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nguyén Tri tué Nhan tao Tao sinh: Tich hop Kha nang Giai
thich, Kha nang Tranh luan va Thwc hanh Phan tw

TOM TAT

Su xuat hién nhanh chong cua tri tu¢ nhan tao tao sinh (AI) va cac md hinh ngén ngir 1on (LLMs) mang dén
ca co hoi 1an thach thirc cho gido duc dai hoc. D cong nghé nay hira hen nang cao hiéu qua giang day va nghién
ctru, ban chét “hop den”, xu hudng “ao gidc” va thiéu minh bach ctia chiing dit ra van dé vé niém tin, trach nhiém va
tinh toan ven su pham. Bai viét dé xuat nhu cau cép thiét vé mot khung nang luc gitip giang vién ting dung Al tao
sinh ¢6 trach nhiém. Ching t6i gidi thi¢u TECTRA (Trust through Explainability, Contestability, and Reflective
Application), khung tiép c4n lay con ngudi lam trung tam, két hop Al c6 kha ning giai thich (XAI) va Al co thé
phan bién (CAI) nhu co ché nén tang dé xay dung niém tin trong giao duc. Khung gém bdn tru cot: Pao dirc, dua
trén tinh minh bach ctia XAI; Tich hop su pham, qua cau triic d6i thoai cua CAI; Hiéu biét ky thuat, théng qua kha
nang giai thich ciia XAI; va Thyc hanh phan tu, duy tri bang phan hdi ctia hai hé thong. Bai viét xac dinh ning luc,
hoat dong va cong cu phat trién cho timg tru cot, ctng 16 trinh ba giai doan: danh gia, xay dung ning lyc va mo rong
bén viing. Ngoai ra, khuyén nghi chinh sach nh4n manh sy linh hoat, minh bach, giam sat con nguoi va dao durc.
Bang cach xem XAI va CAI 1a yéu t6 tuong tac thuc tién, TECTRA dua Al trd thanh d6i tac minh bach, phan bién,
thiic day nang lyc giang vién thich img, dya trén bang chimng va c6 nén tang dao dirc.

Tir khéa: Al C6 thé Gidi thich, AI C6 thé Tranh ludn, Al Tao sinh, M6 hinh Ngén ngit Lén, Gido duc Pai hoc



Enhancing Higher Education Faculty Competencies in the
Age of Generative Al: Integrating Explainability,
Contestability, and Reflective Practice

ABSTRACT

The rapid emergence of generative artificial intelligence (Al) and large language models (LLMs) has created
both unprecedented opportunities and significant challenges in higher education. While these technologies promise
to enhance teaching effectiveness and research productivity, their “black-box” nature, tendency toward hallucinations,
and opacity raise critical concerns about trust, accountability, and pedagogical integrity. This paper addresses the
urgent need for a comprehensive framework to enhance faculty competencies in leveraging generative Al responsibly
and effectively. We propose TECTRA (Trust through Explainability, Contestability, and Reflective Application), a
novel human-centered framework that integrates Explainable Al (XAI) and Contestable Al (CAI) as foundational
mechanisms for trustworthy Al adoption in education. The framework is structured around four interdependent
pillars: Ethical Grounding, enabled by XAI’s transparency; Pedagogical Integration, activated through CAI’s dialogic
structure; Technical Literacy, developed through XATI’s interpretable explanations; and Reflective Practice, sustained
through combined feedback loops from both mechanisms. We detail specific, measurable faculty competencies
mapped to each pillar and provide concrete development activities and tools. Furthermore, we present a phased
implementation strategy roadmap spanning assessment, capacity building, and sustainable scaling, alongside
comprehensive policy recommendations that emphasize flexibility, transparency, human oversight, and ethical
principles. By positioning XAl and CAI as active, functional elements rather than separate technical considerations,
TECTRA transforms generative Al from an opaque tool into a transparent, contestable partner for critical inquiry,
ultimately fostering enhanced faculty competencies that are adaptive, evidence-based, and ethically grounded in an
increasingly Al-driven educational landscape.

Keywords: Explainable Al, Contestable Al, Generative Al, Large Language Models, Higher Education

1. INTRODUCTION tutors and assistants provide opportunities to

innovate pedagogical approaches, personalize

The digital era has brought transformative
technologies that are reshaping higher education
worldwide. Among these, generative artificial
intelligence (Al), large language models (LLMs)
such as OpenAl’s ChatGPT, Anthropic’s Claude,
Meta’s Llama, or Google’s Gemini, have rapidly
emerged as a powerful tool with the potential to
enhance the teaching and research capacities of
university and college lecturers. Since the public
release of LLMs, educators have been exploring
how such Al systems can revolutionize teaching
practices and academic research'?. These Al

learning, automate routine tasks, and support
scholarly work. For instance, generative Al can
help instructors generate lesson plans, produce
quizzes or simulations, provide conversational
tutoring to students, and even aid in literature
recommending, grading, feedback, or interview
preparation®®. Likewise, researchers can leverage
LLMs to summarize literature, draft manuscripts,
or brainstorm research ideas. In theory, these
capabilities promise to enhance lecturers’ teaching
effectiveness and research productivity in the
digital age.



