéu qua cua phuong phap nay trén bo dit liéu chuan GLUE. Két qua ching minh tinh
hiéu qua ciia phuong phép ciia chung t6i trong thiét 1ap hoc da nhiém cho cac tac vu NLP khac nhau. Chiing toi cung
cip cai dat thuc nghiém cua nghién ctru nay trén kho luu trit Github (https:/github.com/Tuyenle2/Project-code-
2025.1143.93).

Twr khéa: Xur Iy ngon ngir tw nhién, hoc da nhiém, mé hinh ngon ngir nho, tinh chinh, TinyBERT.

https://github.com/Tuyenle2/Project-code-2025.1143.93
https://github.com/Tuyenle2/Project-code-2025.1143.93

A Multi-Task Learning Approach Based on Small Language
Model for Natural Language Processing Tasks

ABSTRACT

In the field of Natural Language Processing (NLP), Transformer-based models have yielded appealing results
in language understanding and generation. However, these models’ extremely high number of parameters and
computationally expensive are challenging to deployment on resource-constrained devices. This motivates research in
the development of efficient methods that offer an attractive balance between model size and performance. This paper
proposes a novel multi-task learning approach, which relies on a small language model like TinyBERT for NLP
tasks, including: sentiment analysis, paraphrase detection, and semantic textual similarity. We perform initial
training through a Multi-Task Learning (MTL) mechanism to capture general language features. Subsequently, this
pre-trained model is fine-tuned for each specific task. We conduct experiments to evaluate the effect of this
approach on the GLUE benchmark dataset. The results demonstrate the effectiveness of our method within a multi-task
learning setup for diverse NLP tasks. We provide an implementation of this work on Github repository
(https://github.com/Tuyenle2/Project-code-2025.1143.93).

Keywords: Natural language processing, multi-task learning, small language model, fine-tuning, TinyBERT.

1. INTRODUCTION "text-to-text" approaches like T5%°, or efficient
: 10

Large language models such as BERT!, adapter-based techniques . .

RoBERTa T52 XLNet} ELECTRA4 and Although modern NLP models Contlnually

GPT® have revolutionized the field of NLP, push the boundaries of performance, the

effective application of MT-FT, especially on
compact models like TinyBERT, still faces
many challenges. Key challenges in-clude
selecting and balancing tasks to avoid negative
transfer, designing optimal network
architectures for efficient parameter sharing’,
dealing with catastrophic forgetting when learn-
ing multiple tasks, and particularly addressing
the limited capacity of small models when han-

of these compact models, multi-task fine-tuning dling the complexity of multiple data sources and

(MT-FT) has become an increasingly popular learping objectives'’. Building on these consid-
research direction in the field of NLP’. The erations, we pose three research questions (RQ)
and present main contributions to address them.

e RQI1: How can TinyBERT be

leveraged in a multi-task learning

achieving state-of-the-art performance on a wide
range of tasks. However, their massive size
and high computational requirements pose sig-
nificant barriers to deployment on resource-
constrained devices. TinyBERT®, a compact ver-
sion of BERT created through knowledge distil-
lation, has emerged as a potential solution, of-
fering an attractive balance between model size
and performance. To fully exploit the potential

primary goal of MTL is to improve the perfor-
mance of multiple related tasks by leveraging
useful information shared among them®. Instead) i
of training separate models for each task, MTL architecture to 51multaneo.u.sly learp
allows a single model to learn simultaneously these three tasks, exploiting their

from multiple tasks, thereby promoting knowl- Commo'nali.ties to improve
edge sharing and improving generalization capa- gene.rahzatlon and computational
bilities’. Various multi-task architectures and efficiency?

strategies have been proposed®, from shared en- * RQ2: After initial multi-task training,
coder layers with task-specific output layers as to what extent can individual fine-
in multi-task deep neural networks’, to unified tuning for each task improve

2

https://github.com/Tuyenle2/Project-code-2025.1143.93

performance compared to traditional
single-task training?

e RQ3: How does this approach balance
performance and computational
efficiency compared to larger models
(like BERTbase) or other approaches
in current research?

