

1

Một tiếp cận học đa nhiệm dựa trên mô hình ngôn ngữ nhỏ

cho một số bài toán xử lý ngôn ngữ tự nhiên

TÓM TẮT

 Trong lĩnh vực Xử lý ngôn ngữ tự nhiên (Natural Language Processing - NLP), các mô hình dựa trên

Transformer đã mang lại những kết quả hấp dẫn về khả năng hiểu và sinh ngôn ngữ. Tuy nhiên, số lượng tham số

cực lớn và chi phí tính toán cao của các mô hình này gây khó khăn cho việc triển khai trên các thiết bị hạn chế về

tài nguyên. Điều này thúc đẩy việc nghiên cứu phát triển các phương pháp hiệu quả, mang lại sự cân bằng giữa kích

thước mô hình và hiệu suất. Bài báo này đề xuất một tiếp cận học đa nhiệm mới, dựa trên mô hình ngôn ngữ nhỏ như

TinyBERT cho một số bài toán (tác vụ) NLP, bao gồm: phân tích cảm xúc, phát hiện diễn giải và độ tương đồng ngữ

nghĩa của văn bản. Chúng tôi thực hiện huấn luyện ban đầu thông qua cơ chế học đa nhiệm để nắm bắt các đặc trưng

ngôn ngữ chung. Sau đó, mô hình huấn luyện trước này được tinh chỉnh cho từng tác vụ cụ thể. Chúng tôi tiến hành

các thực nghiệm để đánh giá hiệu quả của phương pháp này trên bộ dữ liệu chuẩn GLUE. Kết quả chứng minh tính

hiệu quả của phương pháp của chúng tôi trong thiết lập học đa nhiệm cho các tác vụ NLP khác nhau. Chúng tôi cung

cấp cài đặt thực nghiệm của nghiên cứu này trên kho lưu trữ Github (https://github.com/Tuyenle2/Project-code-

2025.1143.93).

Từ khóa: Xử lý ngôn ngữ tự nhiên, học đa nhiệm, mô hình ngôn ngữ nhỏ, tinh chỉnh, TinyBERT.

https://github.com/Tuyenle2/Project-code-2025.1143.93
https://github.com/Tuyenle2/Project-code-2025.1143.93

2

A Multi-Task Learning Approach Based on Small Language

Model for Natural Language Processing Tasks

ABSTRACT

In the field of Natural Language Processing (NLP), Transformer-based models have yielded appealing results

in language understanding and generation. However, these models’ extremely high number of parameters and

computationally expensive are challenging to deployment on resource-constrained devices. This motivates research in

the development of efficient methods that offer an attractive balance between model size and performance. This paper

proposes a novel multi-task learning approach, which relies on a small language model like TinyBERT for NLP

tasks, including: sentiment analysis, paraphrase detection, and semantic textual similarity. We perform initial

training through a Multi-Task Learning (MTL) mechanism to capture general language features. Subsequently, this

pre-trained model is fine-tuned for each specific task. We conduct experiments to evaluate the effect of this

approach on the GLUE benchmark dataset. The results demonstrate the effectiveness of our method within a multi-task

learning setup for diverse NLP tasks. We provide an implementation of this work on Github repository

(https://github.com/Tuyenle2/Project-code-2025.1143.93).

Keywords: Natural language processing, multi-task learning, small language model, fine-tuning, TinyBERT.

1. INTRODUCTION

Large language models such as BERT1,

RoBERTa, T52, XLNet3, ELECTRA4, and

GPT5 have revolutionized the field of NLP,

achieving state-of-the-art performance on a wide

range of tasks. However, their massive size

and high computational requirements pose sig-

nificant barriers to deployment on resource-

constrained devices. TinyBERT6, a compact ver-

sion of BERT created through knowledge distil-

lation, has emerged as a potential solution, of-

fering an attractive balance between model size

and performance. To fully exploit the potential

of these compact models, multi-task fine-tuning

(MT-FT) has become an increasingly popular

research direction in the field of NLP7. The

primary goal of MTL is to improve the perfor-

mance of multiple related tasks by leveraging

useful information shared among them8. Instead

of training separate models for each task, MTL

allows a single model to learn simultaneously

from multiple tasks, thereby promoting knowl-

edge sharing and improving generalization capa-

bilities7. Various multi-task architectures and

strategies have been proposed8, from shared en-

coder layers with task-specific output layers as

in multi-task deep neural networks7, to unified

"text-to-text" approaches like T52,9, or efficient

adapter-based techniques10.

