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Một tiếp cận học đa nhiệm dựa trên mô hình ngôn ngữ nhỏ 

cho một số bài toán xử lý ngôn ngữ tự nhiên 

 
 

 

 

 

TÓM TẮT 

 Trong lĩnh vực Xử lý ngôn ngữ tự nhiên (Natural Language Processing - NLP), các mô hình dựa trên 

Transformer đã mang lại những kết quả hấp dẫn về khả năng hiểu và sinh ngôn ngữ. Tuy nhiên, số lượng tham  số 

cực lớn và chi phí tính toán cao của các mô hình này gây khó khăn cho việc triển khai trên các thiết bị hạn  chế về 

tài nguyên. Điều này thúc đẩy việc nghiên cứu phát triển các phương pháp hiệu quả, mang lại sự cân bằng giữa kích 

thước mô hình và hiệu suất. Bài báo này đề xuất một tiếp cận học đa nhiệm mới, dựa trên mô hình ngôn ngữ nhỏ như 

TinyBERT cho một số bài toán (tác vụ) NLP, bao gồm: phân tích cảm xúc, phát hiện diễn giải và độ tương đồng ngữ 

nghĩa của văn bản. Chúng tôi thực hiện huấn luyện ban đầu thông qua cơ chế học đa nhiệm để nắm bắt các đặc trưng 

ngôn ngữ chung. Sau đó, mô hình huấn luyện trước này được tinh chỉnh cho từng tác vụ cụ thể. Chúng tôi tiến hành 

các thực nghiệm để đánh giá hiệu quả của phương pháp này trên bộ dữ liệu chuẩn GLUE. Kết quả chứng minh tính 

hiệu quả của phương pháp của chúng tôi trong thiết lập học đa nhiệm cho các tác vụ NLP khác nhau. Chúng tôi cung 

cấp cài đặt thực nghiệm của nghiên cứu này trên kho lưu trữ Github (https://github.com/Tuyenle2/Project-code-

2025.1143.93). 

Từ khóa: Xử lý ngôn ngữ tự nhiên, học đa nhiệm, mô hình ngôn ngữ nhỏ, tinh chỉnh, TinyBERT. 

 

https://github.com/Tuyenle2/Project-code-2025.1143.93
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ABSTRACT 

In the field of Natural Language Processing (NLP), Transformer-based models have yielded appealing results 

in language understanding and generation. However, these models’ extremely high number of parameters and 

computationally expensive are challenging to deployment on resource-constrained devices. This motivates research in 

the development of efficient methods that offer an attractive balance between model size and performance. This paper 

proposes a novel multi-task learning approach, which relies on a small language model like TinyBERT for NLP 

tasks, including: sentiment analysis, paraphrase detection, and semantic textual similarity. We perform initial 

training through a Multi-Task Learning (MTL) mechanism to capture general language features. Subsequently, this 

pre-trained model is fine-tuned for each specific task. We conduct experiments to evaluate the effect of this 

approach on the GLUE benchmark dataset. The results demonstrate the effectiveness of our method within a multi-task 

learning setup for diverse NLP tasks. We provide an implementation of this work on Github repository 

(https://github.com/Tuyenle2/Project-code-2025.1143.93). 

Keywords: Natural language processing, multi-task learning, small language model, fine-tuning, TinyBERT. 

1. INTRODUCTION  

Large language models such as BERT1, 

RoBERTa, T52, XLNet3, ELECTRA4, and 

GPT5 have revolutionized the field of NLP, 

achieving state-of-the-art performance on a wide 

range of tasks. However, their massive size 

and high computational requirements pose sig-

nificant barriers to deployment on resource-

constrained devices. TinyBERT6, a compact ver-

sion of BERT created through knowledge distil-

lation, has emerged as a potential solution, of-

fering an attractive balance between model size 

and performance. To fully exploit the potential 

of these compact models, multi-task fine-tuning 

(MT-FT) has become an increasingly popular 

research direction in the field of NLP7. The 

primary goal of MTL is to improve the perfor-

mance of multiple related tasks by leveraging 

useful information shared among them8.  Instead 

of training separate models for each task, MTL 

allows a single model to learn simultaneously 

from multiple tasks, thereby promoting knowl-

edge sharing and improving generalization capa-

bilities7. Various multi-task architectures and 

strategies have been proposed8, from shared en-

coder layers with task-specific output layers as 

in multi-task deep neural networks7, to unified 

"text-to-text" approaches like T52,9, or efficient 

adapter-based techniques10.  