However, along with immense potential,
generative Al introduces significant challenges
and uncertainties in educational contexts. Modern
LLMs are often “black boxes”, where they
produce answers without revealing clear reasoning
or sources™®. This opacity can erode trust, as
educators and students may question how or why
an Al arrived at a given answer. Additionally,
LLMs are prone to hallucinations (i.e., generating
incorrect or fabricated information confidently).
In an academic setting, such undetected errors or
falsehoods can mislead learners and undermine
learning outcomes. Educators also worry about
issues of academic integrity (e.g., plagiarism or
uncritical use of Al in student work), biases in Al
outputs, data privacy, and the broader ethical
implications of delegating educational tasks to Al.
These challenges highlight that while Al can assist
humans, it cannot be blindly trusted, particularly
in educational and academic settings, where rigor
and accuracy are crucial®!”.

To fully realize the benefits of generative
Al in education, it is crucial to address
these challenges. Two emerging approaches in
Al research hold promise in this regard:
Explainable Al (XAI)'"*! and Contestable Al
(CAI)**27. XAI aims to make Al systems more
transparent by providing human-understandable
explanations for their outputs or decisions. In an
educational context, XAl could enable a lecturer
or student to see the reasoning behind an Al-
generated answer, thereby improving trust and
facilitating error diagnosis'>!'®212%  Recent
regulations, including the General Data Protection
Regulation (GDPR)* and the EU Al Act®,
establish legal requirements for Al interpretability
and explainability, fundamentally grounded in the
principle of contestability, ensuring individuals
can meaningfully challenge automated decisions.
CAI goes a step further by enabling users
to question, dispute, and engage in dialogue with
the ADI’s decisions or reasoning”?6, A CAI
system would not only explain itself, but also
allow teachers or students to challenge its
responses and have the system revise its answers
when justified”’. Together, these approaches aim
to transform Al into a more interactive and
accountable assistant, rather than an opaque box.

Hence, this paper presents a comprehensive
research study on how explainability and
contestability can foster trustworthy use of
generative Al in higher education, ultimately
enhancing faculty competencies in the digital era.
Our contributions are as follows:

1. We propose a novel framework,
TECTRA (Trust through Explainability,
Contestability, and Reflective
Application), which integrates XAl and
CAI to create a human-centered,
trustworthy framework for generative Al
in education. We detail how this approach
can fill current gaps and empower faculty
across disciplines.

2. We design a phased strategy roadmap
for implementation and policy
recommendations, ensuring that
universities can harness the benefits of
generative Al while maintaining academic
integrity, equity, and human oversight.

By adopting the principles of explainability
and contestability for generative Al and LLMs,
we aim to provide a practical framework with a
phased roadmap, implementation guidelines, and
policy recommendations to enhance the trust and
fairness of leveraging these technologies in higher
education.

2. BACKGROUND

2.1. Generative Al in Education

Generative Al refers to a class of Al models that
can produce new content (e.g., text, images,
music, or code) by learning patterns from existing
data. A prominent example is the LLM, which
can engage in human-like dialogue and create
texts in response to prompts. OpenAl’s ChatGPT,
Anthropic’s Claude, Meta’s Llama, or Google’s
Gemini, and similar LLMs are generative Al
models consisting of billions of parameters trained
on massive textual databases and can perform
tasks like answering questions, writing essays,
summarizing documents, and creating lesson
plans. In essence, these models predict text based
on learned patterns, stringing together words that
are statistically likely to follow a given prompt.



In education, generative Al has swiftly
found diverse applications*®3!%, Students can
utilize Al chatbots to explain complex concepts,
generate ideas, or receive feedback on their
writing drafts. Faculty members are exploring the
use of generative Al to enhance teaching materials
and workflows. For instance, an instructor can
prompt an Al to generate quiz questions, example
problems, or even first drafts of lesson summaries,
which can save time on preparation*®. Generative
Al can also assist with research by summarizing
scholarly articles or suggesting new research
directions**2. From a learning perspective, these
tools offer personalized support, where an Al
tutor can converse with a student, quiz them
on course content, and adjust the difficulty of
questions to the student’s level in real-time**34,
This ability to provide instant, tailored feedback
and access to information has led many to
view generative Al as a powerful aid for both
instructors and learners. Early implementations
have demonstrated that generative Al can benefit a
diverse range of learners. For example, translating
or simplifying content for non-native speakers
can spark creativity, providing new examples or
analogies that enrich the learning experience’®.

However, the use of generative Al in
education also raises pedagogical questions.
Because LLMs generate text based on patterns
rather than genuine understanding, educators
must consider how students’ use of Al affects
learning outcomes. Some studies suggest that
while generative Al can increase productivity on
certain tasks, it might reduce cognitive effort or
lead to more homogeneous student work if over-
relied upon®>*3, Thus, a consensus is emerging
that generative Al should augment teaching and
learning, serving as a smart assistant or tutor,
rather than replacing the essential human elements
of creativity, critical thinking, and mentorship>*°.
To realize this vision, faculty members need to
guide students in the proper use of Al, and
importantly, they themselves must have a clear
understanding of how generative Al works and
where its outputs can or cannot be trusted. This
sets the stage for examining issues of
transparency and fairness in generative Al
systems.

