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TOM TAT

Bai bdo nay nghién cifu bai toan tdi uu héa thiét ké chum tia trong hé théng truyén thong khong day c6 su
hd trg ctia bé mit phan xa thong minh (IRS), nhim dép ing cdc yéu cau nghiém ngit clia giao tiép do tré thip cuc
ky dang tin cdy (URLLC). Bing céich thiét ké cic vectd dinh dang chim tia truyén tai 6 nhé (SC), thuit toan dé
xuét sé bién ddi bai todn t6i uu hda khong 18i thanh dang 15i c6 thé giai dudc bing cach sit dung k§ thuat xap xi 16i
lién tiép (SCA) va ky thuat thu gidn ban xac dinh (SDR). Két qudz mé phdng cho thiy phuong phap dé xut gitip
cai thién dang ké thong luong hé théng va tde do dif liéu ctia ngudi diing so véi cac thuit todn tham chiéu, dic biét
la trong cdc cAu hinh IRS va mic cong suét truyén khac nhau. Nghién citu khiang dinh hiéu qui va kha ning mé
rong cla IRS trong viéc nang cao hiéu sudt mang trong cic trudng hgp URLLC.

Tix khéa: Bé mdt phdn chiéu thong minh (IRS), Mang khong dong nhdt, Thiét ké chium tia, Giao tiép do tré thdp
cuc ky ddng tin cdy (URLLC).
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ABSTRACT

This paper investigates the optimization of beamforming in intelligent reflecting surface (IRS)-assisted

heterogeneous wireless communication systems, aiming to meet the stringent requirements of ultra-reliable low-

latency communication (URLLC). By designing the transmit beamforming vectors at the small cell (SC), the

proposed algorithm transforms a non-convex optimization problem into a solvable convex form using successive

convex approximation (SCA) and semi-definite relaxation (SDR) techniques. Simulation results demonstrate that

the proposed method significantly enhances system throughput and user data rates compared to benchmark al-

gorithms, especially under varying IRS configurations and transmission power levels. The study confirms the

effectiveness and scalability of IRS in improving network performance in URLLC scenarios.

Keywords: Intelligent Reflecting Surface(IRS), Heterogeneous network, Beamforming design, Ultra-Reliable Low-

Latency Communication (URLLC)

1. INTRODUCTION

Future wireless networks are anticipated
to evolve toward intelligent and software-
reconfigurable architectures, enabling ubiquitous
communication among humans and mobile de-
vices. These networks will possess the capabil-
ity to sense, control, and optimize the wireless
environment, thereby supporting low-power op-
eration, high throughput, massive connectivity,
and ultra-low-latency communication.! As com-
munication scenarios in the 6th Generation (6G)
mobile communication era become increasingly
complex, large-scale MIMO and small-cell de-
ployments are receiving growing attention as key
network architectures.?? This is particularly rel-
evant for practical communication scenarios in
densely populated areas with high user density.
Ultra-Reliable and Low-Latency Communica-
tions (URLLC) represents a critical standard for
6G networks,* employing short-packet transmis-

sion to satisfy stringent reliability and latency
requirements. URLLC is especially targeted at
mission-critical applications, including industrial
automation, remote healthcare, and intelligent
transportation, and other scenarios that demand
ultra-low latency and ultra-high reliability.’