Although modern NLP models continually 

push the boundaries of performance, the 

effective application of MT-FT, especially on 

compact models like TinyBERT, still faces 

many challenges. Key challenges in-clude 

selecting and balancing tasks to avoid negative 

transfer, designing optimal network 

architectures for efficient parameter sharing7, 

dealing with catastrophic forgetting when learn-

ing multiple tasks, and particularly addressing 

the limited capacity of small models when han-

dling the complexity of multiple data sources and 

learning objectives10. Building on these consid-

erations, we pose three research questions (RQ) 

and present main contributions to address them. 

• RQ1: How can TinyBERT be 

leveraged in a multi-task learning 

architecture to simultaneously learn 

these three tasks, exploiting their 

commonalities to improve 

generalization and computational 

efficiency? 

• RQ2: After initial multi-task training, 

to what extent can individual fine-

tuning for each task improve 

https://github.com/Tuyenle2/Project-code-2025.1143.93
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performance compared to traditional 

single-task training? 

• RQ3: How does this approach balance 

performance and computational 

efficiency compared to larger models 

(like BERTbase) or other approaches 

in current research? 

To answer these questions, we design a multi-

task learning framework built upon TinyBERT6 

to tackle multiple NLP tasks including: 

sentiment analysis, paraphrase detection, and 

semantic textual similarity. Our main 

contributions are summarized as follows: 

• First, we propose a novel multi-task 

learning approach, which relies on a 

small language model for NLP tasks, 

aiming to address the efficiency-

performance trade-off under resource 

constraints. 

• Second, we demonstrate that leveraging 

shared representations through MTL 

followed by individual task-specific 

finetuning significantly enhances the 

overall performance on sentiment 

analysis, paraphrase detection, and 

semantic textual similarity tasks. 

• Third, we provide empirical evidence 

showing that despite its compact size, 

TinyBERT can achieve competitive 

performance with considerably lower 

computational cost, offering a practical 

alternative to larger models such as 

BERT-base in real-world applications. 

The rest of this paper is organized as 

follows. Section 2 provides preliminaries on 

problem statement, multi task learning, fine 

tuning, and TinyBERT that form the basis for 

the development of the proposed method 

detailed in Section 3. Section 4 describes the 

experimental setup, results and comparing the 

result with BERT-base in Section 5. Section 6 

briefly recalls some related work. Finally, 

Section 7 wraps up the paper with conclusions 

and future work. 

 

2. BACKGROUND 

2.1. Multi-Task Learning 

Multi-task learning (MTL for short) is a 

machine learning approach in which a single 

model is trained to perform multiple related 

tasks simultaneously. The core idea is that 

different tasks can share information or 

common representations, which helps to 

improve overall performance, enhance 

generalization capabilities, and reduce the risk 

of overfitting, especially when data for 

individual tasks is limited11. In NLP, MTL is 

often applied by sharing the encoder layers of 

the model across multiple tasks, while having 

separate output layers for each specific task7. 

Formally, the total loss in MTL can be 

defined as: 

 
where Li denotes the task-specific loss for the 

ith task, and T is the number of tasks. To better 

balance task learning, dynamic weighting 

strategies have been proposed. One such 

formulation is: 

 
This joint learning allows the model to capture 

fundamental language features useful for 

various objectives. 

 

2.2. Problem Statement 

Let D be the set of input texts (or text pairs, 

depending on the specific task), where each 

element x ∈ D is a sentence, a text passage, or a 

pair of sentences/words. For each text x (or text 

pair), there will be corresponding labels for 

each task: 

• Sentiment analysis (SA): ysa ∈ (0; 1) 

where ysa = 0 if the text has negative 

sentiment, and ysa = 1 if positive. 

