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TOM TAT

N3

Bai bdo nay nghién cdu su tuong duong gitta chudn || - ||§ HgZN 3

va chuén || - trong khong gian By 3 clia cic

dudng cong Bézier N khic bic ba. Cic dudng cong nay 1a phd bién nhit trong viéc xAp xi cc dudng cong lién tuc.
Cic dudng cong Bézier N khiic bac ba dugc xac dinh thong qua cic diém diéu khién. Cac chuan || - |I§N"3 va |- ||§2N’3
trong khong gian By 3 dugc tinh toan bdi cdc diém diéu khién. D€ ting thém su tu do trong viéc thiét ké dudng cong
va tranh viéc ting bic clia dudng cong, mot dudng cong Bézier N khiic bic ba c6 thé chia tich thinh mot dudng cong

2N.3 N
trén

Bézier 2N khiic bac ba. Chiing ta sé nghién ciu cdc hing s6 tuong duong giita chudn || - ||,€N ? va chuan || - ||§
khong gian By 3 cla cac dudng cong Bézier N khiic bac ba. Vi vay, chiing ta ¢ thé st dung chuén || - HI;N 3 dé xét su
hdi tu ctia chudi cic dudng cong Bézier tiing khiic khiic bic ba. Két qua nay quan trong trong viéc st dung céc dudng
cong Bézier tiing khiic bic ba dé tim quy dao t6i vu.

Tir khéa: Puong cong Bezier bdc ba, hing sé tuong duong, chudn, khodng cdch.
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ABSTRACT
This article is concerned with the equivalence relations between the norm || - ngv * and the norm || - H?Nj on the

space By 3 of N-piece cubic Bézier curves. These curves are most common to approximate continuous curves. N-

. Do . B B
piece cubic Bézier curves are defined through control points. The norms || - ||, and || - |,* on the space By 3 are
determined through control points. In order to give additional freedom for curve design and avoids increasing the

degree of the curve, an N-piece cubic Bézier curve can be split to become a 2N —piece cubic Bézier curve. We will

2N,3

. B B . o
study the equivalence constants for the norm | - ||,," and the norm || - ||, on the space By 3 of N-piece cubic Bézier

By 3 . . . . s
curves. So, we can use the norm || - ||, to consider the convergence for sequences of piecewise cubic Bézier curves.

This result is important for using piecewise cubic Bézier curves to find optimal trajectories.
Key words: Cubic Bézier curves, equivalence constants, norm, distance.

1. INTRODUCTION

In mathematics and engineering, there are many
curves which has complex shapes or curves which given
by a set of points. To overcome this difficulty, we create
a new curve that closely matches an existing one, often
to simplify a complex shape or to fit a set of data points.
Some methods to approximate the curve include using
simpler curves or interpolating polynomials or Bézier
curves.

In the method using simpler curves to approximate
the curve, we divide the curve into a series of points and
connect them with straight lines or circular arcs, with
more points resulting in a closer approximation. The
main advantage of approximating curves with straight
lines or circular arcs is computational simplicity and ef-
ficiency, as line segments are defined by fewer parame-
ters than higher-order curves. This method is also useful
for data compression and noise reduction by simplify-
ing complex curves. However, approximating a curve
with simple curves can lead to inaccuracies, especially
in areas of high curvature, and may result in poor extrap-
olation beyond the measured data range. (=)

Beside, a curve can be approximated by an interpo-
lating polynomial such as a Lagrange polynomial or a
Newton polynomial, which fits a curve through a set of
known points on the curve. This method improve the ap-
proximation as the degree of the polynomial increases.
Interpolating polynomials passing exactly through spec-
ified points. The main advantages of using interpolating
polynomials for approximation include their high accu-
racy for small datasets, the ability to obtain an explicit
function for calculations, and the ease of differentiation
and integration. They also provide exact results at the
given data points and can be used for data points that

are not equally spaced. The main disadvantages of us-
ing interpolating polynomials for curve approximation
are Runge’s phenomenon (oscillations, especially at the
endpoints), computational expense for high-degree poly-
nomials, and poor extrapolation properties, where the
curve can behave erratically outside the range of the data
points (see10-12),