Intelligent Reconfigurable Surface (IRS)
is a technology capable of reconfiguring the
wireless propagation environment, acting like
a passive metal mirror or "wave collector." It
can be programmed to modify the impinging
electromagnetic field in a customizable man-
ner. IRS is considered a highly promising inno-
vation due to its immense potential to achieve
low power consumption, high energy efficiency,
high-speed communication, massive connectiv-
ity, and low-latency wireless communication.'
Simultaneously, accurate and low-overhead chan-
nel estimation is a critical challenge in IRS-based
systems due to the large number of IRS elements
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and their unique hardware constraints. Reference
focuses on an IRS-enabled multi-user Multi-
Input Single-Output (MISO) uplink communica-
tion system and proposes a channel estimation
framework based on parallel factor decomposi-
tion to obtain the cascaded channel model. It
presents two iterative estimation algorithms for
the channel between the base station and the IRS,
and the channel between the IRS and the users.
It demonstrates that the total rate achieved us-
ing the estimated channel always reaches the to-
tal rate of the perfect channel under various set-
tings, thereby verifying the effectiveness and ro-
bustness of the proposed estimation algorithms.®
Reference’ investigates secure beamforming in
a multi-IRS assisted millimeter-wave (mmWave)
system. These methods have demonstrated su-
periority over traditional approaches. Currently,
much research combines IRS with URLLC or
heterogeneous network scenarios. For instance,
the paper® provides a comprehensive survey of
resource allocation (RA) strategies in 5G hetero-
geneous networks (HetNets), highlighting cur-
rent research, challenges, and future directions.
HetNets integrate various small cells (micro,
pico, femto) with macrocells to enhance spec-
trum efficiency (SE), coverage, and quality of
service (QoS). The authors also identify several
challenging open issues and propose future re-
search directions in this field. Furthermore, two
effective approaches for addressing RA problems
in sixth-generation (6G) communications are dis-
cussed. In reference, the article performed max-
imizing the ratio of the total data rate to the to-
tal cross-layer interference for femtocell users in
a two-tier OFDMA heterogeneous network with
layer interference under imperfect channel state
information. The optimization problem is studied
by optimizing the femtocell base station’s trans-
mit power and subcarrier allocation factors. The
original problem is transformed into a convex
optimization problem using quadratic transfor-
mation, variable relaxation, and Lagrange dual-
ity theory, and the results indicate an improved
interference efficiency compared to traditional
schemes.

However, references ®’ either focus solely

on URLLC without considering heterogeneous
networks, or they only address the Shannon ca-
pacity scenario. In situations where network con-

ditions become complex, it is important to con-
sider cases where Shannon capacity alone may
not meet user demands. To address this, and to
satisfy the quality of service requirements for
short-packet communication users in heteroge-
neous networks, this paper proposes an alter-
nating iterative optimization algorithm that is
more aligned with practical application needs.
The main contributions are as follows:

(1) We propose a novel beamforming op-
timization algorithm for IRS-assisted heteroge-
neous wireless networks that designs the trans-
mit beamforming vectors at the small cell with
different assumptions on IRS reflection angles of
the IRS to meet URLLC requirements.

(2) The original non-convex optimization
problem is effectively transformed into a solvable
convex form using successive convex approxima-
tion (SCA) and semi-definite relaxation (SDR)
techniques.

(3) We conduct extensive simulations to
evaluate the performance of the proposed al-
gorithm under various system configurations,
demonstrating its superiority over benchmark
methods such as random phase shift and no-IRS
schemes.

2. SYSTEM MODEL

2.1. Method of signal transmission to users

As shown in Figure 1, the system considered
in this paper is a downlink heterogeneous net-
work, where the overall communication system
consists of a base station (BS), small cell (SC),
users in BS, and users in SC assisted by intel-
ligent reflecting surface (IRS) to meet the com-
munication requirements of high reliability and
low latency. Both the base station and small cell
are equipped with multiple antennas (M > 1).
The total number of users in the communica-
tion area is g, and the number of small cell
users assisted by IRS is Us = {1,2,..., K},
with each user being a single-antenna user. The
IRS is composed of NV = {1,2,..., N} reflect-
ing units, and the corresponding channel ma-
trix is ® = diag(u) € CV*V, where u =
[ug, ug, ..., un]? = [ef, e, ... H ¢
CN*1 with 6; € [0,27),¥i € N. The system
operation involves the following coefficient chan-
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Figure 1. The heterogeneous network model with IRS support

nels: the transmission channel from SC station to
IRS,Gg; € CN*M. reflective channel from IRS
to users in SC k, hfk e C™N and channel di-
rectly from SC to user in small cell, h// dk € cixM
with k& € Ug; the transmission channel from
BS to user in base station k, hfk e C*M with
k € Up. The IRS is equipped with an intelli-
gent controller to coordinate its reception and re-
flection of signals during the transmission pro-
cess, and it can obtain channel state information
(CSI) from the SC to the IRS via a wireless con-
nection. ' Simultaneously, a basic baseband unit
(BBU) is implemented between the BS and SC
through a wireless backhaul, with both the SC
and IRS controlled via wireless connection. It is
assumed that the CSI of the entire system can be
obtained at the BBU.!!