• Paraphrase detection (PD): For a pair of 

texts (x1; x2), the label ypd ∈ (0; 1), 

where ypd = 0 if the two texts are not 

paraphrases of each other, and ypd = 1 if 

they are paraphrases. 

• Semantic textual similarity (STS): For a 

pair of words (w1; w2), the label ysts ∈ 

(0; 1), where ysts = 0 if the two words 

are antonyms, and ysts = 1 if they are 

synonyms (in some cases, this task 

might involve determining if a word in 

a specific context can be replaced by 

another word without significantly 

changing the sentence’s meaning). 

The MTL problem with TinyBERT can be 

modeled as a function fmtl:  

fmtl : D → (ysa, ypd, ysts)               (3) 

Here, fmtl(x) includes the model’s predicted 

labels (ysa, ypd, ysts) or the input x across all three 
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tasks. (ysa, ypd, ysts) represents the set of possible 

labels for each task. 

2.3. Fine-Tuning 

Fine-tuning (FT for short) is a popular transfer 

learning technique12 where a model that has 

been pre-trained on a large amount of data 

(often self-supervised tasks like language 

modeling) is then adjusted or “fine-tuned” on a 

smaller, task-specific dataset for a target task13. 

The pretraining process helps the model learn 

rich and contextual language representations14. 

The fine-tuning step allows the model to 

adapt this learned knowledge to the nuances of 

the specific task, often leading to much better 

performance than training a model from scratch 

on limited task data1. In classification tasks, the 

typical loss function used during fine-tuning is 

the cross-entropy loss: 

 
where C is the number of classes, yc is the true 

label distribution, and pc is the predicted 

probability for class c. In more recent setups, 

supervised contrastive learning15,16 is also 

applied to encourage discriminative feature 

learning: 

(5) 

where: 

• N: total samples in a batch. 

• P(i): set of positives (samples with the 

same label as i, excluding i). 

• |P(i)|: number of positives for anchor i. 

• A(i): set of all samples in the batch 

excluding i (positives and negatives). 

• si,p: cosine similarity between 

embedding of i and p. 

• τ: temperature parameter controlling 

sharpness of the distribution. 

2.4. TinyBERT 

While large models like BERT1,9 achieve 

impressive performance, their size and 

computational cost are significant barriers to 

deployment on resource-constrained devices. 

To address this issue, more compact models 

have been developed. TinyBERT6 utilizes 

knowledge distillation to reduce the size of 

BERT while retaining a large portion of its 

performance. 

This distillation process involves 

transferring knowledge from a large teacher 

model (the original BERT) to a smaller student 

model (TinyBERT) during both the pre-training 

and taskspecific fine-tuning stages. The 

knowledge distillation loss in TinyBERT 

typically integrates several components: 

 
where Lemb, Lhidden, and Llogit refer to the 

embedding-level, hidden-state-level, and 

outputlevel distillation losses, respectively. 

 

3. METHODOLOGY 

This section presents the architecture and 

training process of our proposed approach, 

which combines MTL and fine-tuning strategies 

using the TinyBERT model. First, we detail the 

architecture that supports shared learning across 

multiple tasks. Then, we describe how the 

TinyBERT backbone is trained in a multi-task 

setting. Finally, we explain the individual fine-

tuning phase applied after MTL for task-

specific optimization. 

 

3.1. Model Architecture 

Our architecture utilizes TinyBERT as a shared 

backbone to extract contextual representations 

across all tasks. As shown in Figure 1, raw text 

data is fed into the system as character strings. 

This text is pre-processed by the TinyBERT-

Tokenizer to convert it into corresponding 

tokens. The encoded tokens from each task are 

then passed to the TinyBERT backbone. This is 

the shared architectural component, sharing 

weights across all tasks. TinyBERT processes 

these token sequences and generates contextual 

representations at the last hidden layer. 