To answer these questions, we design a multi-
task learning framework built upon TinyBERT®
to tackle multiple NLP tasks including:
sentiment analysis, paraphrase detection, and
semantic textual similarity. Our main
contributions are summarized as follows:

o First, we propose a novel multi-task
learning approach, which relies on a
small language model for NLP tasks,
aiming to address the -efficiency-
performance trade-off under resource
constraints.

e Second, we demonstrate that leveraging
shared representations through MTL
followed by individual task-specific
finetuning significantly enhances the
overall performance on sentiment
analysis, paraphrase detection, and
semantic textual similarity tasks.

e Third, we provide empirical evidence
showing that despite its compact size,
TinyBERT can achieve competitive
performance with considerably lower
computational cost, offering a practical
alternative to larger models such as
BERT-base in real-world applications.

The rest of this paper is organized as

follows. Section 2 provides preliminaries on
problem statement, multi task learning, fine
tuning, and TinyBERT that form the basis for
the development of the proposed method
detailed in Section 3. Section 4 describes the
experimental setup, results and comparing the
result with BERT-base in Section 5. Section 6
briefly recalls some related work. Finally,
Section 7 wraps up the paper with conclusions
and future work.

2. BACKGROUND

2.1. Multi-Task Learning

Multi-task learning (MTL for short) is a
machine learning approach in which a single
model is trained to perform multiple related
tasks simultaneously. The core idea is that
different tasks can share information or
common representations, which helps to

improve overall performance, enhance
generalization capabilities, and reduce the risk
of overfitting, especially when data for
individual tasks is limited!'. In NLP, MTL is
often applied by sharing the encoder layers of
the model across multiple tasks, while having
separate output layers for each specific task’.

Formally, the total loss in MTL can be
defined as:

T
Llolal = Z Li (l)
i=1
where L; denotes the task-specific loss for the
ith task, and T is the number of tasks. To better
balance task learning, dynamic weighting
strategies have been proposed. One such
formulation is:

T
. L
Liota = ; w; L; with w; = T :tié (2)
This joint learning allows the model to capture
fundamental language features useful for

various objectives.

2.2. Problem Statement

Let D be the set of input texts (or text pairs,
depending on the specific task), where each
element x €D is a sentence, a text passage, or a
pair of sentences/words. For each text x (or text
pair), there will be corresponding labels for
each task:

e Sentiment analysis (SA): y. € (0; 1)
where y,, = 0 if the text has negative
sentiment, and y,, = 1 if positive.

e Paraphrase detection (PD): For a pair of
texts (x1; x2), the label y,» € (0; 1),
where y,s = 0 if the two texts are not
paraphrases of each other, and y,s =1 if
they are paraphrases.

e Semantic textual similarity (STS): For a
pair of words (wi; w»), the label yyu €
(0; 1), where yy = 0 if the two words
are antonyms, and yy = 1 if they are
synonyms (in some cases, this task
might involve determining if a word in
a specific context can be replaced by
another word without significantly
changing the sentence’s meaning).

The MTL problem with TinyBERT can be

modeled as a function f:

Jonit = D = (Vsar Ypas Ysis) 3)
Here, fuu(x) includes the model’s predicted
labels (ysa, Vpa, Vsis) Or the input x across all three

3

tasks. (Vsa, Ypa, Vsis) TEpresents the set of possible
labels for each task.
2.3. Fine-Tuning
Fine-tuning (FT for short) is a popular transfer
learning technique'? where a model that has
been pre-trained on a large amount of data
(often self-supervised tasks like language
modeling) is then adjusted or “fine-tuned” on a
smaller, task-specific dataset for a target task'>.
The pretraining process helps the model learn
rich and contextual language representations'*.
The fine-tuning step allows the model to
adapt this learned knowledge to the nuances of
the specific task, often leading to much better
performance than training a model from scratch
on limited task data'. In classification tasks, the
typical loss function used during fine-tuning is
the cross-entropy loss:

c
Leg = — Z Yelog(pe) 4)
e=1
where C is the number of classes, yc is the true
label distribution, and pc is the predicted
probability for class c. In more recent setups,
supervised contrastive learning'>'® is also
applied to encourage discriminative feature
learning:

1 N . exp(8ip/T)
LscL = N Z 120] Z log 5 P

peP(i) a€A(i) €XP(5i.a/T)

)

e N: total samples in a batch.
e P(i): set of positives (samples with the
same label as 7, excluding 7).
e |P(i)|: number of positives for anchor i.
e A(i): set of all samples in the batch
excluding i (positives and negatives).
e sip: cosine similarity between
embedding of 7 and p.
e 7. temperature parameter controlling
sharpness of the distribution.
2.4. TinyBERT
While large models like BERT! achieve
impressive performance, their size and
computational cost are significant barriers to
deployment on resource-constrained devices.
To address this issue, more compact models

have been developed. TinyBERT® utilizes
knowledge distillation to reduce the size of
BERT while retaining a large portion of its
performance.