Although modern NLP models continually

push the boundaries of performance, the

effective application of MT-FT, especially on

compact models like TinyBERT, still faces

many challenges. Key challenges in-clude

selecting and balancing tasks to avoid negative

transfer, designing optimal network

architectures for efficient parameter sharing7,

dealing with catastrophic forgetting when learn-

ing multiple tasks, and particularly addressing

the limited capacity of small models when han-

dling the complexity of multiple data sources and

learning objectives10. Building on these consid-

erations, we pose three research questions (RQ)

and present main contributions to address them.

• RQ1: How can TinyBERT be

leveraged in a multi-task learning

architecture to simultaneously learn

these three tasks, exploiting their

commonalities to improve

generalization and computational

efficiency?

• RQ2: After initial multi-task training,

to what extent can individual fine-

tuning for each task improve

https://github.com/Tuyenle2/Project-code-2025.1143.93

3

performance compared to traditional

single-task training?

• RQ3: How does this approach balance

performance and computational

efficiency compared to larger models

(like BERTbase) or other approaches

in current research?

To answer these questions, we design a multi-

task learning framework built upon TinyBERT6

to tackle multiple NLP tasks including:

sentiment analysis, paraphrase detection, and

semantic textual similarity. Our main

contributions are summarized as follows:

• First, we propose a novel multi-task

learning approach, which relies on a

small language model for NLP tasks,

aiming to address the efficiency-

performance trade-off under resource

constraints.

• Second, we demonstrate that leveraging

shared representations through MTL

followed by individual task-specific

finetuning significantly enhances the

overall performance on sentiment

analysis, paraphrase detection, and

semantic textual similarity tasks.

• Third, we provide empirical evidence

showing that despite its compact size,

TinyBERT can achieve competitive

performance with considerably lower

computational cost, offering a practical

alternative to larger models such as

BERT-base in real-world applications.

The rest of this paper is organized as

follows. Section 2 provides preliminaries on

problem statement, multi task learning, fine

tuning, and TinyBERT that form the basis for

the development of the proposed method

detailed in Section 3. Section 4 describes the

experimental setup, results and comparing the

result with BERT-base in Section 5. Section 6

briefly recalls some related work. Finally,

Section 7 wraps up the paper with conclusions

and future work.

2. BACKGROUND

2.1. Multi-Task Learning

Multi-task learning (MTL for short) is a

machine learning approach in which a single

model is trained to perform multiple related

tasks simultaneously. The core idea is that

different tasks can share information or

common representations, which helps to

improve overall performance, enhance

generalization capabilities, and reduce the risk

of overfitting, especially when data for

individual tasks is limited11. In NLP, MTL is

often applied by sharing the encoder layers of

the model across multiple tasks, while having

separate output layers for each specific task7.

Formally, the total loss in MTL can be

defined as:

where Li denotes the task-specific loss for the

ith task, and T is the number of tasks. To better

balance task learning, dynamic weighting

strategies have been proposed. One such

formulation is:

This joint learning allows the model to capture

fundamental language features useful for

various objectives.

2.2. Problem Statement

Let D be the set of input texts (or text pairs,

depending on the specific task), where each

element x ∈ D is a sentence, a text passage, or a

pair of sentences/words. For each text x (or text

pair), there will be corresponding labels for

each task:

• Sentiment analysis (SA): ysa ∈ (0; 1)

where ysa = 0 if the text has negative

sentiment, and ysa = 1 if positive.

• Paraphrase detection (PD): For a pair of

texts (x1; x2), the label ypd ∈ (0; 1),

where ypd = 0 if the two texts are not

paraphrases of each other, and ypd = 1 if

they are paraphrases.

• Semantic textual similarity (STS): For a

pair of words (w1; w2), the label ysts ∈

(0; 1), where ysts = 0 if the two words

are antonyms, and ysts = 1 if they are

synonyms (in some cases, this task

might involve determining if a word in

a specific context can be replaced by

another word without significantly

changing the sentence’s meaning).