Approximating a curve with a Bézier curve involves
selecting key points on the original curve to serve as con-
trol points and endpoints for the Bézier curve(s). For
a given curve, this is often achieved by dividing it into
segments and approximating each segment with a Bézier
curve, using techniques like the de Casteljau’s algorithm
for subdivision or fitting algorithms like the Adaptive
Extension Fitting Scheme to find the optimal control
points for a set of segments. The advantages of Béziers’
construction were many. Firstly, the curves were cre-
ated by moving control points, rather than by making
complicated mathematical calculations, which made the
tool intuitive even for designers who had no mathemati-
cal background. Secondly, each curve was uniquely de-
termined by a few control points, making the method
ideal from a data storage point of view - each curve re-
quired very little memory. Thirdly, the curves were easy
to move, stretch and rotate - all that was required was
to move, stretch or rotate the control points accordingly
(See 1,13,]4)'

In 1959, the mathematician Paul de Casteljau built
Bézier curve by using de Casteljau’s algorithm while
working for the French automaker Citroén. He was
the first to apply this method to computer-aided design
(CAD). However, his work remained a company secret
and was not published for many years. So, his contribu-
tions were not widely known at the time.

The Bézier curve was publicized by the French engi-
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neer Pierre Bézier in 1962. He defined the Bézier curve
based on Bernstein polynomials. Pierre Bézier applied
Bézier curves for designing the bodywork of Renault
cars. Bézier developed the notation, consisting of nodes
with attached control handles, with which the curves are
represented in computer software.

Bézier curves were adopted as the standard curve of
the PostScript language and subsequently were adopted
by vector programs such as Adobe Illustrator, Corel-
DRAW and Inkscape. Most outline fonts, including
TrueType and PostScript Type 1, are defined with Bézier
curves. Its importance is due to the fact that, Bézier
curves are used in many fields of applications, not only
mathematics. Bézier curves are used in computer graph-
ics, computer-aided design system, robotic, industry,
walking, communication, path-planning and aerospace
(see'52%). Bézier curves are also used to find plane
shape optimization which appears in many fields such
as environment design, aerospace, structural mechanics,
networks, automotive, hydraulic, oceanology and wind
engineering (see >~2%).

Bézier curves are presented in many books and arti-
cles for instance 1314, A continuous curve can be ap-
proximated by a Bézier curve. However, when the curve
is long and complex, the degree of the Bézier curve is
high. As a result, the computation is more difficult.
Then, the most common use of Bézier curves is as N-
piece cubic Bézier curves. We will focus uniform N-
piece cubic Bézier curves.

From?, we have the norm | - |5 on the space B, of

Bézier curves of degree m and the norm || - \|§N ™ on the
space By, of uniform N-piece Bézier curves of degree
m. These norms are computed through control points.

A uniform N-piece cubic Bézier curve can be split
to become a uniform 2/N-piece cubic Bézier curve. This
approach creates extra control points in order to give ad-
ditional freedom for curve design and avoids increasing
the degree of the curve. Splitting piecewise cubic Bézier
curves plays an important role to using piecewise uni-

form cubic Bézier curves. So, we investigate the equiv-
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B
alence constants for the norm || - ||,”~ and the norm

|- |\§N‘3 on the space By 3.

Theorem 1. Let p € [1,00[U{eo} and let B € By 3 be an
N-piece cubic Bézier curve. Then

: Bn s Ban s 1/p Bns
m < <
in{ 05 HIBIDY <IBIR <3V7 B,

2. PRELIMINARIES

In this section, we briefly recall some definitions and
notations that will be used through the article.