Specifically, the embedding vector 

corresponding to the special [CLS] token from 

the last hidden layer is usually taken as a 

representation for the entire input sequence. 
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Figure 1. Overview of proposed method. 
 

This vector is expected to capture the composite 

information of the sentence. A dropout layer is 

applied after extracting the [CLS] vector to help 

the model prevent overfitting during the MTL 

training process. The [CLS] representation (after 

the dropout layer) is then fed into separate 

heads, each designed for a specific task within 

the set of MTL tasks. The loss function from 

each task head is computed independently. 

These loss functions are then combined to form 

a joint loss function for the entire MTL model. 
 

Ltotal = wsaLsa + wpdLpd + wsiLsi         (7) 
 

where wsa, wpd, wsi are weights to balance the 

contribution of each task. The optimization 

process relies on this joint loss function to 

simultaneously update the weights of the 

TinyBERT backbone and the task-specific 

heads. This allows TinyBERT to learn robust 

and flexible language representations from 

various information sources. After TinyBERT 

has been pre-trained with MTL and possesses 

good language understanding capabilities, it is 

then fine-tuned for the specific task of interest. 

In here, we fine-tune for all three 

aforementioned tasks to compare the model’s 

performance after fine-tuning with the model 

after multi-task training. After finetuning, the 

complete TinyBERT model (including the 

TinyBERT backbone and the classification 

layer for the target task) is used to make 

predictions. With a new input text, the system 

will process it through the tokenizer, feed it into 

TinyBERT, pass it through the classification 

layer, and finally predict the label based on the 

class with the highest probability.  

The training process comprises two main 

phases: 

• Phase 1: Multi-task Training. The 

input text x (or its components, such as 

x1; x2 for PD, or words w1; w2 in context 

for SI) is fed through the TinyBERT 

model. TinyBERT generates contextual 

embeddings (or a set of embeddings). 

The key point of MTL is that most of 

TinyBERT’s parameters (the 

Transformer layers) are shared across 

all tasks, allowing the model to learn 

general representation useful for 

multiple tasks. 

• Phase 2: Fine-tuning for Specific 

NLP Tasks. From the shared 
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representation ex obtained from 

TinyBERT separate output layers are 

used for each task. A classification 

layer is applied to the representation of 

the [CLS] token from ex to predict the 

sentiment label ysa. The representation 

of the sentence pair from TinyBERT 

(typically the [CLS] token’s 

representation when the two sentences 

are concatenated and fed into the 

model) is passed through a 

classification layer to predict the label 

ypd. Similarly, the representation of the 

word pair from TinyBERT is passed 

through a classification layer to predict 

the label ysts. 

This architecture enables TinyBERT to learn 

generalized features that are beneficial across 

tasks, while still allowing task-level 

specialization through individual fine-tuning. 

 

3.2. Multi-task TinyBERT Training 

Algorithm 1 describes the training procedure for 

the multi-task TinyBERT model. First, the 

TinyBERT model is initialized with pre-trained 

weights. Then, appropriate labels and 

classification layers are added for each task. 

Data is divided into batches, and each batch is 

tokenized using TinyBERT’s tokenizer to 

convert text into a suitable tokenized format. 

Subsequently, the TinyBERT model extracts an 

embedding representing the entire sentence 

from the [CLS] token. Next, the [CLS] token 

(after the dropout layer) is fed into separate 

heads, each designed for a specific task within 

the set of MTL tasks. Finally, the loss for each 

task is calculated based on its type, and model 

parameters are updated through a gradient 

descent algorithm. This process is repeated over 

multiple epochs, and the AdamW optimizer is 

used to optimize the model’s. The TinyBERT 

backbone is shared among tasks, allowing the 

model to learn general representations useful for 

multiple tasks, while separate outputs enable the 

model to adjust predictions for each specific 

task. During training, the model receives input 

as input-ids and attention-mask, along with a 

task parameter specifying the current task. 