The MTL problem with TinyBERT can be

modeled as a function fmtl:

fmtl : D → (ysa, ypd, ysts) (3)

Here, fmtl(x) includes the model’s predicted

labels (ysa, ypd, ysts) or the input x across all three

4

tasks. (ysa, ypd, ysts) represents the set of possible

labels for each task.

2.3. Fine-Tuning

Fine-tuning (FT for short) is a popular transfer

learning technique12 where a model that has

been pre-trained on a large amount of data

(often self-supervised tasks like language

modeling) is then adjusted or “fine-tuned” on a

smaller, task-specific dataset for a target task13.

The pretraining process helps the model learn

rich and contextual language representations14.

The fine-tuning step allows the model to

adapt this learned knowledge to the nuances of

the specific task, often leading to much better

performance than training a model from scratch

on limited task data1. In classification tasks, the

typical loss function used during fine-tuning is

the cross-entropy loss:

where C is the number of classes, yc is the true

label distribution, and pc is the predicted

probability for class c. In more recent setups,

supervised contrastive learning15,16 is also

applied to encourage discriminative feature

learning:

(5)

where:

• N: total samples in a batch.

• P(i): set of positives (samples with the

same label as i, excluding i).

• |P(i)|: number of positives for anchor i.

• A(i): set of all samples in the batch

excluding i (positives and negatives).

• si,p: cosine similarity between

embedding of i and p.

• τ: temperature parameter controlling

sharpness of the distribution.

2.4. TinyBERT

While large models like BERT1,9 achieve

impressive performance, their size and

computational cost are significant barriers to

deployment on resource-constrained devices.

To address this issue, more compact models

have been developed. TinyBERT6 utilizes

knowledge distillation to reduce the size of

BERT while retaining a large portion of its

performance.

This distillation process involves

transferring knowledge from a large teacher

model (the original BERT) to a smaller student

model (TinyBERT) during both the pre-training

and taskspecific fine-tuning stages. The

knowledge distillation loss in TinyBERT

typically integrates several components:

where Lemb, Lhidden, and Llogit refer to the

embedding-level, hidden-state-level, and

outputlevel distillation losses, respectively.

3. METHODOLOGY

This section presents the architecture and

training process of our proposed approach,

which combines MTL and fine-tuning strategies

using the TinyBERT model. First, we detail the

architecture that supports shared learning across

multiple tasks. Then, we describe how the

TinyBERT backbone is trained in a multi-task

setting. Finally, we explain the individual fine-

tuning phase applied after MTL for task-

specific optimization.

3.1. Model Architecture

Our architecture utilizes TinyBERT as a shared

backbone to extract contextual representations

across all tasks. As shown in Figure 1, raw text

data is fed into the system as character strings.

This text is pre-processed by the TinyBERT-

Tokenizer to convert it into corresponding

tokens. The encoded tokens from each task are

then passed to the TinyBERT backbone. This is

the shared architectural component, sharing

weights across all tasks. TinyBERT processes

these token sequences and generates contextual

representations at the last hidden layer.

Specifically, the embedding vector

corresponding to the special [CLS] token from

the last hidden layer is usually taken as a

representation for the entire input sequence.

5

Figure 1. Overview of proposed method.

This vector is expected to capture the composite

information of the sentence. A dropout layer is

applied after extracting the [CLS] vector to help

the model prevent overfitting during the MTL

training process. The [CLS] representation (after

the dropout layer) is then fed into separate

heads, each designed for a specific task within

the set of MTL tasks. The loss function from

each task head is computed independently.

These loss functions are then combined to form

a joint loss function for the entire MTL model.

Ltotal = wsaLsa + wpdLpd + wsiLsi (7)

where wsa, wpd, wsi are weights to balance the

contribution of each task. The optimization

process relies on this joint loss function to

simultaneously update the weights of the

TinyBERT backbone and the task-specific

heads. This allows TinyBERT to learn robust

and flexible language representations from

various information sources. After TinyBERT

has been pre-trained with MTL and possesses

good language understanding capabilities, it is

then fine-tuned for the specific task of interest.

In here, we fine-tune for all three

aforementioned tasks to compare the model’s

performance after fine-tuning with the model

after multi-task training. After finetuning, the

complete TinyBERT model (including the

TinyBERT backbone and the classification

layer for the target task) is used to make

predictions. With a new input text, the system

will process it through the tokenizer, feed it into

TinyBERT, pass it through the classification

layer, and finally predict the label based on the

class with the highest probability.