Definition 2. (! chapter 6, p. 141) Given four points
Py, Py, P, and P3, the cubic Bézier curve associated with
the four control points Py, ..., P; is defined by

ZPb,3

B ([P, .. for r €10,1], (1)

where b;3(t) = (?)ti (1—1)*""is the Bernstein polyno-
mial.

Py

B([Po, Py, P2, P3], ), t € [0,1]

Py /,

Figure 1. A cubic Bézier curve

The points P; are called control points for the cubic
Bézier curve. The polygon formed by connecting the
control points with lines, starting with Py and finishing
with Ps, is called the control polygon. The convex hull
of the control polygon contains the cubic Bézier curve.

A uniform N-piece cubic Bézier curve is a piece-
wise cubic Bézier curve which has N pieces, each piece
is a cubic Bézier curve and the point at 1 = %, j=
1,...,N —1, is the connecting point of the pieces. We
often drop “uniform". Let us consider the definition of
the N-piece cubic Bézier curve.

Definition 3. (! chapter 7, p. 169) Let N be positive in-
tegers and Wy, ...,Wx3 be N3+ 1 points in R”. The N-
piece cubic Bézier curve with control points Wy, ..., Wy3
is formed by

B:0,1] - R"
tHﬁ (W] ]3+3] Nt*j)
Jj j+1
‘ffe[ﬁ T]

p
K

ift €[0,1/2] Pg

3
B(1Po. Py P sl 20) = ) Pibys(20)

B = =0
B([Py, Py, Ps, Pgl 2t — 1) = ZPM 5(2t — 1) if ¢ € [1/2,1]

i=0

/5,
Figure 2. A two-piece cubic Bézier curve

Notation 4.

» The vector space of cubic Bézier curves is denoted
by the symbol Bs.

» The vector space of N-piece cubic Bézier curves
is denoted by the symbol By 3.

We define some norms and distances through control
points on the space of cubic Bézier curves and on the
space of N-piece cubic Bézier curves.



Definition 5. Let p € [1,00]. The function || - H§3 1By —
m

R is defined by: For any B(t) = Y, W;b;u(t) € B3,
i=0

L wll) " it pe 1
115 = (:— ML

Jmax {[|Will--}

if p=oco,

where || - ||, is the p-norm on R”.

From the properties of the p-norm on R” and the
Minkowski inequality, it is easily seen that || - ||I,f3 is a
norm on the vector space B3. Indeed, it is a norm on the
space (R™)3*1 of control polygons. We then have an in-

duced distance on B3 by dg3 B,y)=1B- }/Hf?.

The function || - ||§N'3 :

= BUI(Nt - j) =
j=0,....,N—1,

Definition 6. Let p € [1,00].
By 3 — R is defined by: For any f(r)

; —
Jj j+1
Wi b3 (Nt — LT
,Eo j3+ibi3( N N |

1 /N=t . P\ /P
- (j)||B3
s (ZL(81)")

j)ifte[

B
1Bl =

Using the Minkowski inequality and the properties

of the norm || - Hp on Bj, it is easy to see that || - HBA”

is a norm on the vector space By 3. Then we have again
an induced distance on By 3 defined by dgN‘3 B,y) =

B
1B =7ll,"-

The norms || - |5 and || - ||§N‘3 can be computed more
efficiently than, for instance, the L,- norm.

The purpose of this paragraph is to rewrite an N-
piece cubic Bézier curve as a new piecewise cubic Bézier
curve such that the number of pieces in the new piece-
wise cubic Bézier curve is greater than N. We will see
that when we split every piece of an N-piece cubic Bézier
curve at the middle point of the piece, we get a 2N-piece
cubic Bézier curve.

Let B € B3 be a cubic Bézier curve with control
points W; e R", i =0,...,3. So

ZWb,';

=(1—=1)*Wo +3(1 =)’ tWy +3(1 — 1) Wa + W3,
for 1 € [0,1].