Based on the task, the model uses the 

corresponding classification or regression layer 

to produce output. With the provided labels, the 

model calculates the appropriate loss function 

(crossEntropyLoss for classification (3)(4), 

MSELoss for regression (5)) for use during 

training. This architecture allows the model to 

learn shared general representations through the 

shared TinyBERT layer and then specialize for 

each task through separate output layers. 

 
Algorithm 1 Multi-task TinyBERT Training 

 
Require: Multi-task dataset D for SST-2, QQP, 

and STS-B; pre-trained TinyBERT model; 

number of tasks NC; task-specific weights W = 

{wsa, wpd, wsts}, initially set to 1.0; 

hyperparameters: number of epochs E, batch 

size B, embedding size f, hidden layer size H 

Ensure: Trained multi-task TinyBERT model 

with shared backbone and task-specific heads; 

optimized combined loss function Ltotal 

1: Load pre-trained TinyBERT as shared 

backbone 

2: Add task-specific heads: 

-SST-2: Linear + Softmax for binary           

classification (ysa ∈ {0, 1}) 

-QQP: Linear + Softmax for binary 

classification (ypd ∈ {0, 1}) 

-STS-B: Linear layer for regression (ysts ∈ 

[0, 5]) 

 3: Load and preprocess dataset D 

4: Tokenize text using TinyBERT-Tokenizer 5:          

 5: for epoch e = 1 to E do 

 6:      Divide D into mini-batches of size B 

 7:     for each mini-batch do 

 8:          Pass input through TinyBERT to 

obtain [CLS] embeddings  

9:         Apply dropout to [CLS] embeddings 

10:          Compute predictions from task-

specific  heads 

 

11:         Combined Loss: 

12:         Ltotal = wsaLsa + wpdLpd + wstsLsts 

13:         Compute gradients of Ltotal 

14:        Update model parameters using 

optimizer 
 15:     end for 

 16:   end for 

 17: return Trained TinyBERT model, Ltotal,  

task-specific head parameters. 

 

 
Algorithm 2 Fine-tuning TinyBERT for 
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Specific NLP Tasks 

 
Require: Pre-trained multi-task TinyBERT 

model, task-specific dataset Dtask, loss function 

Ltask, hyperparameters: number of epochs E, 

batch size B 

Ensure: Fine-tuned TinyBERT model 

optimized for the specific task 

1: Initialize: Load pre-trained TinyBERT 

(shared backbone + task-specific head) 

2: Prepare Dataset: Load and preprocess Dtask 

using TinyBERT tokenizer to get input IDs and 

attention masks 

3: for epoch e = 1 to E do 

 4: Divide Dtask into mini-batches of size B 

 5: for each mini-batch do 

 6:                 Forward pass: 

-Pass tokenized inputs through 

Tiny- BERT to get [CLS] 

embeddings 

-Feed embeddings to task-specific 

head to get predictions 

 7:                 Compute loss Ltask: 

 

 8:                Backward pass:  

                    Compute gradients of Ltask 

 9:                Update model parameters using                      

optimizer 

10:      end for 

11: end for 

12: return Fine-tuned TinyBERT model 

 
 

3.3. Fine-tuning TinyBERT for Specific NLP 

Tasks 

Algorithm 2 describes the process of fine-tuning 

TinyBERT for specific NLP tasks. After being 

pre-trained using MTL acquiring strong 

language understanding capabilities, TinyBERT 

is further fine-tuned on the target task of 

interest. Here, we fine-tune the model for all 

three aforementioned tasks to compare its 

performance after fine-tuning with its 

performance immediately after multi-task 

training. We use the multi-task trained 

TinyBERT model as the starting point and 

further train it on data specific to each 

individual task, utilizing the corresponding loss 

function. The model’s weights are updated to 

optimize performance for that task. This fine-

tuning process allows the model to adapt the 

representations learned during the MTL phase 

to better fit the unique characteristics and 

requirements of each task, thereby enhancing 

overall accuracy and performance. 