The training process comprises two main

phases:

• Phase 1: Multi-task Training. The

input text x (or its components, such as

x1; x2 for PD, or words w1; w2 in context

for SI) is fed through the TinyBERT

model. TinyBERT generates contextual

embeddings (or a set of embeddings).

The key point of MTL is that most of

TinyBERT’s parameters (the

Transformer layers) are shared across

all tasks, allowing the model to learn

general representation useful for

multiple tasks.

• Phase 2: Fine-tuning for Specific

NLP Tasks. From the shared

6

representation ex obtained from

TinyBERT separate output layers are

used for each task. A classification

layer is applied to the representation of

the [CLS] token from ex to predict the

sentiment label ysa. The representation

of the sentence pair from TinyBERT

(typically the [CLS] token’s

representation when the two sentences

are concatenated and fed into the

model) is passed through a

classification layer to predict the label

ypd. Similarly, the representation of the

word pair from TinyBERT is passed

through a classification layer to predict

the label ysts.

This architecture enables TinyBERT to learn

generalized features that are beneficial across

tasks, while still allowing task-level

specialization through individual fine-tuning.

3.2. Multi-task TinyBERT Training

Algorithm 1 describes the training procedure for

the multi-task TinyBERT model. First, the

TinyBERT model is initialized with pre-trained

weights. Then, appropriate labels and

classification layers are added for each task.

Data is divided into batches, and each batch is

tokenized using TinyBERT’s tokenizer to

convert text into a suitable tokenized format.

Subsequently, the TinyBERT model extracts an

embedding representing the entire sentence

from the [CLS] token. Next, the [CLS] token

(after the dropout layer) is fed into separate

heads, each designed for a specific task within

the set of MTL tasks. Finally, the loss for each

task is calculated based on its type, and model

parameters are updated through a gradient

descent algorithm. This process is repeated over

multiple epochs, and the AdamW optimizer is

used to optimize the model’s. The TinyBERT

backbone is shared among tasks, allowing the

model to learn general representations useful for

multiple tasks, while separate outputs enable the

model to adjust predictions for each specific

task. During training, the model receives input

as input-ids and attention-mask, along with a

task parameter specifying the current task.

Based on the task, the model uses the

corresponding classification or regression layer

to produce output. With the provided labels, the

model calculates the appropriate loss function

(crossEntropyLoss for classification (3)(4),

MSELoss for regression (5)) for use during

training. This architecture allows the model to

learn shared general representations through the

shared TinyBERT layer and then specialize for

each task through separate output layers.

Algorithm 1 Multi-task TinyBERT Training

Require: Multi-task dataset D for SST-2, QQP,

and STS-B; pre-trained TinyBERT model;

number of tasks NC; task-specific weights W =

{wsa, wpd, wsts}, initially set to 1.0;

hyperparameters: number of epochs E, batch

size B, embedding size f, hidden layer size H

Ensure: Trained multi-task TinyBERT model

with shared backbone and task-specific heads;

optimized combined loss function Ltotal

1: Load pre-trained TinyBERT as shared

backbone

2: Add task-specific heads:

-SST-2: Linear + Softmax for binary

classification (ysa ∈ {0, 1})

-QQP: Linear + Softmax for binary

classification (ypd ∈ {0, 1})

-STS-B: Linear layer for regression (ysts ∈

[0, 5])

 3: Load and preprocess dataset D

4: Tokenize text using TinyBERT-Tokenizer 5:

 5: for epoch e = 1 to E do

 6: Divide D into mini-batches of size B

 7: for each mini-batch do

 8: Pass input through TinyBERT to

obtain [CLS] embeddings

9: Apply dropout to [CLS] embeddings

10: Compute predictions from task-

specific heads

11: Combined Loss:

12: Ltotal = wsaLsa + wpdLpd + wstsLsts

13: Compute gradients of Ltotal

14: Update model parameters using

optimizer
 15: end for

 16: end for

 17: return Trained TinyBERT model, Ltotal,

task-specific head parameters.