2.2. Transparency and Fairness: The
“Black-Box” and Hallucination Problems

2.2.1. Black-box Problem

Despite their impressive capabilities, most state-
of-the-art Al models operate as “black boxes.” In
a black-box model, the internal reasoning leading
to any given output is hidden or too complex for
users and even developers to interpret. Users see
both the input and the AI’s output, but not the
decision-making process that occurs in
between!'#!"*. This opacity poses a serious
problem in education, where trust and
accountability are critical. Educators are
understandably uneasy when an Al provides an
answer or assessment without any explanation,
especially knowing that even the engineers who
built the model cannot fully explain how a
particular result was generated. The lack of
transparency makes it difficult to judge the
correctness or bias of Al outputs, and it hinders
the ability to contest or audit those outputs. As
several studies of Al in education noted*, the
black-box nature of some Al algorithms makes it
challenging for stakeholders to understand or
challenge Al-driven decisions, raising ethical
concerns about their use in education. In other
words, if a generative Al system gives flawed
information or an unfair recommendation, its
inscrutable logic means educators might not
realize the error or have the means to dispute it.
This undermines confidence and can erode the
educational integrity of Al-assisted processes.

2.2.2. Hallucination of Generative Al

Compounding the transparency issue is the
tendency of generative Al models to produce
hallucinations. Hallucination refers to the well-
documented phenomenon where Al systems,
especially generative Al and LLMs, generate
incorrect, misleading, or entirely fabricated
information or responses that do not accurately
reflect the data they were trained on or the input
provided to them®!*3*3! For example, generative
Al might confidently generate a citation for a
non-existent scientific article or incorrectly
explain a concept in a way that appears
authoritative®™>. These tools do not truly
understand the facts or possess a comprehensive



knowledge model of reality. Instead, they base
their responses on statistical patterns in the
training data. Therefore, an Al might assert false
facts because those word combinations seem
likely. Research has highlighted that general-
purpose LLMs often draw on poor-quality or
incorrect data absorbed during training, which
can lead to incorrect outputs, and they typically
lack the ability to verify information or cite
specific sources for their statements. In academic
contexts, such hallucinations can mislead students
or propagate misinformation if unchecked. A
faculty member using Al to generate lecture notes
or a student relying on it for research may be
misled by a confidently stated but false piece of
information. Instructors also expressed concern
about the use of generative Al in education, citing
inaccurate or unreliable outputs as a top concern.

2.3. Explainability and Contestability for
Generative Al in Higher Education

2.3.1. Explainable Al (XAl)

XA refers to a set of methods and techniques
that make the decisions or outputs of an Al
system understandable to human users.
Traditional Al models, particularly deep learning
(DL) and LLMs, often function as black boxes,
producing results without a clear explanation
of how they were derived. XAl aims to
open this box by providing human-interpretable
insights into the model’s reasoning, thereby
enhancing trust, transparency, and accountability.
Common XAI approaches include saliency
mapping!16:424453-55  featyre attribution®*>®, and
counterfactual explanations™-¢!,

For generative Al within the education
sector, especially those used in natural language
applications with LLMs, XAI techniques
increasingly involve prompt engineering for
rationale generation, rubric-based evaluations
and play a critical role in supporting student
learning, assisting teachers, and ensuring the
fairness of Al-driven assessments'®?!. XAl
technique can provide a justification in natural
language, highlight the factors (input features)
that most influenced its decision, or produce
confidence scores and evidence (e.g, source
citations) to support its output. For example, an

explainable generative Al writing assistant might
underline which parts of its answer were drawn
from which reference texts, or an Al used for
student evaluation might show the rubric criteria
and how it applied them. Recent works, such as
ExASAG', CourseEvalAI'®, and QwenScore+>,
incorporate explainable reasoning strategies into
rubric-aligned evaluation to break down
automated scoring into human-understandable
criteria, enabling clear explanations for grades.

By opening up the AI’s reasoning, XAl
helps users verify correctness, detect errors or
biases, and ultimately decide when to trust the Al
and when to be skeptical. This is particularly
important in education, where teachers need to
understand an AI’s suggestion in order to
confidently act on it or explain it to students. If
an Al can show its work, for instance, by citing
the source of a fact or explaining the steps in a
solution it provided, the instructor can more easily
validate the result. For example, advanced tutoring
systems like LPITutor?! use retrieval-augmented
generation (RAG) and user-adaptive prompts to
ensure that the content and explanations are
grounded in course materials and personalized to
the learner’s level. Indeed, research confirms that
increasing a system’s transparency = via
explainability can strengthen teachers’ trust and
willingness to accept Al recommendations.

These developments illustrate how XAl
enhances learning experiences by providing
context-aware, pedagogically useful feedback,
turning Al systems into interpretable educational
partners. Explainability also aids Al literacy, as
educators interpret Al outputs, they learn more
about the AI’s limits and behavior, becoming
better equipped to integrate it appropriately. In
short, XAl is a foundation for responsible Al
adoption in education, as it addresses the black-
box issue by illuminating the AI’s decision logic
and thereby fosters user understanding and trust.

2.3.2. Contestable Al (CAI)

However, simply explaining an Al’s output does
not fully resolve the power imbalance between
human and machine. Even if a teacher knows why
an Al produced a certain result, they also need
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Figure 1. Moving from Explainable AI (XAI) to Contestable Al (CAI) in Enhancing Faculty and Student

Competencies in Higher Education.

the ability to say “I disagree” or override the Al
when it is wrong. This is where the concept of
CAI emerges as significant.