B(1) =B([Po, P, P2, P31

Form the recursive property of Bernstein polynomi-
als, a cubic Bézier curve can be recursively determined
as a convex combination of two quadratic Bezier curves
as

B(t) =B ([Wo, W1, W2, W3], 1)
=(1=1) (1 —=1)*Wo +2(1 — 1)tW; +1*W>)
+1 ((1—1)2Wy +2(1 —1)tWs +1W3)
=(1—1)B([Wo,W1,W2],t) + B ([W1, W2, Ws],1).

Since  b;,(x) = n(bi-1p-1(x) =bin-1(x)), The
derivative of the cubic Bézier curve with respect to t
is another Bezier curve of one degree lower and given
by

*B() d SB([Wo, W1, W2, W3l 1)
23(1—t) (Wl—W0)+6(1—l‘) (WQ—W1)+3I (W3 —Wa)
:33([W1—W0,W2—W1,W3— 2], )

By (? chapter 9, p. 201), we can split B at any

1
fo € (0,1). When we split § at 7y # 50 We get 2 cubic

. . Iy . .
Bézier curves but the point 3 (5) is not the connecting

point of the pieces. In order to get a uniform 2-piece
L . 1 . .
cubic Bézier curve, we split 3 att = 3 and obtain a uni-

form two-piece cubic Bézier curve as follows

BO@) = 5 Pbia(20) itr e [0.4]
Bl = &
BUQi—1)= ¥ Prubis(2i—1) ifte[%,l},
i=0
(2)
where

i 1
H:Zbli(i)vvi—h i:()a"'73a

P3+I_Zbll( )W3 i+, i=0,...,3.

Then a cubic Bézier curve can be considered as a uni-
form two-piece cubic Bézier curve.

More generally, let B € By 3 be an N-piece cubic
Bézier curve with control points Wiz ; € R",i=0,...,3,
j=0,....N—1.So

B(t) =BV (N1 - j) Zsz i3(Nt — j)
i=0
j j+ 1} .
N N I
If we just split a piece of 8, we get N + 1 pieces but
some points at t = ﬁ, j=1,...,N, are not the con-
necting points of the pieces. Then we split every piece
of B at the middle point of the piece and obtain a uniform
2N-piece cubic Bézier curve as follows

fte[ —0,...,N—1.

. 3
TN (2Nt —2j) = ¥ Prj3iibis (2Nt —2j)
i=0

. 2j 2j+1
ifr e [ 3, %7
r@+ Nt —2j-1
B(r) - { )

= ‘§0P(2j+1)3+ibi-,3(2Nt —-2j-1)
- 2j41 242
1ft€ [éiN’éiN}’
i=0,....N—1,

3)

where
P2j3+l_ Zbll( ) Jj3+i—1»

1
Pojizei = Zb11< ) 343t
i=0,...,3,j=0,....N—1.



So, B can be considered as a 2N-piece cubic Bézier
curve. This means that the space By 3 is a subspace
of the space Boy 3 and the space By 3 inherits the norm

B .
|| -][,°". We next study the equivalence constants for the

Ban g

norm || - szv.3 and the norm || - ||, on the space By 3.

3. EQUIVALENCE CONSTANTS FOR THE

NORMS || - [,

By 3
AND [|-[[," ON By 3
We first find a constant M such that || - ||1;2N'3 <
M- ||1;N'3 on By 3. We will consider two cases p € [1,o0|
and p = co.

Lemma 7. Let p € [1,0] and let B € By 3, we have

B B,
1BI1y™ <317 (1B1"

Proof. For any N-piece cubic Bézier curve B € By
with control points Wjzy; € R", i = 0,...,3, j =
0,...,N—1. We have
. 3
(1) =BV (Nt — j) = ZWj3+ibi,3(Nf—j)
Jj ]+1} .
N N

By (3), B can be considered as a 2N-piece cubic Bézier
curve as follows

1ft€{ =0,...,N—1.