The signal transmitted from the BS station
is given by

Xp = Z ViSb,is (D

i€UB

where v; € CM*! is the beamforming vector for
the i-th base station user transmitted from the BS,
and sp; ~ CN(0,1), i € Up is the data sent to
the i-th base station user with E(|s;,;|?) = 1.
The transmission signal from the SC is expressed

as:
X5 = ) WSk, 2

keUs
where wj, € CM*1 s the beamforming vector for

the k-th small cell user transmitted from the SC,
and sg ~ CN(0,1), k € Us, is the data sent to
the k-th small cell user with E(]ss x|?) = 1. The
maximum transmitted power at the SC, Ppx, is
constrained by the following condition:

> wil® < Prax. 3)

k€eUs

2.2. Maximum transmission rate for small cell
users

To meet the high-reliability communication re-
quirements and low-latency constraints, the re-
ceived signal at the small cell users consists of
three components: the desired signal from the
SC, interference from the BS, and interference
from other small cell users. The k-th small cell
user is represented as

Ug fp = (hé{,k + hfk‘I’Gs 1)WgSs i+

Z (h +h k(I)GSI)W1531+
i€Us iFk
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h{lixp + n, (4)

where nj, ~ CN(0,02) is the additive white
Gaussian noise (AWGN) at user k-th. Since this
paper focuses on small cell users within the
SC coverage area, the BS employs maximum
ratio transmission (MRT) for precoding. The
MRT beamforming vector!? is given by vMRT =
”E N The purpose of dividing the channel vec-
tor by its own magnitude normalizes the beam-
forming vector to have unit norm (i.e., ||[vMRT|| =
1). This ensures the beamformer aligns perfectly
with the channel’s direction to maximize signal
gain at the receiver (the core principle of MRT),
while separating the direction of transmission
from the magnitude of the transmit power. Thus,
the signal to interference plus noise ratio (SINR)
for a low-latency user k-th is:

Vs,k =
|(hg), + 1]} @G )wy|?

Sicus iz (0 F 0L ®Gs )wil2 + py, + o

)

where p, = Zz‘euB \hgkvi|2. Here hy, j, repre-
sents the channel from the BS to the k-th user in
BS, and v; denotes the beamforming vector asso-
ciated with the ¢-th user. In equation (5), the term
w, represents the precoding vector for the k-th
user. In such formulations, the transmit power al-
located to user k is typically embedded within
this vector. Therefore, the term |wy|? (or specifi-
cally ||wy|[?) corresponds to the power allocated
to that specific user.

The signal received by a base station user
[-th also consists of three parts: the desired signal
from the BS, the received multi-user interference
signals from other users in BS, and the interfer-
ence signals from the IRS. Thus, the received sig-
nal is denoted as:

H H
Up,1 :hb,lvlsm,l + Z hbJViSm,i
i€Up it
—Q—h(]flx,s +ny (6)
where n; ~ CN(0,07) is the additive white

Gaussian noise for the [-th user. The SINR of the
base station user [-th is given by

Vol =

[hyhvi|?

Eie(lxlsflxls),iyél ’hb,lvi‘ + Zjel,{s \hﬁﬁwg‘\? + 012
(7

The transmission rate of a small cell user (in
bits per second per Hz) is approximated by equa-
tion: 13

R(’Ys,k) =

logy (1 + vs,k) — aQ ™!