Algorithm 2 Fine-tuning TinyBERT for

7

Specific NLP Tasks

Require: Pre-trained multi-task TinyBERT

model, task-specific dataset Dtask, loss function

Ltask, hyperparameters: number of epochs E,

batch size B

Ensure: Fine-tuned TinyBERT model

optimized for the specific task

1: Initialize: Load pre-trained TinyBERT

(shared backbone + task-specific head)

2: Prepare Dataset: Load and preprocess Dtask

using TinyBERT tokenizer to get input IDs and

attention masks

3: for epoch e = 1 to E do

 4: Divide Dtask into mini-batches of size B

 5: for each mini-batch do

 6: Forward pass:

-Pass tokenized inputs through

Tiny- BERT to get [CLS]

embeddings

-Feed embeddings to task-specific

head to get predictions

 7: Compute loss Ltask:

 8: Backward pass:

 Compute gradients of Ltask

 9: Update model parameters using

optimizer

10: end for

11: end for

12: return Fine-tuned TinyBERT model

3.3. Fine-tuning TinyBERT for Specific NLP

Tasks

Algorithm 2 describes the process of fine-tuning

TinyBERT for specific NLP tasks. After being

pre-trained using MTL acquiring strong

language understanding capabilities, TinyBERT

is further fine-tuned on the target task of

interest. Here, we fine-tune the model for all

three aforementioned tasks to compare its

performance after fine-tuning with its

performance immediately after multi-task

training. We use the multi-task trained

TinyBERT model as the starting point and

further train it on data specific to each

individual task, utilizing the corresponding loss

function. The model’s weights are updated to

optimize performance for that task. This fine-

tuning process allows the model to adapt the

representations learned during the MTL phase

to better fit the unique characteristics and

requirements of each task, thereby enhancing

overall accuracy and performance.

4. EXPERIMENTS

In this section, we present the experimental

implementation based on the method described

in Section 3. Our aim is to explore the

effectiveness of using a small language model

like TinyBERT in a multi-task learning setup

for diverse NLP tasks.

4.1. Dataset

The GLUE benchmark (General Language

Understanding Evaluation) is a widely

recognized collection of diverse NLP tasks

designed to assess the language understanding

capabilities of machine learning models. This

benchmark comprises various tasks that test

different aspects of natural language

understanding. The study utilizes three datasets

from GLUE benchmark:

• SST-2 (Stanford Sentiment Treebank):

A sentiment classification dataset

comprising sentences from movie

reviews, labeled as either positive or

negative. It includes approximately

67,000 sentences for training and about

872 sentences for development

(validation) and 1,821 sentences for

testing.

• QQP (Quora Question Pairs): A

paraphrase detection dataset containing

pairs of questions from the Quora

website, labeled to indicate whether the

two questions are semantically

equivalent. This is a large dataset with

over 363,780 question pairs for training

and around 40,431 pairs for

development and 390,965 pairs for

testing. Question pairs can have

different phrasing but still convey

similar meanings, or vice versa. It uses

binary labels: duplicate or non-

duplicate.

8

Table 1. Validation performance at different training stages.

Task Measure After MTL After FT

Sentiment analysis Accuracy 0.8704 0.8922

Paraphrase detection Accuracy 0.8737 0.8822

Semantic textual similarity Pearson 0.8624 0.8690

• STS-B (Semantic Textual Similarity

Benchmark): A semantic textual

similarity dataset containing sentence

pairs from various sources, labeled with

scores from 1 to 5 indicating their

degree of semantic similarity. It

includes approximately 7,000 sentence

pairs for training, 1,500 pairs for

development, and 1,400 pairs for

testing. Unlike SST-2 and QQP with

discrete labels, STS-B uses a

continuous scale, requiring the model to

understand a more detailed level of

semantic correlation.

4.2. Evaluation

We evaluate the model’s performance on the

validation sets for each task. For sentiment

analysis and paraphrase detection, we use

evaluate-classification:

And for semantic textual similarity, we use

evaluate-STS, which calculates the Pearson

correlation coefficient:

4.3. Experimental Setup

The experiments were conducted using PyTorch

and the Hugging Face Transformers library on a

single GPU. The pre-trained TinyBERT model

”huawei-noah/TinyBERT-General- 4L-312D”7

was used as the backbone. The specific version

TinyBERT-General-4L-312D refers to a

TinyBERT model with a general configuration

(“General”), comprising 4 Transformer layers

and a hidden dimension size of 3127. Combining

MTL with fine-tuning of a compact model like

TinyBERT-General-4L-312D promises to

leverage the advantages of both approaches: the

ability to learn rich representations from

multiple tasks and the deployment efficiency of

a small model. The batch size was set to 16. The

AdamW optimizer was employed with a

learning rate of 1e-5 and a dropout rate of 0.01.