Contestability in Al systems means that
users have the right and means to challenge or
appeal an AI’s decision, and the system can adapt
or be corrected based on that human feedback**
2662 In other words, a CAI system is not a
one-way authority but rather allows a dialogue
or iterative process with human oversight.
According to Al ethics frameworks,
contestability implies that those affected by an
Al outcome are provided with “plain and easy-
to-understand information” about how the
decision was made, enabling them to challenge the
outcome if necessary. Contemporary regulatory
frameworks, including the GDPR?’ and the EU Al
Act®, highlight the critical role of interpretability
and contestability. The GDPR’s Articles 13 and 14
establish that individuals subjected to profiling are

entitled to receive “meaningful information about
the logic involved.” As clarified in official EU
guidance, these provisions extend to healthcare
settings. The explainability mandate within the
GDPR should be interpreted as establishing
a framework for contestability, requiring that Al-
driven decisions be sufficiently transparent to
enable individuals to challenge them. Article 22
specifies that when automated decision-making,
including profiling, is legitimately applied to
individuals, data controllers must protect their
right “to express his or her point of view and
to contest the decision”. Contestability is thus
increasingly recognized as a key aspect of
accountability in Al deployments.

Contestability requires a few fundamental
capacities: the Al must provide explanations that
users can inspect; users must have clear paths to
challenge the AI’s output, and the system and
human administrators must have the



Table 1. An Overview of Prominent Applications of Generative Al Integrated with Explainable Al (XAI) and

Contestable Al (CAI) Frameworks in Education.

Method XAI/CAI Application

Contributions

ExXASAG!'® XAI Automatic
of short,

student answers.

grading
free-text

Produces human-understandable rationales for each
grade using XAI methods; Provides interpretable
feedback, enabling teachers to understand and verify
Al grading.

CourseEvalAI" Transparent,
rubric-based
evaluation of
LLMs for grading
open-ended student

work.

Fine-tunes an LLM using dual-layer rubrics (for answers
and explanations); Evaluations and scores stored in
a graph database for full traceability; Reduces bias,
increases rubric fidelity, and improves the evaluability

of model-generated explanations.

QwenScore+% Essay scoring with

formative feedback.

Applies LLMs to generate personalized, formative
feedback rather than just grades; Emphasizes student
trust, ethical design, and transparency in educational
Al systems; Evaluates LLMs’ ability to provide
scaffolded, rubric-aligned responses that enhance

learning outcomes.

LPITutor?! Intelligent  tutoring

across subjects
(adaptive questions

and answers, hints).

Increases transparency and accuracy by grounding

answers in retrieved documents (students can
be shown the source or at least trust the answer
difficulty:

explanations and answers suited to learner’s skill level;

is curriculum-aligned); Customizable

Addresses hallucinations by tethering model to real

content.

CAELF% CAI Interactive feedback

on e€ssays.

Highly robust to student push-back, maintains logical
consistency and only changes grade if student’s
counter-argument is valid; Inherently explainable
feedback (built from explicit arguments and rubric
criteria); Improves LLM’s reasoning and reduces
susceptibility to manipulation in an educational

dialogue.

ability to revise or adapt the decision based on
that challenge*2%62. Some researchers describe
this as transitioning from static Al systems to
dynamic, interactive Al, which are machines that
can engage in dialogue about their reasoning and
adjust when valid points of contestation are raised.
It represents a shift from viewing explainability
as the end goal to viewing recourse and redress as
the ultimate goal. If the Al is found to be flawed,

there must be a way to correct it or mitigate its
effects. In education, contestability means that
faculty and students are not passive recipients of
Al outputs, but active participants who can
question and modify those outputs. For example,
consider an Al system that flags student essays
for potential plagiarism or grading purposes. In
a contestable design, a student could appeal that
flag to a human instructor, or the instructor



could override the AI’s grading suggestion if
they see it’s based on a misinterpretation. The Al
system would then ideally learn from this
correction, or at least record it, thus improving
over time or avoiding repeated mistakes. A recent
work introduced CAELF?, a contestable feedback
framework where multiple Al teaching assistant
agents independently grade different aspects of
an essay, and a teacher agent aggregates their
evaluations via formal argumentation. This design
allows students to query, challenge, and clarify
the Al’s feedback, making the grading process
interactive and open to dispute.

The twin notions of XAI and CAI are
complementary and together promise a more
trustworthy Al ecosystem in education, as
illustrated in Figure 1. Explainability provides
transparency (“Why did the Al say that?”’) and
contestability provides agency (“What can we do
if the Al is wrong?”’). By embracing both, we
address the earlier challenges: an explainable
system reduces the fear of black boxes and helps
identify errors or biases, while a contestable
system ensures that those errors can be corrected
and biases mitigated through human intervention.
Importantly, contestability reinforces human
authority and accountability. It is seen as a means
to facilitate accountability, preventing blind
reliance on Al and ensuring that decisions can be
audited and overturned if needed. In an
educational context, this aligns perfectly with the
ethos that teachers (and, where appropriate,
students) should have the final say in teaching
and assessment decisions where Al can assist,
but not autonomously control outcomes without
recourse. To summarize, XAl and CAI are key
pillars for integrating generative Al in a way that
faculty can trust and leverage effectively. An Al
system that can explain its outputs and accept
human feedback aligns with educational values
of transparency, critical inquiry, and continuous
improvement. These principles set the
foundation for the framework we propose, which
aims to enhance faculty competencies and
confidence in working with generative Al by
embedding explainability and contestability into
both technology and practice.