(/1= (1472

®)

This paper aims to maximize the system
sum rate for /g small cell users within the IRS-
assisted region, while ensuring that their QoS !4
requirements are met. For base station users, out-
side the communication area, it is only neces-
sary to satisfy the minimum SINR requirement.
By optimizing the transmit beamforming vectors
{wi }reus at the SC and the IRS reflection an-
gles 0; € [0,2n) for all i € N, the combined
optimization problem can be formulated as:

\
max > R(vs)
Wi,u

kels
S.t.
Cl: R(ysk) > L, Vk e€Us,
C2: v > SINRpRg, Vi e (Up —Us),

C3: > [[wll® < Prax,
keUs

C4. ‘Ul’ = 1,

VieN.
)

Constraint C1 in the optimization problem en-
sures the minimum QoS requirement for each
small cell user; constraint C2 guarantees the min-
imum SINR requirement for base station users;
and constraint C3 ensures that the transmission
power at the SC does not exceed the maximum
power requirement P, ... Constraint C4 is the
unit modulus constraint for the IRS elements.
Problem (9) is a non-convex problem. The non-
convexity arises mainly from the coupling of the
SINR and optimization variables in equation (9),
and the non-convex nature of the rate expression
in equation (8) is reflected in constraint (C1).

For most non-convex problems, there is
currently no systematic solution. In the following
sections of this paper, a series of approaches are
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proposed to tackle these problems, and an effi-
cient alternative algorithm based on iterative op-
timization is presented.

3. DESIGNED ALGORITHM FOR OPTI-
MIZED BEAMFORMING

3.1. Optimization problem transformation

In this section, we solve optimization problems
(9) with coupled variables to obtain optimal so-
Iution. This article focuses exclusively on the op-
timal beamforming at the SC. Therefore, we ap-
ply an optimization approach using a fixed-point
iteration for the IRS phase shift vector u. Finally,
the optimization method is employed to solve the
subproblems in (9).

For the processing R(x) it can be ex-
pressed as R(x) = f1(z)—aQ () f2(z), where
fi(z) and fo(z) are two convex functions of x.
Q~1(e) is a positive constant, so the objective
function R(x) is the difference of two convex
functions.'> Using the first-order Taylor expan-
sion of fa(x), we have:

logg(l + {E) — Aka; — Bk (10)

where A, = aQ '(e)fi(z?), and By =
aQ~1(e)(fa(at) — fi(zt)a?). Thus, the objective
function for the optimal solution of this problem
can be expressed in terms of the transmission rate
in equation (10).

Next, we aim to optimize the beamform-
ing vector wy at the SC, assuming that the
IRS reflection vector u is fixed. The following
quantities are defined: Wy, = wkwkH ‘M, =
mym/; mll = hg{k + hfk@(;;mk = hgy +
GH ®h, ;.. Therefore, the SINR in (5) can be
rewritten as:

Tr(WgMy)
> icuts izk TH(WiMg) + pj, + of
(11)

Vs,k =

This formula expresses SINR as the ratio of the
useful signal power to the sum of interference and
noise powers for user k-th at the SC.

3.2. Optimization of the transmit beamform-
ing vector at the SC

From (11), the optimization problem in expres-
sion (9) can be rewritten as follows:

H\}\?;X Z 1Og2(1 + ’Vs,k’) - Ak”)’s,k - B,
keUs

S.t.

C1,C2,C3: Y Tr(Wy) < Pra,

keUs
C5: W, >0, Vkels,
C6: rank(Wy) <1, Vk € Us. )
(12)

Here, constraints C5 and C6 are introduced to
ensure that W), = wkw,f remains valid after
optimization. Next, an approximate treatment is
made to the problem in expression (12). First,
the objective function is expressed as the dif-
ference between two convex functions (DC pro-
gramming) '®, J; — J3, where

J1 = Z log, (Z Tr(W;My) + pr + 0‘,%)

kells i€ls
(13)
and

Jo=> logy [ > Te(WiMy)+ pi + 0}
keUs i€Us itk
(14)