The number of training epochs for both the

initial multi-task training and individual fine-

tuning for each task was 5. Early stopping was

triggered if the validation score did not improve

for 2 consecutive epochs. Mixed precision

training was utilized to accelerate training and

reduce memory consumption.

5. RESULTS AND DISCUSSION

The model’s validation performance at different

training stages is presented in Table 1 and

visualized in the following Figure 2.

Figure 2. Performance comparison across tasks.

The results show that initial multi-task training

enables the model to achieve significant

performance across all three tasks. After

individual fine-tuning, the accuracy for

sentiment and paraphrase tasks improved, while

the Pearson correlation for the semantic textual

similarity task also slightly increased.

9

Table 2. Comparing TinyBERT and BERT-base.

Table 3. Comparing TinyBERT and BERT-base performance.

Tasks TinyBERT

(MTL)

TinyBERT

(FT)

BERT-base

(Single)

BERT-base

(MTL)

SST-2 0.8704 0.8922 0.927 0.913

QQP 0.8737 0.8822 0.913 0.904

STS-B 0.8624 0.8690 0.894 0.885

The high performance achieved after the

initial multi-task training phase indicates that the

TinyBERT model can effectively learn shared

representations beneficial for all three tasks:

sentiment analysis, paraphrase detection, and

semantic textual similarity. This suggests that

some fundamental linguistic and semantic

knowledge can be transferred among these tasks.

Thus, the answer to RQ1 is that TinyBERT can

learn effectively from three tasks

simultaneously, achieving good performance

with a compact model.

The improvement in performance after

individual fine-tuning for each task

demonstrates that continuing to train the model

on task-specific data allows it to adjust its

weights to better capture the specific nuances of

each task, leading to improved performance.

From this, we derive the answer to RQ2:

Individual fine-tuning after MTL is clearly

effective, helping to optimize for each task and

narrowing the gap with larger models.

The initial MTL phase appears to have

facilitated some positive knowledge transfer

among tasks, as evidenced by the reasonable

performance achieved across all three tasks with

a single shared model. The further

improvements observed during individual fine-

tuning indicate that additional specialization on

each task is beneficial for maximizing

performance.

Comparing performance across tasks, the

paraphrase detection task achieved the highest

accuracy in both the initial multi-task training

phase and after individual fine-tuning. This

could be due to the clear binary nature of the

task (duplicate or non-duplicate) and the

relatively large size of the QQP dataset. The

semantic textual similarity task, being a

regression task predicting a continuous score,

had a slightly lower Pearson correlation

compared to the accuracy achieved in the

classification tasks. Table 2 compares

TinyBERT and BERTbase models, TinyBERT

is significantly more compact than BERT-base,

featuring 7.6 times fewer parameters. This leads

to faster inference speeds and lower memory

requirements, making it ideal for resource-

constrained devices.

We compare our method and results with

related work on multi-task learning and

TinyBERT on GLUE tasks: Table 3 compares

performance.

• BERT-base (single task): Devlin et al.1,

fine-tuned individually on each GLUE

task.

• BERT-base (MTL): Liu et al.7 multi-

task trained on similar tasks.

TinyBERT achieves quite good performance

(87- 88%) even before fine-tuning, indicating

that MTL helps leverage common knowledge

among tasks. However, it is still about 3-4%

lower than BERT-base MTL (90-91%),

reflecting the difference in representational

capacity due to model scale. This suggests that

while TinyBERT can learn common features,

it’s not as robust as BERT-base due to its

limited number of layers and parameters. After

Criteria TinyBERT BERT-base

Parameters ~14.5M ~110M

Transformer Layers 4 12

Hidden Dimensions 312 768

Inference Time ~4–6x faster Standard

Memory Required ~1/7 High

10

fine-tuning, TinyBERT improves by 1-2%

across all three tasks, narrowing the gap with

BERT-base. However, it does not surpass

BERT-base.