This distillation process involves
transferring knowledge from a large teacher
model (the original BERT) to a smaller student
model (TinyBERT) during both the pre-training
and taskspecific fine-tuning stages. The
knowledge distillation loss in TinyBERT
typically integrates several components:

Lxp = aLemb + BLnidden + YLiogit (6)

where Lemb, Lhidden, and Lioie refer to the
embedding-level, hidden-state-level, and
outputlevel distillation losses, respectively.

3. METHODOLOGY

This section presents the architecture and
training process of our proposed approach,
which combines MTL and fine-tuning strategies
using the TinyBERT model. First, we detail the
architecture that supports shared learning across
multiple tasks. Then, we describe how the
TinyBERT backbone is trained in a multi-task
setting. Finally, we explain the individual fine-
tuning phase applied after MTL for task-
specific optimization.

3.1. Model Architecture

Our architecture utilizes TinyBERT as a shared
backbone to extract contextual representations
across all tasks. As shown in Figure 1, raw text
data is fed into the system as character strings.
This text is pre-processed by the TinyBERT-
Tokenizer to convert it into corresponding
tokens. The encoded tokens from each task are
then passed to the TinyBERT backbone. This is
the shared architectural component, sharing
weights across all tasks. TinyBERT processes
these token sequences and generates contextual
representations at the last hidden layer.
Specifically, the embedding vector
corresponding to the special [CLS] token from
the last hidden layer is usually taken as a
representation for the entire input sequence.

Input
— TinyBERT Tokenizer
| — input_ids, attention_mask |
v
(" TinyBERT Backbone
— Last hidden layer
— Vector [CLS]
— (Dropout) P,
Task- Specn’ c Heads
(MTL)

h A

|

STS

— Similarities

Head] [Paraphrase Head] [Sentiment Head]

— Soﬂmax — Softmax
4{ Combined Loss]47
Update weights]
v
Fine-tuning TinyBERT
— Specific tasks

v
Predict results
— Tokenizer — TinyBERT
— Classification class
\ — Label prediction P,

v

Evaluate
— Comparison with BERT base

—_—

Figure 1. Overview of proposed method.

This vector is expected to capture the composite
information of the sentence. A dropout layer is
applied after extracting the [CLS] vector to help
the model prevent overfitting during the MTL
training process. The [CLS] representation (after
the dropout layer) is then fed into separate
heads, each designed for a specific task within
the set of MTL tasks. The loss function from
each task head is computed independently.
These loss functions are then combined to form
a joint loss function for the entire MTL model.
Liotar = Wsalisa + Wdepd + wyiLsi (7
where ws,, Wpy, Wy are weights to balance the
contribution of each task. The optimization
process relies on this joint loss function to
simultaneously update the weights of the
TinyBERT backbone and the task-specific
heads. This allows TinyBERT to learn robust
and flexible language representations from
various information sources. After TinyBERT
has been pre-trained with MTL and possesses
good language understanding capabilities, it is
then fine-tuned for the specific task of interest.
In here, we fine-tune for all three
aforementioned tasks to compare the model’s

performance after fine-tuning with the model
after multi-task training. After finetuning, the
complete TinyBERT model (including the
TinyBERT backbone and the -classification
layer for the target task) is used to make
predictions. With a new input text, the system
will process it through the tokenizer, feed it into
TinyBERT, pass it through the classification
layer, and finally predict the label based on the
class with the highest probability.