For any positive semi-definite matrix
W, k € Us where t represents the iteration in-
dex, we use the first-order Taylor expansion for
Jo at W,(fl):

Jo(Wy) < Joy(W) 4

3 TV, (W) (W, - W) (15)
kels

where V&, J(W{)) is the gradient of J with
respect to Wy. Therefore, the objective function
can be rewritten as:

Z log2(1 + ’Yk) > J - J2(W](€t1))_
keUs
S TV (W) (W - W) 2 N,
keUs
(16)
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Since constraint C6 is also a non-convex
constraint, to solve this type of problem, the
semi-definite relaxation (SDR) technique!” is
employed. We define J3 and J; to represent the
following expressions:

J3 = TI‘(WkMk) (17)
and

Jy = Z Tr(W;My) + p +op.  (18)
JEK.j#k

Both J3 and J4 are function of Wy,. According
to reference '3, for x > 0, where x € R, = can be
treated as a specific value after each iteration, so
the following inequality (19) holds:

12
—xi o2 (19)
x T T
Substituting v = ﬁ—i, we get:
J3 > 2 Jy 2Js3 J3Jy
T 293 =y — oo = —qy T oo
Ja I gy

QY

In particular, to approximate the product J3.Jy,
we write:

(J3+ )2 (J3— Jy)?

= — . 20
J3J4 1 1 (20)

Similarly, a first-order Taylor expansion is ap-
plied to (J3 — J4)?, after this treatment, the result
is as follows:

Js 2J5 1 ((J3+J0)* 1,- -,

e A S (e L2 Nl O Y

Jy Jy J2 ( 4 = h)
+2(Jy — Jo) M (W, — W) 1)

where .J; = D ictts itk Tr(WEtl)Mk) +pp+ 0%,
and J3 = Tr(W,(:l)Mk). Furthermore, a Taylor
approximation is applied to the convex function
(J3 + J4)2, and by rearranging inequality (11),
the following result is obtained:

Js _2J3 1 (- -

= > —=— — = | J3Ju+

Ji = T T2 < 3

2J4Tr (M, (W - W) ) 2 e (22)

After this processing, the ratios of the two convex
functions J3/.Jy. Thus, the objective function in
expression (12) becomes:

> R(ysp) = > Np— AgJsa— B (23)

keUs keUs

Next, constraint C2 needs to be addressed.
According to the minimum SINR requirement
for macro-cell users, MRT precoding is applied
for processing. Therefore, constraint C2 can be
rewritten as

C2: Tr(W.H PR G
k; r(Wp T,l)+pz+al+_SINRBS,
S

Vil € (UB — Us). 24)

Due to W £ wkwlk{, it is included in
constraint C6. To solve the problem, the semi-
definite relaxation (SDR) technique is applied,
and the original optimization problem (12) is re-
formulated as:

max E Nk—AkJ34—Bk
“’k ’
keUs

s.t.
C1,C2,C3: ) Tr(Wy) < Puax, Vk € Us
keUs
C5: Wy > 0, Vk € Us.

(25)

The paper transforms the original non-convex
beamforming optimization of problem (9) into
an iterative convex problem (25) by using suc-
cessive convex approximation and semi-definite
relaxation. Specifically, Wy, is optimized directly
under constraints Wy > 0 (C5) and power limits,
while dropping the non-convex rank-1 constraint
(C6, rank (Wy) = 1). After iterative convergence
of the SCA algorithm Table 1, the rank-1 approxi-
mation wy, is extracted from the dominant eigen-
vector of Wy, leveraging SDR’s property that
optimal solutions are often rank-1 or near-rank-1
in such beamforming problems. Specifically, ex-
pression (25) is now a convex optimization prob-
lem that can be solved using standard convex
optimization tools. To obtain the optimal solu-
tion, an iterative algorithm is employed to solve
expression (25) for Wy, across time slots ¢. The
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proposed algorithm is summarized in Table 1.
Table 1: Iterative beamforming vector design
algorithm based on successive convex appro-
ximation

Initialize the maximum number of iterations,
t™MaX “the iteration index t;, and the variable

set {W,(:l) }; set the optimization variables

u = [ug,us, ..., uyn] as a constant.