3. PROPOSED FRAMEWORK

To address the faculty competency gap and guide
education institutions toward a more responsible
and pedagogically sound integration of
generative Al, this paper proposes the TECTRA
(Trust through Explainability, Contestability,
and Reflective Application) framework, which
is a comprehensive, actionable model designed to
cultivate the specific skills and dispositions
faculty require to build and sustain a trustworthy
Al ecosystem. The framework moves beyond
reactive, tool-based training to foster a deeper,
more critical engagement with Al, grounding its
use in enduring ethical and pedagogical
principles. It integrates insights from established,
trustworthy Al guidelines with foundational
educational technology models, including
TPACK (Technological Pedagogical Content
Knowledge)® to create a comprehensive
framework for faculty development. Central to this
framework is the recognition that XAl and CAI
are foundational mechanisms that operationalize
trust in educational Al systems. Rather than
treating these as separate technical considerations,
TECTRA embeds them as active, functional
elements within each pillar, providing faculty
with concrete tools and processes to develop and
exercise critical Al competencies.

3.1. Core Principles

The TECTRA framework is constructed upon
four interdependent pillars, which together form
a comprehensive approach to faculty competency
in education. These pillars are designed to be
mutually reinforcing, ensuring that technical skills
are always linked to pedagogical purpose and
ethical considerations. Each pillar is strengthened
by the integration of explainability and
contestability mechanisms. As visualized in
Figure 2, the TECTRA framework can be
conceptualized as an integrated ecosystem
focused on creating trustworthy Al in education.
Rather than positioning XAl and contestability as
external mechanisms, the framework recognizes
them as intrinsic to each pillar’s function.

(1) Ethical Grounding is made actionable
through XAI’s revelatory power; (2) Pedagogical
Integration is activated through the dialogic
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structure of contestability; (3) Technical Literacy
is developed through XAI’s explanations; and
(4) Reflective Practice is sustained through the
combined feedback loops created by both
mechanisms.

3.1.1. Pillar 1: Ethical Grounding (Enabled by
Explainability)

This foundational pillar moves the conversation
about Al ethics beyond the narrow confines of
plagiarism and academic misconduct. It requires
faculty to develop a robust understanding of the
broader ethical landscape of Al, including the
ability to critically analyze issues of algorithmic
bias, data privacy, intellectual property, and the
potential for Al to perpetuate societal inequities.

The Role of Explainability: XAl serves
as the primary mechanism through which faculty
can develop and demonstrate ethical
competency. When Al systems make their

decision-making processes transparent, faculty
gain the ability to conduct meaningful ethical
audits of the technology they employ. Through
XAI dashboards and interpretation tools, faculty
can trace how an Al system arrives at specific
outputs, identifying the data points, features, or
patterns that influence results. This visibility
transforms abstract ethical concerns into concrete,
observable phenomena that can be analyzed,
discussed, and addressed. Competency in this
pillar means faculty can not only articulate ethical
risks but can also use XAl tools to actively
investigate and demonstrate them. For instance,
a faculty member might use XAl techniques to
reveal how an automated essay grading system
disproportionately penalizes certain writing styles
or linguistic patterns associated with multilingual
learners. This capability enables faculty to design
learning environments and institutional policies
that proactively mitigate harm, ensuring that the
use of Al aligns with the core values of fairness,
accountability, and transparency. Furthermore,



XAl empowers faculty to transform ethical
instruction into active learning. Rather than
lecturing about algorithmic bias in the abstract,
faculty can use XAI as a pedagogical tool,
demonstrating in real-time how bias manifests,
helping students develop critical evaluation skills,
and fostering a more ethically informed user
base. This approach creates a culture of ethical
vigilance that extends beyond compliance to
genuine understanding and advocacy.

3.1.2. Pillar 2: Pedagogical Integration
(Enabled by Contestability)

This pillar addresses the practical application of
Al in teaching and learning. Drawing inspiration
from the TPACK model®, it emphasizes the
crucial intersection of technological knowledge,
pedagogical strategy, and subject-matter
expertise. Competency here is not merely about
using an Al tool but about thoughtfully integrating
it into the curriculum to enhance learning
outcomes through designs that promote active
engagement, critical thinking, and student agency.
Pedagogical integration involves redesigning
assessments to prioritize process and critical
thinking over simple content generation, creating
Al-scaffolded activities that support rather than
supplant student effort, and leveraging contestable
Al systems to create more personalized and
adaptive learning experiences. The ability to
implement contestable frameworks requires
faculty to ask not merely “What can this tool
do?” but “How can this tool create productive
cognitive friction and dialogic opportunities that
help my students achieve our learning objectives
more effectively and deeply?”