Compared to BERT-base, multitask

TinyBERT achieves 2-4% lower performance

across all three tasks (SST-2, QQP, STS-B),

even after individual fine-tuning. However, it

excels in computational efficiency, being 7.6

times smaller and 4-6 times faster in inference.

This makes TinyBERT a reasonable choice in

scenarios where efficiency is prioritized over

maximum performance, such as deployment on

edge devices or in real-time applications. The

combined MTL and FT approach of this study

also shows potential in leveraging a single

model for multiple tasks, reducing training costs

compared to individually training separate

BERT-base models. This directly answers RQ3:

Our method achieves a reasonable balance

between performance and computational

efficiency, which is particularly useful in

practical applications requiring resource savings.

6. RELATED WORK

Recent advances in NLP have explored both

large-scale pre-trained models and compact

architectures optimized for efficiency. In

particular, MTL and model compression have

emerged as two key strategies to improve

performance and reduce computational costs.

Stickland and Murray introduced projected

attention layers to adapt BERT for MTL in7. By

adding lightweight task-specific adapters, they

achieved strong performance on the GLUE

benchmark while maintaining efficiency. Their

results confirmed that parameter-efficient

adaptation strategies can make large models

more scalable across multiple tasks.

Jiao et al. proposed TinyBERT in6, which

applied a two-stage knowledge distillation

approach first at the pre-training level and then

at the task-specific fine-tuning level to compress

BERT-base into a smaller model while retaining

competitive performance. TinyBERT-4L, in

particular, achieved over 96% of BERT-base’s

performance on GLUE with only about 13% of

its parameters.

While TinyBERT was initially designed for

single-task fine-tuning, later studies have

extended its application to MTL. A notable

example is the work by Yu et al., which

explored the effect of multi-task fine-tuning on

small models such as Phi-3-Mini in the financial

domain. Their study revealed that combining

related tasks significantly improved performance

even outperforming large models like GPT-4-o

in domainspecific benchmarks.

In addition, Houlsby et al.10 proposed

adapter layers for parameter-efficient fine-

tuning, enabling multitask training with minimal

parameter overhead. The adapters can be

selectively trained for new tasks, making them

particularly useful in low-resource and multi-

domain settings.

Furthermore, a growing body of literature

focuses on dynamic task weighting to improve

MTL stability and mitigate negative transfer.

For instance, Kendall et al.17 proposed weighting

losses based on task uncertainty, while

Lakkapragada et al. used exponential moving

average loss strategies to maintain balance

during training.

Some recent surveys, for example those by

Zhang and Yu7, Crawshaw, and Yu et al., Liu et

al.18 have analyzed the training strategies and

task relatedness in MTL. These works

emphasize the importance of sharing knowledge

across tasks, selecting compatible task

combinations, and using dynamic weighting

schemes to mitigate negative transfer.

7. CONCLUSION

In this study, we proposed a novel multitask

learning approach, which relies on a small

language model like TinyBERT for NLP tasks,

including: sentiment analysis, paraphrase

detection, and semantic textual similarity. We

first trained a shared TinyBERT model using a

multitask learning framework, then fine-tuned it

individually for each task. The experimental

results showed that the initial MTL phase

enabled the model to capture shared

representations that achieved strong

performance across all tasks. Subsequent task-

specific fine-tuning further improved accuracy

and correlation scores, demonstrating the value

of combining MTL with finetuning.

Specifically, TinyBERT achieved competitive

performance while remaining significantly

smaller and faster than BERT-base making it

suitable for resource-constrained environments.

These findings highlighted the potential of small

language models like TinyBERT to serve as

efficient and effective solutions for multi-task

NLP scenarios. This approach also offers

11

practical benefits in deployment settings, such as

reduced memory usage and training costs,

without a significant compromise in task

performance.

In the future, we will explore different task

balancing strategies in the initial MTL phase to

potentially improve learned shared

representations. Investigating other fine-tuning

techniques and hyper parameters for each task

could also lead to better individually fine-tuned

models, which could then benefit the

aggregation process. Experimenting with more

sophisticated methods to determine task

similarity, possibly considering uncertainty or

variance in individual model performance, could

also be valuable. Evaluating the performance of

all models on the held-out GLUE test sets would

provide a more comprehensive assessment of

their generalization capabilities.