 

4. EXPERIMENTS 

In this section, we present the experimental 

implementation based on the method described 

in Section 3. Our aim is to explore the 

effectiveness of using a small language model 

like TinyBERT in a multi-task learning setup 

for diverse NLP tasks. 

 

4.1. Dataset 

The GLUE benchmark (General Language 

Understanding Evaluation) is a widely 

recognized collection of diverse NLP tasks 

designed to assess the language understanding 

capabilities of machine learning models. This 

benchmark comprises various tasks that test 

different aspects of natural language 

understanding. The study utilizes three datasets 

from GLUE benchmark: 

• SST-2 (Stanford Sentiment Treebank): 

A sentiment classification dataset 

comprising sentences from movie 

reviews, labeled as either positive or 

negative. It includes approximately 

67,000 sentences for training and about 

872 sentences for development 

(validation) and 1,821 sentences for 

testing. 

• QQP (Quora Question Pairs): A 

paraphrase detection dataset containing 

pairs of questions from the Quora 

website, labeled to indicate whether the 

two questions are semantically 

equivalent. This is a large dataset with 

over 363,780 question pairs for training 

and around 40,431 pairs for 

development and 390,965 pairs for 

testing. Question pairs can have 

different phrasing but still convey 

similar meanings, or vice versa. It uses 

binary labels: duplicate or non-

duplicate. 
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Table 1. Validation performance at different training stages. 

 

Task Measure After MTL After FT 

Sentiment analysis Accuracy 0.8704 0.8922 

Paraphrase detection Accuracy 0.8737 0.8822 

Semantic textual similarity Pearson 0.8624 0.8690 

 

• STS-B (Semantic Textual Similarity 

Benchmark): A semantic textual 

similarity dataset containing sentence 

pairs from various sources, labeled with 

scores from 1 to 5 indicating their 

degree of semantic similarity. It 

includes approximately 7,000 sentence 

pairs for training, 1,500 pairs for 

development, and 1,400 pairs for 

testing. Unlike SST-2 and QQP with 

discrete labels, STS-B uses a 

continuous scale, requiring the model to 

understand a more detailed level of 

semantic correlation. 

 

4.2. Evaluation 

We evaluate the model’s performance on the 

validation sets for each task. For sentiment 

analysis and paraphrase detection, we use 

evaluate-classification: 

And for semantic textual similarity, we use 

evaluate-STS, which calculates the Pearson 

correlation coefficient: 

 
4.3. Experimental Setup 

The experiments were conducted using PyTorch 

and the Hugging Face Transformers library on a 

single GPU. The pre-trained TinyBERT model 

”huawei-noah/TinyBERT-General- 4L-312D”7 

was used as the backbone. The specific version 

TinyBERT-General-4L-312D refers to a 

TinyBERT model with a general configuration 

(“General”), comprising 4 Transformer layers 

and a hidden dimension size of 3127. Combining 

MTL with fine-tuning of a compact model like 

TinyBERT-General-4L-312D promises to 

leverage the advantages of both approaches: the 

ability to learn rich representations from 

multiple tasks and the deployment efficiency of 

a small model. The batch size was set to 16. The 

AdamW optimizer was employed with a 

learning rate of 1e-5 and a dropout rate of 0.01. 

The number of training epochs for both the 

initial multi-task training and individual fine-

tuning for each task was 5. Early stopping was 

triggered if the validation score did not improve 

for 2 consecutive epochs. Mixed precision 

training was utilized to accelerate training and 

reduce memory consumption. 

 

5. RESULTS AND DISCUSSION 

The model’s validation performance at different 

training stages is presented in Table 1 and 

visualized in the following Figure 2. 

 

 

 

Figure 2. Performance comparison across tasks. 

 

The results show that initial multi-task training 

enables the model to achieve significant 

performance across all three tasks. After 

individual fine-tuning, the accuracy for 

sentiment and paraphrase tasks improved, while 

the Pearson correlation for the semantic textual 

similarity task also slightly increased. 
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Table 2. Comparing TinyBERT and BERT-base. 