. 3
TN (Q2Nt —2j) = ¥ Prjsiibis (2Nt —2j)
i=0

. 2j 2j+1
ifr e [ 3, %]

r@H) Nt —2j-1)

ﬁ(t): 3
= .ZOP(2j+l)3+ibl'-,3(2Nt —2] — l)
=
. 2j+1 2j+2
ift € [éT,éT],
j=0,....N—1,
where

Pj3yi= szl< ) 13—

1
Pojryz+i = Zblz( ) B343—it1
i=0,...,3,j=0,....N—1.

Case p € [1,00]. Since

(o) =3 Zos (5w

<3 Wiz
< ii%‘f‘.’_‘,3” 34

s
3 Y

<3 Y IWiailly = 3(IBVIE),
i=0

Vj=0,.. N—1,

and similarly

p
(”Fzijl |B3> = Zbll< ) Jo3+3— z+lH
S3(|Iﬁ’ 15)" W =0,...N~1,

we obtain

1811,
1/
(21\71)1/P(Z<”r2’ I ) (||r<2j+1>||[§3)”> ?

<(1)1/,,(2 (1Y ||§3)") < q gy

Case p = 0. Since

|CG)|Bs =  max ‘

Gwee].

< W, e
—,-36,".‘.’.‘,3” ,3+l||
=[IBYV|Bs, ¥j=0,...,.N—1

and similarly

HF (2j+1) |B3 max

zbh( Wit | < 1B,
W:o,...,N—l,

we obtain

B
1Bl =

max max{Hr(zj)HgnaHFOHUHQD}
—0,...N—1

B,
1Bll"".

< max (U =

yeeesN

From the above two cases, we have the proof of the

lemma. O
Bon 3
In order to find a constant m such that m|| - ||,” <
By 3

|-, on the space By3, we also study two cases
p € [l,00[and p = oo.

Lemma 8. Let p € [1,00[. For any B € By 3, we have

B B
41/,, 1Bl < 11BI™.

Proof. For any N-piece cubic Bézier curve B € By 3

with control points Wj3y; € R", i =0,...,3, j =
0,...,N—1. We have

3

ZP/3+I 13(Nt7 )
i=0

B(t) =BV (Nt — j)

Jj j+1

fte[
! N N

}j—o N—1.

By (3), B can be considered as a 2N-piece cubic
Bézier curve as follows

. 3
2D (2Nt —2j) = Y. Pyjs1ibi3(2Nt — 2)
i=0

. 2j 2j+1
ifr e |3, %5

r&+H N —2j—1
B(r) = ! )
= _ZOP(2j+1)3+ibi,3(2Nf —2j-1)
=
. 2j+1 2j42
ift € |:£7N’ éT:|7
j=0,....N—1,



where

1
Pj3ii= Zb11< ) 3+ils

P(2j+l 34+i — Zblz( ) J3+3—i+l1s
i=0,...,3,j=0,... . N—1.

We first consider <||l"(2j)||l,f3)p + (||F(2j+')H§3)p, j=

0,...,N—1.Set

1 1
A=max {[Wisllp, 5 Wia1llps 5 1Wiss2llps Wil }-

e Case 1: A=
We have

Wisllp-

)| |33) <||F(2./'+1)H33>P

( r@)5)" > Pl = Wl
1
6

3 .
X [Wiasils = < (180)"

e Case 2: A=
We have

(1) + (reisoys)”

. p
> (IT@E)" > Pyl

1
Sl

1
> Wil

= (18915)".

1
Hz Bt 2WJ*“H

1 3
> 55 L Wil =

1
o Case3: A= §|\Wj3+2||p-

In this case, we determine T'%/+1) As similar to
Case 2, we get

(%

> (e s > =

(||r<zf“ 12)"
(180 2)”

o Case4: A= ||Wjsiap-
In this case, we determine I'?/*1) ., As similar to

Case 1, we get
( 2/+1)||B3)p

(I z)”
£ (1891)"

(HF 2j+1) ||B';> > =
From the results of the above four cases, we obtain
. p . 14
(e )"+ (e D)

1 . p
> (7) |83 P — _
> (IB91%)", vi=0,...N—1.