The training process comprises two main

phases:

e Phase 1: Multi-task Training. The
input text x (or its components, such as
x1; x2 for PD, or words w;; ws in context
for SI) is fed through the TinyBERT
model. TinyBERT generates contextual
embeddings (or a set of embeddings).
The key point of MTL is that most of
TinyBERT’s parameters (the
Transformer layers) are shared across
all tasks, allowing the model to learn
general representation useful for
multiple tasks.

e Phase 2: Fine-tuning for Specific
NLP Tasks. From the shared

5

representation ex obtained from
TinyBERT separate output layers are
used for each task. A classification
layer is applied to the representation of
the [CLS] token from ex to predict the
sentiment label ysa. The representation
of the sentence pair from TinyBERT
(typically the [CLS] token’s
representation when the two sentences
are concatenated and fed into the
model) is passed through a
classification layer to predict the label
Vpa. Similarly, the representation of the
word pair from TinyBERT is passed
through a classification layer to predict
the label ys.
This architecture enables TinyBERT to learn
generalized features that are beneficial across
tasks, while still allowing task-level
specialization through individual fine-tuning.

3.2. Multi-task TinyBERT Training

Algorithm 1 describes the training procedure for
the multi-task TinyBERT model. First, the
TinyBERT model is initialized with pre-trained
weights. Then, appropriate labels and
classification layers are added for each task.
Data is divided into batches, and each batch is
tokenized using TinyBERT’s tokenizer to
convert text into a suitable tokenized format.
Subsequently, the TinyBERT model extracts an
embedding representing the entire sentence
from the [CLS] token. Next, the [CLS] token
(after the dropout layer) is fed into separate
heads, each designed for a specific task within
the set of MTL tasks. Finally, the loss for each
task is calculated based on its type, and model
parameters are updated through a gradient
descent algorithm. This process is repeated over
multiple epochs, and the AdamW optimizer is
used to optimize the model’s. The TinyBERT
backbone is shared among tasks, allowing the
model to learn general representations useful for
multiple tasks, while separate outputs enable the
model to adjust predictions for each specific
task. During training, the model receives input
as input-ids and attention-mask, along with a
task parameter specifying the current task.
Based on the task, the model uses the
corresponding classification or regression layer
to produce output. With the provided labels, the
model calculates the appropriate loss function
(crossEntropyLoss for classification (3)(4),

MSELoss for regression (5)) for use during
training. This architecture allows the model to
learn shared general representations through the
shared TinyBERT layer and then specialize for
each task through separate output layers.

Algorithm 1 Multi-task TinyBERT Training

Require: Multi-task dataset D for SST-2, QQP,
and STS-B; pre-trained TinyBERT model;
number of tasks N¢; task-specific weights W =
{Wsa, Wpa, Wss}, Initially set to 1.0;
hyperparameters: number of epochs E, batch
size B, embedding size £, hidden layer size H
Ensure: Trained multi-task TinyBERT model
with shared backbone and task-specific heads;
optimized combined loss function Lioi
1: Load pre-trained TinyBERT as shared
backbone
2: Add task-specific heads:
-SST-2: Linear + Softmax for binary
classification (ysa €0, 1))
-QQP: Linear + Softmax for binary
classification (ypa € {0, 1))
-STS-B: Linear layer for regression (yss €
[0, 5T)
3: Load and preprocess dataset D
4: Tokenize text using TinyBERT-Tokenizer 5:

5: for epoche = 1to E do

6: Divide D into mini-batches of size B
7: for each mini-batch do

8: Pass input through TinyBERT to

obtain [CLS] embeddings
9: Apply dropout to [CLS] embeddings
10: Compute predictions from task-

specific heads

L = _% Zil chfz() Yie log (P c)

Loa =~ ity Cemo Yire 108(Pic)

Loas = 5 31, (scoregs i — Yss.i)?
11: Combined Loss:

12: Liotal = Wsalisa + wdepd + WstsLsts
13: Compute gradients of L

14: Update model parameters using
optimizer

15: end for

16: end for

17: return Trained TinyBERT model, Lioal,
task-specific head parameters.