The Role of Contestability: Contestability
serves as a natural mechanism for formative
assessment. When students challenge Al outputs,
they reveal their understanding, misconceptions,
and the reasoning processes behind their
responses. Faculty can use these contestation
patterns as diagnostic data, identifying where
additional instruction or support is needed and
adapting their teaching accordingly. CAI
transforms pedagogical integration from passive
tool adoption to active, dialogic learning. When
students are empowered to challenge, question,
and debate Al-generated outputs (e.g.,

grades, feedback, content recommendations, or
analytical interpretations), the learning dynamic
fundamentally  shifts from  information
consumption to critical knowledge construction.
Faculty who integrate CAI into their pedagogy
create structured opportunities for metacognitive
development. Consider an Al-assisted writing
tutor that provides feedback on student essays: in
a traditional implementation, students might
passively accept the Al’s suggestions. However,
when the system is designed to be contestable,
students must engage in reasoned argumentation
to challenge feedback they believe is
inappropriate. They must gather evidence from
their work, present their reasoning, and engage in
structured dialogue with both the Al system and
their instructor. This process inherently develops
higher-order thinking skills (e.g., analysis,
evaluation, and creation), positioning Al as a
sophisticated learning partner.

3.1.3. Pillar 3: Technical Literacy (Enabled by
Explainability)

While deep technical expertise is not required, a
foundational understanding of how generative Al
systems work is essential for responsible use.
This pillar aims to equip faculty with a conceptual
understanding of core Al principles, including
the nature of LLMs, the role of training data, the
statistical foundations of Al outputs, and the
inherent limitations of the technology.

The Role of Explainability: XAl serves as
both a teaching tool and a competency-building
mechanism for technical literacy. Rather than
requiring faculty to understand complex machine
learning mathematics, XAl systems provide
accessible visualizations and explanations that
interpret Al behavior. Through interaction with
XAI tools, faculty develop an intuitive
understanding of how models process
information, why they produce certain outputs,
and where their limitations lie. A technically
literate faculty member, supported by XAl,
understands why Al models hallucinate,
recognizes the statistical and probabilistic nature
of their outputs, can identify when a model is
operating outside its training domain, and can
explain these concepts to students using concrete
examples drawn from XAl explanations.



For instance, when an LLM produces a factual
error, XAl tools can help faculty trace the error
to limitations in training data, revealing that the
model is generating plausible-sounding but
unverified content based on statistical patterns
rather than verified knowledge. This literacy
extends to understanding the source and
characteristics of training data. XAl techniques
that reveal which aspects of training data most
influence specific outputs help faculty recognize
potential blind spots, biases, or domain limitations
in Al systems. This knowledge prevents both
uncritical acceptance and unfounded fear,
forming the basis for a more nuanced and
effective pedagogical approach. Moreover, XAl
supports the development of technical literacy in
faculty through guided exploration. Faculty
development programs can utilize XAl
dashboards as learning environments where
educators experiment with different inputs,
observe how the AI’s explanations evolve, and
develop mental models of system behavior. This
hands-on, explanation-guided approach to
technical literacy is more accessible and
pedagogically effective than traditional technical
training, making Al competency achievable for
faculty across all disciplines.

3.1.4. Pillar 4: Reflective Practice (Enabled by
Explainability & Contestability)

This final pillar encourages faculty to adopt a
critical, evidence-based, and iterative approach to
their use of Al. Competency in this area involves
continuously evaluating the impact of Al tools on
their own teaching workflows, as well as on
student learning and engagement. This pillar also
establishes the practice of systematically
gathering feedback through both XAI analytics
and contestation records, reflecting on successes
and failures revealed through transparent system
behavior, and adapting pedagogical strategies in
response to evidence.

The Role of Explainability and
Contestability: Both XAI and CAI function as
structured systems for generating the evidence
and insights necessary for meaningful reflective
practice. XAl provides faculty with interpretable
data on how Al systems are functioning in
their courses, revealing patterns in automated

feedback, highlighting which students are
receiving what types of Al support, and making
visible any systematic biases or limitations in Al-
mediated interactions. This transparency
transforms reflection from subjective impression
to data-informed inquiry. Meanwhile, CAI creates
natural feedback loops that drive reflection.
When students challenge AI outputs, they
generate rich qualitative data about the Al
system’s performance, revealing edge cases,
misconceptions, and areas where the Al may
be falling short of pedagogical goals. Faculty
who systematically analyze these contestations,
tracking which Al outputs are most frequently
challenged, what types of student arguments are
most compelling, and how challenges correlate
with learning outcomes, gain actionable insights
for refining their Al integration strategies.

For example, a faculty member might
notice through XAI analysis that an Al tutoring
system consistently provides less detailed
explanations to students who initially struggle
with a concept. This insight, combined with
student contestations arguing that the feedback is
insufficient, prompts the instructor to reconfigure
the system or supplement it with additional human
support. The integration of XAl and contestability
ensures that reflection is not a solitary,
impressionistic activity but a collaborative,
evidence-based practice. It positions reflective
practice as an ongoing process of inquiry
and improvement, keeping pedagogical practice
aligned with a rapidly evolving technological
landscape. Faculty members become action
researchers in their own classrooms, using the
transparency and dialogic nature of well-designed
Al systems to continuously refine their practice.

3.2. Defining Faculty Competencies

The TECTRA framework is operationalized
through a set of specific, measurable faculty
competencies, which provide a clear roadmap for
professional development. Table 2 maps these
core competencies to the four pillars of the
framework, now explicitly incorporating XAl and
CAI mechanisms, and suggesting development
activities and tools that can be used to support
them. This structure translates the abstract



Table 2. Core Faculty Competencies within the TECTRA Framework.

Development Activities & Tools

systematically assess Al-
generated outputs for accuracy, veracity, and
potential algorithmic bias, and to understand
the broader societal and ethical implications of

Use XAI tools in a sandbox environment to
deconstruct biased outputs and understand their

origins.