Thus

HBZND

”Fﬁ Jo

1 N—1 Y 2_prl/p
:(ZN)l/p<Z (IIF( ”H;) +(||r< it >||p3) )

Y
. (le)l/,,(NZl S (B1) ) = s,
]

Lemma 9. Ler B € By 3, we have
1 B B
1 1Bl < Bl

Proof. For any B € By 3 be an N-piece cubic Bézier

curve with control points Wj3,; € R",i=0,...,3, j =
0,...,N—1. We have
3
B(1) =BY (Nt — j) = Y Wz 1ibis (Nt — j)
i=0
j j+17 .
if re[£,5] =0, N-1.
' NN Y

By (3), B can be considered as a 2N-piece cubic Bézier
curve as follows

, 3
T2 (2Nt —2j) = ¥ Pyj3+ibiz(2Nt —2j)
i=0

. 2j 2j+1
ift € [W’72N i|

r&+D (N —2j—1
B(r) - { )

= _ZOP(2j+1)3+ibi73(2Nt —-2j-1)
=
- 2j41 2j42
ifr € |45, %2,
j=0,...,N—1,

where
Pz = szz( ) B3i—ts
1
FPojinysti = Z bm( ) j34+3—it1s
i:0,...,3,1_0,...,N—1.
First, we will consider max { |T@0) |18 | r@i+D) B },
j=0,....N—1.Set
1 1
A =max { [Plles 5 11Pss1 o, 312 llos P33l -

e Case 1: A=
‘We have

max { ||1"(2.i) 15, || T @i+ ||£3}

>CCNS = |1Pyslleo = W3]l = BV )12,

W3-

e Case 2: A=
‘We have

max { IT @) |85, 0@+ ||£3}

1
§||Wj3+1||oo-

1
P]3+1Hw

2T 2 sl = | 5P+

1 1 )
> Wil = ZIBV)1Z



1
e Case3: A= EHWJ’HZHW

In this case, we determine [+ This case is
similar to Case 2. Thus, we get

max { T2 &, 0@ 5

. 1 )

>+ Bs > — 1 glo)| B3

> > = Z 1Bl

e Case 4: A = |[Wj313]|e. -
In this case, we estimate I" (2/+1)  This case is sim-
ilar to Case 1. Then, we get

max { [T, T 2 |

> (TS > B2
From the results of the above four cases, we obtain
max { T, [ECH O} > LIS, @)
Thus

Bonp
IBll"" = _max

.....

max{||r(2f>||5;3, I |
1

B
> max IIﬁ g = 5 2Bl

.....

O

Combining the above two propositions, we have the
following theorem.

Theorem 1. Let p € [1,00[U{eo} and let B € By 3 be an
N-piece cubic Bézier curve. Then

. N3 By 3 1/p By 3
min{ 25 HIBIP < 1B <3VP B,

Proof. Using Lemmas 7, 8 and 9, we get the proof of
this theorem. [

From the above theorem, we obtain the following
corollary:

min{ 241/p’ zlt}dBNg(ﬁ_Y)

<dp™(B—y) <3P d" (B -A),

forany 8,7 € By 3.

4. CONCLUSION

This article presents the norm || - ||,€N ? of piecewise cu-
bic Bézier curves which is defined by control points.
This norm is more convenient to compute than the [,
norm. An N-piece cubic Bézier curve can be split
and reparametrized to become a 2N-piece cubic Bézier
curve. This way creates extra control points in order
to give additional freedom for curve design and avoids
increasing the degree of the curve. We also show the

. By 3
equivalence constants for the norm || - ||,""* and the norm

B .
|- |I,™". These equivalence constants do not depend on

the number of pieces. Thus, we can use the norm || - ||5N 3
to consider the convergence for sequences of piecewise
cubic Bézier curves. This result is important for using
piecewise cubic Bézier curves to find optimal trajecto-
ries.
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