Algorithm 2 Fine-tuning TinyBERT for
6

Specific NLP Tasks

Require: Pre-trained multi-task TinyBERT
model, task-specific dataset Dy, loss function
Lk, hyperparameters: number of epochs E,
batch size B

Ensure: Fine-tuned TinyBERT model
optimized for the specific task

1: Initialize: Load pre-trained TinyBERT
(shared backbone + task-specific head)

2: Prepare Dataset: Load and preprocess Diask
using TinyBERT tokenizer to get input IDs and
attention masks

3: for epoche=1to E do

4. Divide Dyg¢ into mini-batches of size B
5 for each mini-batch do
6: Forward pass:

-Pass tokenized inputs through
Tiny- BERT to get [CLS]
embeddings

-Feed embeddings to task-specific
head to get predictions

7: Compute loss Liask:
-SST-2 or QQP (classification):

Liak = — % Zil Zi:u Yi.clog(Pic)

-STS-B (regression):

Lok = % Zil(scorepmd.i - '!)’lrue.i)2
8: Backward pass:

Compute gradients of Leask

9: Update model parameters using
optimizer

10: end for

11: end for

12: return Fine-tuned TinyBERT model

3.3. Fine-tuning TinyBERT for Specific NLP
Tasks

Algorithm 2 describes the process of fine-tuning
TinyBERT for specific NLP tasks. After being
pre-trained using MTL acquiring strong
language understanding capabilities, TinyBERT
is further fine-tuned on the target task of
interest. Here, we fine-tune the model for all
three aforementioned tasks to compare its
performance after fine-tuning with its
performance immediately after multi-task
training. We wuse the multi-task trained
TinyBERT model as the starting point and

further train it on data specific to each
individual task, utilizing the corresponding loss
function. The model’s weights are updated to
optimize performance for that task. This fine-
tuning process allows the model to adapt the
representations learned during the MTL phase
to better fit the unique characteristics and
requirements of each task, thereby enhancing
overall accuracy and performance.

4. EXPERIMENTS

In this section, we present the experimental
implementation based on the method described
in Section 3. Our aim is to explore the
effectiveness of using a small language model
like TinyBERT in a multi-task learning setup
for diverse NLP tasks.

4.1. Dataset

The GLUE benchmark (General Language
Understanding Evaluation) is a widely
recognized collection of diverse NLP tasks
designed to assess the language understanding
capabilities of machine learning models. This
benchmark comprises various tasks that test
different aspects of natural language
understanding. The study utilizes three datasets
from GLUE benchmark:

e SST-2 (Stanford Sentiment Treebank):
A sentiment classification dataset
comprising sentences from movie
reviews, labeled as either positive or
negative. It includes approximately
67,000 sentences for training and about
872 sentences for development
(validation) and 1,821 sentences for
testing.

e QQP (Quora Question Pairs): A
paraphrase detection dataset containing
pairs of questions from the Quora
website, labeled to indicate whether the
two questions are semantically
equivalent. This is a large dataset with
over 363,780 question pairs for training
and around 40,431 pairs for
development and 390,965 pairs for
testing. Question pairs can have
different phrasing but still convey
similar meanings, or vice versa. It uses
binary labels: duplicate or non-
duplicate.

Table 1. Validation performance at different training stages.

Task Measure | After MTL | After FT
Sentiment analysis Accuracy 0.8704 0.8922
Paraphrase detection Accuracy 0.8737 0.8822
Semantic textual similarity | Pearson 0.8624 0.8690

e STS-B (Semantic Textual Similarity
Benchmark): A semantic textual
similarity dataset containing sentence
pairs from various sources, labeled with
scores from 1 to 5 indicating their
degree of semantic similarity. It
includes approximately 7,000 sentence
pairs for training, 1,500 pairs for
development, and 1,400 pairs for
testing. Unlike SST-2 and QQP with
discrete labels, STS-B uses a
continuous scale, requiring the model to
understand a more detailed level of
semantic correlation.

4.2. Evaluation

We evaluate the model’s performance on the
validation sets for each task. For sentiment
analysis and paraphrase detection, we use
evaluate-classification:

number of correct predictions)

Accuracy =
Y total number of samples

And for semantic textual similarity, we use
evaluate-STS, which calculates the Pearson
correlation coefficient:

dYx; —T)(y; — 1)

- .
V3 (i —3)2S (i — 7)2 €

* x;: Predicted score (score,;).
* y;: Actual score (yy;).

* T,y: Mean values of predicted and actual
scores.