 
 

 

 

 

 

 

 

Table 3. Comparing TinyBERT and BERT-base performance. 

 

Tasks TinyBERT 

(MTL) 

TinyBERT 

(FT) 

BERT-base 

(Single) 

BERT-base 

(MTL) 

SST-2 0.8704 0.8922 0.927 0.913 

QQP 0.8737 0.8822 0.913 0.904 

STS-B 0.8624 0.8690 0.894 0.885 

 

The high performance achieved after the 

initial multi-task training phase indicates that the 

TinyBERT model can effectively learn shared 

representations beneficial for all three tasks: 

sentiment analysis, paraphrase detection, and 

semantic textual similarity. This suggests that 

some fundamental linguistic and semantic 

knowledge can be transferred among these tasks. 

Thus, the answer to RQ1 is that TinyBERT can 

learn effectively from three tasks 

simultaneously, achieving good performance 

with a compact model. 

The improvement in performance after 

individual fine-tuning for each task 

demonstrates that continuing to train the model 

on task-specific data allows it to adjust its 

weights to better capture the specific nuances of 

each task, leading to improved performance. 

From this, we derive the answer to RQ2: 

Individual fine-tuning after MTL is clearly 

effective, helping to optimize for each task and 

narrowing the gap with larger models. 

The initial MTL phase appears to have 

facilitated some positive knowledge transfer 

among tasks, as evidenced by the reasonable 

performance achieved across all three tasks with 

a single shared model. The further 

improvements observed during individual fine-

tuning indicate that additional specialization on 

each task is beneficial for maximizing 

performance. 

Comparing performance across tasks, the 

paraphrase detection task achieved the highest 

accuracy in both the initial multi-task training   

 

phase and after individual fine-tuning. This 

could be due to the clear binary nature of the 

task (duplicate or non-duplicate) and the 

relatively large size of the QQP dataset. The 

semantic textual similarity task, being a 

regression task predicting a continuous score, 

had a slightly lower Pearson correlation 

compared to the accuracy achieved in the 

classification tasks. Table 2 compares 

TinyBERT and BERTbase models, TinyBERT 

is significantly more compact than BERT-base, 

featuring 7.6 times fewer parameters. This leads 

to faster inference speeds and lower memory 

requirements, making it ideal for resource-

constrained devices.  

We compare our method and results with 

related work on multi-task learning and 

TinyBERT on GLUE tasks: Table 3 compares 

performance.  

• BERT-base (single task): Devlin et al.1, 

fine-tuned individually on each GLUE 

task. 

• BERT-base (MTL): Liu et al.7 multi-

task trained on similar tasks. 

TinyBERT achieves quite good performance 

(87- 88%) even before fine-tuning, indicating 

that MTL helps leverage common knowledge 

among tasks. However, it is still about 3-4% 

lower than BERT-base MTL (90-91%), 

reflecting the difference in representational 

capacity due to model scale. This suggests that 

while TinyBERT can learn common features, 

it’s not as robust as BERT-base due to its 

limited number of layers and parameters. After 

Criteria TinyBERT BERT-base 

Parameters ~14.5M ~110M 

Transformer Layers 4 12 

Hidden Dimensions 312 768 

Inference Time ~4–6x faster Standard 

Memory Required ~1/7 High 
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fine-tuning, TinyBERT improves by 1-2% 

across all three tasks, narrowing the gap with 

BERT-base. However, it does not surpass 

BERT-base. 

Compared to BERT-base, multitask 

TinyBERT achieves 2-4% lower performance 

across all three tasks (SST-2, QQP, STS-B), 

even after individual fine-tuning. However, it 

excels in computational efficiency, being 7.6 

times smaller and 4-6 times faster in inference. 

This makes TinyBERT a reasonable choice in 

scenarios where efficiency is prioritized over 

maximum performance, such as deployment on 

edge devices or in real-time applications. The 

combined MTL and FT approach of this study 

also shows potential in leveraging a single 

model for multiple tasks, reducing training costs 

compared to individually training separate 

BERT-base models. This directly answers RQ3: 

Our method achieves a reasonable balance 

between performance and computational 

efficiency, which is particularly useful in 

practical applications requiring resource savings. 