1.Fori=1,2,..., do:

2. Under the given values of W,(fl) and u,
(t1+1)

solve problem (25) to obtain W, .
. Update the iteration index: t; = ¢; + 1
4. Repeat steps 2—3 until convergence or until
t = trlnax
5. End for

w

This SDR-SCA approach effectively han-
dles the non-convex SINR ratios and DC-
programming objective by successive Taylor ex-
pansions with respect to expressions (10, 15, 21,
22) and inequality approximations (19), yielding
a solvable convex SDP at each iteration. Simula-
tions demonstrate fast convergence within 400 it-
erations and superior sum-rate performance over
random phase-shift and no-IRS benchmarks, es-
pecially with larger IRS elements (N = 64) and
moderate powers (F,,;=30 dBm) as illustrated
in Figure 3.

4. NUMERICAL RESULTS

This section presents the simulation re-
sults for the proposed system and algorithm. The
study considers all communication participants
in an IRS-assisted heterogeneous network, which
are assumed to be located on the same two-
dimensional plane assumed as follows: i) Net-
work Setup: Within the small cell coverage area,
there are 2 IRS-assisted small cell users and 2
base station users. The base station region is cen-
tered at (0,0) meters, with the small cell base
station located at (20, 0) meters and the base sta-
tion at (—150,0) meters. The IRS is positioned
at (70,70) meters; ii) User distribution: Small
cell users are randomly distributed within a cir-
cle of radius 5 meters centered at (0,80) me-
ters. Base station users are randomly distributed
within a circle of radius 5 meters centered at
(0, 25) meters; iii) System parameters: The noise
power spectral density is set to —175 dBm/Hz,
and the system bandwidth is 240 kHz. The chan-

nel is modeled with a Rician factor of 10, and the
decoding error probability for low-latency users
is set to ¢ = 10~°. Each blocklength is L, = 11
bits. The system is equipped with 4 antennas
at the base stations, and the IRS is configured
with N = 16, 36, or 64 reflecting elements. For
base station users, the minimum SNR require-
ment is set to 15 dBm. In this study, the per-
formance evaluation focuses on the average sys-
tem throughput and the average data rate of small
cell users, which are referred to as the system
throughput and average user rate, respectively.

To evaluate and compare the performance
of the proposed algorithm, two benchmark algo-
rithms are considered:

(1) Random Phase Shift Algorithm: In this
method, each IRS element is assigned a ran-
dom phase shift. Specifically, for the optimiza-
tion variable u, a random number is selected uni-
formly from the interval [0, 27) and fixed at the
beginning of the simulation. Subsequently, only
the beamforming Wy, is optimized.

(2) No-IRS Algorithm: In this approach,
the channels associated with the IRS, namely
G, and h, , as well as the phase shift ®, are
removed. Optimization is then performed solely
on the beamforming W,.

w
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Figure 2. Relationship between P, of the Small
Cell (SC) and the Average Sum System Rate, with
K =2and N = 16.

Figure 2 illustrates the relationship be-
tween the maximum transmitted power (Pp,qz)
of small cell and the average system sum rate.
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As P, increases, the average system sum rate
shows a monotonically increasing trend. This be-
havior is influenced by constraint C3 in the opti-
mization problem, where P,,,, directly impacts
the feasible range of the beamforming optimiza-
tion variable Wy. At P, = 15 dBm, the
three algorithms exhibit different performance
characteristics: the proposed optimization algo-
rithm yields the highest average system sum rate,
followed by the Random phase shift algorithm,
while the "without IRS" case performs the worst.
In the range from 15 to 40 dBm, there is a notice-
able gap in the rate of increase between the pro-
posed algorithm and the other two. However, the
magnitude of this difference remains modest. The
performance trend of the random phase shift al-
gorithm closely follows that of the "without IRS"
case. For P4, in the range of 40 to 45 dBm, the
differences among the three algorithms become
more pronounced. The proposed algorithm be-
gins to exhibit a steeper growth rate compared to
the other two. Similarly, the Random Phase Shift
algorithm shows an increase in its growth rate rel-
ative to the "without IRS" case, which continues
to show the smallest rate of increase.
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Figure 3. The relationship between number of it-
erations and the system’s average sum rate with
N =8, 16, 36, 64, P, =30 dBm