4.3. Experimental Setup

The experiments were conducted using PyTorch
and the Hugging Face Transformers library on a
single GPU. The pre-trained TinyBERT model
“huawei-noah/TinyBERT-General- 4L-312D7
was used as the backbone. The specific version
TinyBERT-General-4L-312D refers to a
TinyBERT model with a general configuration
(“General”), comprising 4 Transformer layers
and a hidden dimension size of 3127. Combining

MTL with fine-tuning of a compact model like
TinyBERT-General-4L-312D promises to
leverage the advantages of both approaches: the
ability to learn rich representations from
multiple tasks and the deployment efficiency of
a small model. The batch size was set to 16. The
AdamW optimizer was employed with a
learning rate of le-5 and a dropout rate of 0.01.
The number of training epochs for both the
initial multi-task training and individual fine-
tuning for each task was 5. Early stopping was
triggered if the validation score did not improve
for 2 consecutive epochs. Mixed precision
training was utilized to accelerate training and
reduce memory consumption.

5. RESULTS AND DISCUSSION
The model’s validation performance at different
training stages is presented in Table 1 and
visualized in the following Figure 2.

Validation Performance at Different Training Stages

Synonym Identification

Figure 2. Performance comparison across tasks.

The results show that initial multi-task training
enables the model to achieve significant
performance across all three tasks. After
individual fine-tuning, the accuracy for
sentiment and paraphrase tasks improved, while
the Pearson correlation for the semantic textual
similarity task also slightly increased.

Table 2. Comparing TinyBERT and BERT-base.

Criteria TinyBERT | BERT-base
Parameters ~14.5M ~110M
Transformer Layers | 4 12

Hidden Dimensions | 312 768
Inference Time ~4—6x faster| Standard
Memory Required | ~1/7 High

Table 3. Comparing TinyBERT and BERT-base performance.

Tasks | TinyBERT | TinyBERT | BERT-base | BERT-base
(MTL) (FD) (Single) (MTL)
SST-2 0.8704 0.8922 0.927 0.913
QQP 0.8737 0.8822 0.913 0.904
STS-B 0.8624 0.8690 0.894 0.885

The high performance achieved after the
initial multi-task training phase indicates that the
TinyBERT model can effectively learn shared
representations beneficial for all three tasks:
sentiment analysis, paraphrase detection, and
semantic textual similarity. This suggests that
some fundamental linguistic and semantic
knowledge can be transferred among these tasks.
Thus, the answer to RQ1 is that TinyBERT can
learn effectively from three tasks
simultaneously, achieving good performance
with a compact model.

The improvement in performance after
individual ~ fine-tuning for each task
demonstrates that continuing to train the model
on task-specific data allows it to adjust its
weights to better capture the specific nuances of
each task, leading to improved performance.
From this, we derive the answer to RQ2:
Individual fine-tuning after MTL is clearly
effective, helping to optimize for each task and
narrowing the gap with larger models.

The initial MTL phase appears to have
facilitated some positive knowledge transfer
among tasks, as evidenced by the reasonable
performance achieved across all three tasks with
a single shared model. The further
improvements observed during individual fine-
tuning indicate that additional specialization on
each task 1is Dbeneficial for maximizing
performance.

Comparing performance across tasks, the
paraphrase detection task achieved the highest
accuracy in both the initial multi-task training

phase and after individual fine-tuning. This
could be due to the clear binary nature of the
task (duplicate or non-duplicate) and the
relatively large size of the QQP dataset. The
semantic textual similarity task, being a
regression task predicting a continuous score,
had a slightly lower Pearson correlation
compared to the accuracy achieved in the
classification tasks. Table 2 compares
TinyBERT and BERTbase models, TinyBERT
is significantly more compact than BERT-base,
featuring 7.6 times fewer parameters. This leads
to faster inference speeds and lower memory
requirements, making it ideal for resource-
constrained devices.

We compare our method and results with
related work on multi-task learning and
TinyBERT on GLUE tasks: Table 3 compares
performance.

e BERT-base (single task): Devlin et al.!,
fine-tuned individually on each GLUE
task.

e BERT-base (MTL): Liu et al.” multi-
task trained on similar tasks.

TinyBERT achieves quite good performance
(87- 88%) even before fine-tuning, indicating
that MTL helps leverage common knowledge
among tasks. However, it is still about 3-4%
lower than BERT-base MTL (90-91%),
reflecting the difference in representational
capacity due to model scale. This suggests that
while TinyBERT can learn common features,
it’s not as robust as BERT-base due to its
limited number of layers and parameters. After

9

fine-tuning, TinyBERT improves by 1-2%
across all three tasks, narrowing the gap with
BERT-base. However, it does not surpass
BERT-base.