The ability to design and articulate clear
course policies, assignments, and learning
environments that promote the responsible,
equitable, and transparent use of Al tools by

+ Develop departmental Al usage and citation
style guides; engage in case study analysis
of complex ethical dilemmas in Al-assisted
education.

+ Craft adaptable syllabus statements.

The ability to strategically redesign learning
and assessments to
leverage Al for fostering higher-order thinking
skills, rather than allowing Al to circumvent

+ Receive training on advanced prompt
engineering for educational purposes.

+ Use generative Al to create diverse and
complex case studies or problem sets.

+ Redesign assessments to focus on process,
reflection, and application.

The ability to use Al-driven analytics and tools
to personalize learning pathways, provide timely
and targeted feedback, and offer differentiated
support to students based on their individual

Use XAl-enhanced Learning Management
System (LMS) dashboards to interpret student
performance predictions and identify areas for
intervention.

A conceptual understanding of the basics of
LLMs, the importance of training data, and the
technical reasons for inherent limitations like

Engage in hands-on, guided experimentation
with a variety of generative Al tools to
understand their capabilities and failure modes.

The ability to read and interpret the explanations
provided by XAI systems to understand a
model’s behavior, identify key influencing
factors, and assess the reliability of its outputs.

Participate in training sessions on interpreting
outputs from specific XAl techniques, applying
them to educational datasets.

The ability to facilitate and model critical,
with Al
encouraging students to question, challenge,

systems,

+ Implement assignments that use CAI
frameworks for automated feedback.

+ Require students to maintain structured

reflection journals on their AI usage and
findings.

to ongoing professional
development, staying current with the rapid
advancements in Al technology and pedagogy,
and actively participating in the institutional

TECTRA Core Competency | Description
Pillar
Ethical Critical Al The ability to
Grounding Evaluation
Al use in academia.
Ethical AL
Pedagogy
students.
Pedagogical Al-Informed
Integration Curriculum objectives, activities,
Design
them.
Adaptive
Teaching with Al
needs.
Technical Foundational Al
Literacy Principles
hallucinations and bias.
XAl
Interpretation
Reflective Al-Mediated
Practice Critical Dialogue dialogic interactions
and verify Al-generated information.
Continuous Self- A commitment
Improvement
conversation around Al

+ Engage in interdisciplinary faculty learning
communities and institutional forums on Al
+ Contribute to the work of institutional Al task
forces.

principles of the framework into a concrete guide
for designing effective faculty training programs,
drawing upon competency models proposed by
leading educational organizations. Our integrated
approach for TECTRA ensures that faculty
development is not fragmented into disconnected
technical skills, but rather unified around the
central goal of building trust in Al systems,
pedagogical decisions, and in students’ capacity
to engage critically with technology. The ultimate

outcome of this ecosystem is the cultivation of
enhanced faculty competencies that are adaptive,
evidence-based, and ethically grounded, which in
turn foster greater student agency in an
increasingly generative Al educational landscape.

4. IMPLEMENTATION GUIDELINES &
POLICY RECOMMENDATIONS

The transformation from a theoretical model to
institutional practice requires a deliberate and



structured approach. The TECTRA framework,
while providing the conceptual architecture,
must be supported by a practical roadmap that
guides educational institutions through the
complex process of implementation and policy
development. This section outlines a phased
strategy for integrating the TECTRA framework
into the university’s fabric, providing concrete
recommendations for crafting agile, ethical, and
enabling Al policies that support rather than
hinder innovation, as visualized in Figure 3.

4.1. A Phased Strategy Roadmap

A successful institution-wide integration of
trustworthy Al practices requires a strategic,
multi-phase approach that builds momentum,
secures stakeholder buy-in, and allows for iterative
learning and adaptation.

4.1.1. Phase 1: Assess and Align

The foundational phase is dedicated to
establishing a shared understanding and a
common vision. The first step is to form a
cross-functional Al task force comprising
administrators, faculty from diverse disciplines,
instructional designers, IT professionals, legal
experts, and, crucially, students. This group’s
initial mandate is to conduct a comprehensive,
campus-wide Al literacy audit to gauge the
current knowledge, practices, and attitudes of both
faculty and students. Concurrently, institutional
leaders must work with this task force to align the
university’s strategic goals for Al with the core
principles of the TECTRA framework. This
phase is not about deploying technology but
about fostering dialogue, engaging stakeholders,
and collaboratively defining what a successful,
human-centric Al integration will look like for
the institution.

4.1.2. Phase 2: Build Capacity

The second phase focuses on building the
necessary human and technical infrastructure.
The institution should develop and roll out a
portfolio of targeted professional development
programs, workshops, and resources explicitly

designed to cultivate the faculty competencies
outlined in the TECTRA framework (see Table 2).
To move from theory to practice, the university
should fund and support pilot programs in various
departments, encouraging faculty to experiment
with innovative generative Al integrations and
assessment redesigns in a low-stakes environment.
During this phase, it is also crucial for the
institution to vet, procure, and provide secure and
equitable access to a suite of approved Al tools,
ensuring that faculty and students have a safe and
supported environment for exploration.