Figure 3 successfully validates the pro-
posed algorithm’s convergence and underscores
the pivotal role of the IRS in enhancing network
capacity. Specifically, Figure 3 illustrates the re-
lationship between the number of iterations and
the average system sum rate (in bits/s/Hz) for a
proposed algorithm under varying values of IRS

reflecting elements N = 8, 16, 36, 64, with a
fixed transmit power Py.x = 30 dBm. The results
clearly indicate that the proposed algorithm ben-
efits significantly from increased IRS element
counts. As N increases, the system sum rate im-
proves across all iteration counts. For instance,
at 1000 iterations, the algorithm with N = 64
achieves approximately 3.6 bits/s/Hz, while the
configuration with IV = 8 reaches only around 2.5
bits/s/Hz.In addition, the convergence of the al-
gorithm is evident: all curves exhibit rapid initial
growth in the system sum rate, particularly within
the first 400 iterations. Beyond this point, the
rate of improvement diminishes, indicating con-
vergence toward a performance ceiling. The pro-
posed algorithm demonstrates robust scalability
and convergence properties. The consistent up-
ward trend across all configurations confirms its
effectiveness in iterative optimization settings.
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Figure 4. The relationship between the maximum
transmitted power of base station (Pgg) and the
system’s average sum rate with K =2, Py, =30
dBm

From Figure 4, it can be observed that as
transmitted power at the base station Ppg in-
creases, the average system sum rate decreases
for all three algorithms. The influence of the BS
on the average system sum rate for the SC users
can be understood from expressions (9) and (12).
In (9), the increase in BS transmission power re-
sults in a larger SC component in the denomi-
nator, thereby increasing interference for the SC
users. This leads to a decrease in the SINR of the
SC users, which in turn lowers the average sys-
tem sum rate. Additionally, for the proposed al-
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gorithm, when the transmitted power at the BS
is relatively low (e.g., between 20 and 32 dBm),
the enhancement effect of the IRS remains sig-
nificant, and as a result, the average system sum
rate decreases more gradually. However, once the
transmitted power at the BS exceeds the 32 dBm
threshold, the excessive increase in BS power ex-
acerbates its impact on SINR, causing a sharp ac-
celeration in the rate of decrease of the average
system sum rate. Moreover, it can be noted that
the proposed algorithm does not always outper-
form the random phase shift and no-IRS cases.
When the decoding error probability is set to
e = 1077, the average system sum rate is lower
compared to all three algorithms when & = 1075,
This indicates that, as the transmitted power at
the BS increases, the change in £ has a more sub-
stantial impact on the average system sum rate
than in the random phase shift and “No-IRS” sce-
narios.

5. CONCLUSION

In this study, we proposed an efficient beamform-
ing optimization algorithm for IRS-assisted het-
erogeneous wireless networks, targeting the en-
hancement of system throughput under URLLC
constraints. By reformulating the original non-
convex problem using convex approximation
techniques and iterative optimization, the algo-
rithm achieves notable improvements in average
system sum rate and convergence speed. Sim-
ulation results validate the superiority of the
proposed method over traditional random phase
shift and no-IRS schemes, particularly in sce-
narios with increased IRS elements and moder-
ate transmission power. Furthermore, the analysis
reveals the sensitivity of system performance to
base station power and decoding error probabil-
ity, highlighting the importance of careful param-
eter tuning. Overall, the proposed approach offers
a promising solution for future high-performance
wireless communication systems leveraging IRS
technology.
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