 

6. RELATED WORK 

Recent advances in NLP have explored both 

large-scale pre-trained models and compact 

architectures optimized for efficiency. In 

particular, MTL and model compression have 

emerged as two key strategies to improve 

performance and reduce computational costs. 

Stickland and Murray introduced projected 

attention layers to adapt BERT for MTL in7. By 

adding lightweight task-specific adapters, they 

achieved strong performance on the GLUE 

benchmark while maintaining efficiency. Their 

results confirmed that parameter-efficient 

adaptation strategies can make large models 

more scalable across multiple tasks. 

Jiao et al. proposed TinyBERT in6, which 

applied a two-stage knowledge distillation 

approach first at the pre-training level and then 

at the task-specific fine-tuning level to compress 

BERT-base into a smaller model while retaining 

competitive performance. TinyBERT-4L, in 

particular, achieved over 96% of BERT-base’s 

performance on GLUE with only about 13% of 

its parameters. 

While TinyBERT was initially designed for 

single-task fine-tuning, later studies have 

extended its application to MTL. A notable 

example is the work by Yu et al., which 

explored the effect of multi-task fine-tuning on 

small models such as Phi-3-Mini in the financial 

domain. Their study revealed that combining 

related tasks significantly improved performance 

even outperforming large models like GPT-4-o 

in domainspecific benchmarks. 

In addition, Houlsby et al.10 proposed 

adapter layers for parameter-efficient fine-

tuning, enabling multitask training with minimal 

parameter overhead. The adapters can be 

selectively trained for new tasks, making them 

particularly useful in low-resource and multi-

domain settings. 

Furthermore, a growing body of literature 

focuses on dynamic task weighting to improve 

MTL stability and mitigate negative transfer. 

For instance, Kendall et al.17 proposed weighting 

losses based on task uncertainty, while 

Lakkapragada et al. used exponential moving 

average loss strategies to maintain balance 

during training. 

Some recent surveys, for example those by 

Zhang and Yu7, Crawshaw, and Yu et al., Liu et 

al.18 have analyzed the training strategies and 

task relatedness in MTL. These works 

emphasize the importance of sharing knowledge 

across tasks, selecting compatible task 

combinations, and using dynamic weighting 

schemes to mitigate negative transfer. 

 

7. CONCLUSION 

In this study, we proposed a novel multitask 

learning approach, which relies on a small 

language model like TinyBERT for NLP tasks, 

including: sentiment analysis, paraphrase 

detection, and semantic textual similarity. We 

first trained a shared TinyBERT model using a 

multitask learning framework, then fine-tuned it 

individually for each task. The experimental 

results showed that the initial MTL phase 

enabled the model to capture shared 

representations that achieved strong 

performance across all tasks. Subsequent task-

specific fine-tuning further improved accuracy 

and correlation scores, demonstrating the value 

of combining MTL with finetuning. 

Specifically, TinyBERT achieved competitive 

performance while remaining significantly 

smaller and faster than BERT-base making it 

suitable for resource-constrained environments. 

These findings highlighted the potential of small 

language models like TinyBERT to serve as 

efficient and effective solutions for multi-task 

NLP scenarios. This approach also offers 
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practical benefits in deployment settings, such as 

reduced memory usage and training costs, 

without a significant compromise in task 

performance. 

In the future, we will explore different task 

balancing strategies in the initial MTL phase to 

potentially improve learned shared 

representations. Investigating other fine-tuning 

techniques and hyper parameters for each task 

could also lead to better individually fine-tuned 

models, which could then benefit the 

aggregation process. Experimenting with more 

sophisticated methods to determine task 

similarity, possibly considering uncertainty or 

variance in individual model performance, could 

also be valuable. Evaluating the performance of 

all models on the held-out GLUE test sets would 

provide a more comprehensive assessment of 

their generalization capabilities. 
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