REFERENCES

1. Devlin, M.-W. Chang, K. Lee, K. Toutanova.

BERT: Pre-training of deep bidirectional

transformers for language understanding,

Proceedings of the 2019 Conference of the

North American Chapter of the Association

for Computational Linguistics: Human

Language Technologies (NAACL-HLT),

Minneapolis, USA, 2019.

2. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S.

Narang, M. Matena, Y. Zhou, W. Li, P. J.

Liu. Exploring the limits of transfer learning

with a unified text-to-text transformer,

Journal of Machine Learning Research,

2020, 21(140), 1–67.

3. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.

Salakhutdinov, Q. V. Le. XLNet:

Generalized autoregressive pretraining for

language understanding, Advances in

Neural Information Processing Systems

(NeurIPS 2019), Vancouver, Canada, 2019.

4. K. Clark, M.-T. Luong, Q. V. Le, C. D.

Manning. ELECTRA: Pre-training text

encoders as discriminators rather than

generators, International Conference on

Learning Representations (ICLR 2020),

Addis Ababa, Ethiopia, 2020.

5. T. Brown, B. Mann, N. Ryder, M. Subbiah,

et al. Language models are few-shot

learners, Advances in Neural Information

Processing Systems (NeurIPS 2020),

Vancouver, Canada, 2020.

6. X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen,

L. Li, F. Wang, Q. Liu. TinyBERT:

Distilling BERT for natural language

understanding, Proceedings of the 2020

Conference on Empirical Methods in

Natural Language Processing (EMNLP

2020), Online Event, 2020.

7. P. Liu, X. Qiu, X. Huang. Multi-task deep

neural networks for natural language

understanding, Proceedings of the 57th

Annual Meeting of the Association for

Computational Linguistics (ACL), Florence,

Italy, 2019.

8. Y. Zhang, Z. Yu. A survey of multi-task

learning in natural language processing:

Regarding task relatedness and training

methods, Proceedings of the 17th

Conference of the European Chapter of the

Association for Computational Linguistics

(EACL), Dubrovnik, Croatia, 2023.

9. K. Clark, U. Khandelwal, O. Levy, C. D.

Manning. What does BERT look at? An

analysis of BERT’s attention, Proceedings of

the Annual Meeting of the Association for

Computational Linguistics (ACL), Florence,

Italy, 2019.

10. N. Houlsby, A. Giurgiu, S. Jastrzebski, B.

Morrone, Q. De Laroussilhe, A. Gesmundo,

M. Attariyan, S. Gelly. Parameter-efficient

transfer learning for NLP, Proceedings of

the 36th International Conference on

Machine Learning (ICML), Long Beach,

USA, 2019.

11. R. Caruana. Multitask learning, Machine

Learning, 1997, 28(1), 41–75.

12. C. Sun, X. Qiu, Y. Xu, X. Huang. How to

fine-tune BERT for text classification?,

Chinese Computational Linguistics (CCL),

Kunming, China, 2019.

13. J. Howard, S. Ruder. Universal language

model fine-tuning for text classification,

Proceedings of the 56th Annual Meeting of

the Association for Computational

Linguistics (ACL), Melbourne, Australia,

2018.

14. B. McCann, J. Bradbury, C. Xiong, R.

Socher. Learned in translation:

Contextualized word vectors, Advances in

Neural Information Processing Systems

(NeurIPS), Long Beach, USA, 2017.

15. B. Gunel, J. Du, A. Conneau, V. Stoyanov.

Supervised contrastive learning for pre-

12

trained language model fine-tuning,

International Conference on Learning

Representations (ICLR 2021), Vienna,

Austria, 2021.

16. P. Khosla, P. Teterwak, C. Wang, A. Sarna,

Y. Tian, C. Isola, A. Maschinot, C. Liu, D.

Krishnan. Supervised contrastive learning,

Advances in Neural Information Processing

Systems (NeurIPS), Vancouver, Canada,

2020.

17. A. Kendall, Y. Gal, R. Cipolla. Multi-task

learning using uncertainty to weigh losses

for scene geometry and semantics,

Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition

(CVPR), Salt Lake City, USA, 2018.

18. H. Liu, Y. Shen, D. Jin, et al. Multi-task

learning for natural language processing: A

survey, ACM Computing Surveys, 2021,

54(10s), 1–43