4.1.3. Phase 3: Scale and Sustain

The final phase transitions from pilot programs
to systemic integration. Successful strategies and
resources developed during the capacity-building
phase should be scaled across the institution.
A key element of this phase is the formal
integration of Al literacy and ethical Al use into
the general education or core curriculum for all
students, ensuring that graduates are prepared for
an Al-driven world. To sustain this effort,
institutions should establish permanent support
structures, such as a Center for Al in Teaching
and Learning, to provide ongoing consultation,
training, and resources. Finally, a continuous
feedback loop must be established, allowing the
Al task force to regularly gather input from faculty
and students on the effectiveness of policies and
support services, ensuring that the institution’s
approach remains agile and responsive to the rapid
pace of technological change.

4.2. Agile and Ethical Al Policies

Effective institutional Al policy and robust
faculty competency are not separate initiatives.
They are deeply interconnected and mutually
reinforcing. A well-crafted policy provides the
necessary guidance and security for faculty to
innovate, while competent faculty are essential for
effectively implementing any policy. An enabling
policy cannot be enacted by an unprepared faculty,
and faculty cannot develop competency in a policy
vacuum. Therefore, policy development must
proceed together with capacity building, guided
by the following principles:



PHASE 1 PHASE 2
Assess and Align

Months 1-3 Months 4-18

KEY ACTIVITIES KEY ACTIVITIES

® Form cross-functional Al task force
. . . rograms
* Conduct campus-wide Al literacy audit prog

» Align strategic goals with TECTRA

Build Capacity

* Develop professional development

* Roll out faculty training workshops

PHASE 3
Scale and Sustain
Months 19+

KEY ACTIVITIES

® Scale successful strategies institution-
wide

* Integrate Al literacy into core
curriculum

framework * Fund and support pilot programs
. * Establish Center for Al in Teaching and
* Foster stakeholder dialogue and * Vet and procure approved Al tools Uearning 9
engagement : ;
9ag * Provide secure, equitable access to Al , 5
Implement continuous feedback
resources K
mechanisms
* Maintain agile, responsive approach
Note: This roadmap emphasizes iterative learning and stakeholder engagement throughout all phases. Institutions should adapt timelines based on their specific context,

resources, and existing Al maturity level. The transition from Phase 2 to Phase 3 should be gradual, with ongoing evaluation and refinement of practices.

Figure 3. Phased Strategy Roadmap for Integrating the TECTRA Framework into the Higher Education Institutions’

Fabric.

Define, Not Just Prohibit. Any effective
Al policy must begin with a clear and
comprehensive definition of generative Al and
related terminology, ensuring that all
stakeholders are operating from a shared
understanding. Rather than resorting to blanket
prohibitions, which are often unenforceable and
pedagogically counterproductive, policies should
provide nuanced guidelines on permissible and
impermissible uses. These guidelines should be
flexible and adaptable to the diverse contexts of
different academic disciplines.

Mandate Transparency and Citation. To
uphold academic integrity in an Al-augmented
environment, policies must establish clear and
unambiguous standards for transparency and
accountability. Students should be required to
disclose their use of generative Al tools in all
academic work. The policy should provide
specific instructions for how to cite and
acknowledge this use, drawing from emerging
standards in various disciplinary style guides.

Prioritize Human Oversight. Policies
must unequivocally affirm that faculty and
students are ultimately responsible and
accountable for all academic work and
educational outcomes. This principle should be

operationalized by ensuring that faculty maintain
meaningful oversight of any Al-driven assessment
or feedback processes. Furthermore, in alignment
with the principle of contestability, policies must
establish clear and accessible mechanisms for
students to appeal or seek review of Al-generated
decisions, reinforcing human agency within the
system.

Embed Ethical Principles. A robust Al
policy must extend beyond academic integrity to
explicitly address the core ethical principles of
responsible Al. This includes strong provisions
for protecting student data privacy and security,
particularly when using third-party tools. The
policy should also prohibit the use of Alto
generate biased, discriminatory, or harmful
content and should align with internationally
recognized frameworks for trustworthy Al, such
as the OECD Al Principles.

Ensure Flexibility and Iteration. Given
the breathtaking pace of Al development,
any policy written currently will be outdated
tomorrow. Therefore, Al policies must be
designed as living documents, not as static
regulations set in stone. The institutional Al task
force should be charged with conducting regular,
periodic reviews of all Al-related policies,



ensuring they remain relevant, effective, and
aligned with both technological advancements
and the evolving pedagogical needs of the
university community. This commitment to agility
is paramount for navigating the future of Al in
education successfully.

5. CONCLUSION

This paper identifies a critical juncture in
education, where the asynchronous adoption of
generative Al has created a pedagogical crisis
rooted in faculty competency gaps and
compounded by the risks of Al’s opacity, bias,
and misinformation. In response, the TECTRA
framework offers a proactive, human-centric
solution grounded in Ethical Grounding,
Pedagogical Integration, Technical Literacy, and
Reflective Practice, positioning XAl and CAI as
pivot mechanisms to transform Al from an
opaque tool into a transparent partner for critical
inquiry. Beyond mere integration, this
technological moment presents an opportunity to
fundamentally reimagine education as a more
equitable, engaging, and effective ecosystem
where Al augments rather than replaces human
intellect, creativity, and critical thinking. The
TECTRA framework, with its emphasis on
human agency and ethical oversight, serves as
a foundational step toward this vision, making
faculty empowerment the most vital investment
institutions can make in securing a human-centric
future for education.
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