Compared to BERT-base, multitask
TinyBERT achieves 2-4% lower performance
across all three tasks (SST-2, QQP, STS-B),
even after individual fine-tuning. However, it
excels in computational efficiency, being 7.6
times smaller and 4-6 times faster in inference.
This makes TinyBERT a reasonable choice in
scenarios where efficiency is prioritized over
maximum performance, such as deployment on
edge devices or in real-time applications. The
combined MTL and FT approach of this study
also shows potential in leveraging a single
model for multiple tasks, reducing training costs
compared to individually training separate
BERT-base models. This directly answers RQ3:
Our method achieves a reasonable balance
between performance and computational
efficiency, which is particularly useful in
practical applications requiring resource savings.

6. RELATED WORK

Recent advances in NLP have explored both
large-scale pre-trained models and compact
architectures optimized for efficiency. In
particular, MTL and model compression have
emerged as two key strategies to improve
performance and reduce computational costs.
Stickland and Murray introduced projected
attention layers to adapt BERT for MTL in’. By
adding lightweight task-specific adapters, they
achieved strong performance on the GLUE
benchmark while maintaining efficiency. Their
results confirmed that parameter-efficient
adaptation strategies can make large models
more scalable across multiple tasks.

Jiao et al. proposed TinyBERT in®, which
applied a two-stage knowledge distillation
approach first at the pre-training level and then
at the task-specific fine-tuning level to compress
BERT-base into a smaller model while retaining
competitive performance. TinyBERT-4L, in
particular, achieved over 96% of BERT-base’s
performance on GLUE with only about 13% of
its parameters.

While TinyBERT was initially designed for
single-task fine-tuning, later studies have
extended its application to MTL. A notable
example is the work by Yu et al, which
explored the effect of multi-task fine-tuning on

small models such as Phi-3-Mini in the financial
domain. Their study revealed that combining
related tasks significantly improved performance
even outperforming large models like GPT-4-0
in domainspecific benchmarks.

In addition, Houlsby et al.!® proposed
adapter layers for parameter-efficient fine-
tuning, enabling multitask training with minimal
parameter overhead. The adapters can be
selectively trained for new tasks, making them
particularly useful in low-resource and multi-
domain settings.

Furthermore, a growing body of literature
focuses on dynamic task weighting to improve
MTL stability and mitigate negative transfer.
For instance, Kendall et al.'” proposed weighting
losses based on task uncertainty, while
Lakkapragada et al. used exponential moving
average loss strategies to maintain balance
during training.

Some recent surveys, for example those by
Zhang and Yu’, Crawshaw, and Yu et al., Liu et
al.’® have analyzed the training strategies and
task relatedness in MTL. These works
emphasize the importance of sharing knowledge
across tasks, selecting compatible task
combinations, and using dynamic weighting
schemes to mitigate negative transfer.

7. CONCLUSION

In this study, we proposed a novel multitask
learning approach, which relies on a small
language model like TinyBERT for NLP tasks,
including: sentiment analysis, paraphrase
detection, and semantic textual similarity. We
first trained a shared TinyBERT model using a
multitask learning framework, then fine-tuned it
individually for each task. The experimental
results showed that the initial MTL phase
enabled the model to capture shared
representations that achieved strong
performance across all tasks. Subsequent task-
specific fine-tuning further improved accuracy
and correlation scores, demonstrating the value
of combining MTL with finetuning.
Specifically, TinyBERT achieved competitive
performance while remaining significantly
smaller and faster than BERT-base making it
suitable for resource-constrained environments.
These findings highlighted the potential of small
language models like TinyBERT to serve as
efficient and effective solutions for multi-task
NLP scenarios. This approach also offers

10

practical benefits in deployment settings, such as
reduced memory usage and training costs,
without a significant compromise in task
performance.

In the future, we will explore different task
balancing strategies in the initial MTL phase to
potentially improve learned shared
representations. Investigating other fine-tuning
techniques and hyper parameters for each task
could also lead to better individually fine-tuned
models, which could then benefit the
aggregation process. Experimenting with more
sophisticated methods to determine task
similarity, possibly considering uncertainty or
variance in individual model performance, could
also be valuable. Evaluating the performance of
all models on the held-out GLUE test sets would
provide a more comprehensive assessment of
their generalization capabilities.

REFERENCES

1. Devlin, M.-W. Chang, K. Lee, K. Toutanova.
BERT: Pre-training of deep bidirectional
transformers for language understanding,
Proceedings of the 2019 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human
Language Technologies (NAACL-HLT),
Minneapolis, USA, 2019.

2. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S.
Narang, M. Matena, Y. Zhou, W. Li, P. J.
Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer,

Journal of Machine Learning Research,
2020, 21(140), 1-67.

3. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.
Salakhutdinov, Q. V. Le. XLNet:
Generalized autoregressive pretraining for
language understanding, Advances in
Neural Information Processing Systems
(NeurIPS 2019), Vancouver, Canada, 2019.

4. K. Clark, M.-T. Luong, Q. V. Le, C. D.
Manning. ELECTRA: Pre-training text
encoders as discriminators rather than
generators, International Conference on
Learning Representations (ICLR 2020),
Addis Ababa, Ethiopia, 2020.

5. T. Brown, B. Mann, N. Ryder, M. Subbiah,
et al. Language models are few-shot
learners, Advances in Neural Information
Processing Systems (NeurIPS 2020),
Vancouver, Canada, 2020.

6. X.lJiao, Y. Yin, L. Shang, X. Jiang, X. Chen,
L. Li, F. Wang, Q. Liu. TinyBERT:
Distilling BERT for natural language
understanding, Proceedings of the 2020
Conference on Empirical Methods in
Natural Language Processing (EMNLP
2020), Online Event, 2020.

7. P. Liu, X. Qiu, X. Huang. Multi-task deep
neural networks for natural language
understanding, Proceedings of the 57th
Annual Meeting of the Association for
Computational Linguistics (ACL), Florence,
Italy, 2019.

8. Y. Zhang, Z. Yu. A survey of multi-task
learning in natural language processing:
Regarding task relatedness and training
methods, Proceedings of the 17th
Conference of the European Chapter of the
Association for Computational Linguistics
(EACL), Dubrovnik, Croatia, 2023.

9. K. Clark, U. Khandelwal, O. Levy, C. D.
Manning. What does BERT look at? An
analysis of BERT s attention, Proceedings of
the Annual Meeting of the Association for
Computational Linguistics (ACL), Florence,
Italy, 2019.

10. N. Houlsby, A. Giurgiu, S. Jastrzebski, B.
Morrone, Q. De Laroussilhe, A. Gesmundo,
M. Attariyan, S. Gelly. Parameter-efficient
transfer learning for NLP, Proceedings of
the 36th International Conference on
Machine Learning (ICML), Long Beach,
USA, 2019.

11. R. Caruana. Multitask learning, Machine
Learning, 1997, 28(1), 41-75.

12. C. Sun, X. Qiu, Y. Xu, X. Huang. How to
fine-tune BERT for text classification?,
Chinese Computational Linguistics (CCL),
Kunming, China, 2019.

13. J. Howard, S. Ruder. Universal language
model fine-tuning for text classification,
Proceedings of the 56th Annual Meeting of
the Association for Computational
Linguistics (ACL), Melbourne, Australia,
2018.

14. B. McCann, J. Bradbury, C. Xiong, R.
Socher. Learned in translation:
Contextualized word vectors, Advances in

Neural Information Processing Systems
(NeurIPS), Long Beach, USA, 2017.

15. B. Gunel, J. Du, A. Conneau, V. Stoyanov.
Supervised contrastive learning for pre-

11

16.

17.

18.

trained language model fine-tuning,
International Conference on Learning
Representations (ICLR 2021), Vienna,
Austria, 2021.

P. Khosla, P. Teterwak, C. Wang, A. Sarna,
Y. Tian, C. Isola, A. Maschinot, C. Liu, D.
Krishnan. Supervised contrastive learning,
Advances in Neural Information Processing
Systems (NeurIPS), Vancouver, Canada,
2020.

A. Kendall, Y. Gal, R. Cipolla. Multi-task
learning using uncertainty to weigh losses
for scene geometry and semantics,
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, USA, 2018.

H. Liu, Y. Shen, D. Jin, et al. Multi-task
learning for natural language processing: A

survey, ACM Computing Surveys, 2021,
54(10s), 143

12

