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TOM TAT

Bai béo nay dé& xuit mot phuong phép thiét ké bo quan sat Hs, bén vimg cho hé Lorenz 63 thong qua md hinh
hoa lai theo dang hé phi tuyén v6i tham sb thay d6i (NLPV). Bang cach sir dung phuong phap chia lugi theo khong gian
trang thai va xay dung cac mo hinh tuyén tinh cuc bg, chiung t6i thiét lap moét tap hop cac bét da:lng thirc ma tran tuyén
tinh (LMI) dé thiét ké bo quan sat tai moi diém ludi. Cac ma tran bd quan sat thu dugc sé dugc ndi suy theo thoi gian
thuc dua trén trang thai ciia by quan sat. Phuong phéap nay cho phép ude lugng chinh xac cac trang thai ciia hé trong ca
hai truong hop c6 nhidu va khong nhiu. Két qua mo phong va so sanh véi bo loc Kalman mé rong (EKF) xéc nhan
hiéu qua cua phuong phap dé xuat thong qua cac chi sé danh gia Sai s6 binh phuong trung binh (RMSE), Chuén héa
RMSE (NRMSE) va hé sé xac dinh R?.

Tir khéa: Hé thong Lorenz, Bo quan sat Ho, , Hé phi tuyén véi tham sé thay doi (NLPV), Tiép cdn LMI, Phiong phdp
chia luoi
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ABSTRACT

This paper presents a robust H, observer design for the Lorenz 63 system based on a Nonlinear Parameter-
Varying (NLPV) reformulation. The nonlinear dynamics are approximated by gridding the state space and
constructing local linear models. At each grid point, an observer gain is synthesized by solving a linear matrix
inequality (LMI), with a common Lyapunov function ensuring stability across the operating range. The observer gain
is updated online through barycentric interpolation based on the current estimated state. The approach enables real-
time state estimation with guaranteed stability and disturbance attenuation. Simulation results under both noisy and
noise-free conditions and comparison with an Extended Kalman Filter (EKF) confirm the effectiveness of the
proposed design. Quantitative evaluations using Root Mean Square Error (RMSE), Normalized RMSE (NRMSE),
and the coefficient of determination R? demonstrate high estimation accuracy and robustness of the observer across a

range of dynamic behaviors in the Lorenz 63 system.

Keywords: Lorenz system, H o, observer, Nonlinear parameter-varying (NLPV), LMI approach, Gridding method.

1. INTRODUCTION To overcome this issue, the nonlinear system

can be reformulated into an NLPV structure. The

The Lorenz 63 system is a classical benchmark in state space is discretized through gridding, and

. : s .
nonlinear dynamics and chaos theory.'” Due to its LMIs are employed to design observer gains at

strong nonlinearities and sensitivity to initial multiple linearization points. During online

conditions, it provides an ideal platform for testing execution, the observer gain is interpolated in real-

observer design techniques. Designing observers time based on the current estimated state using
barycentric weights."* Although some existing

works formulate the Lorenz system within a

for such systems is challenging, especially when
dealing  with  unknown inputs, external

. . s
disturbances, and nonlinearities. stochastic'> framework using SDEs’ and Ito

Traditional methods like the EKF often rely on calculus'’®, this paper considers a purely
linearization and statistical assumptions, which deterministic ODE model and focuses on robust
may not provide robustness in chaotic regimes.*!° observer design without relying on statistical

. assumptions. Estimation performance is evaluated
An alternative is the H, observer framework, P p

. . under both noisy and noise-free scenarios using
which focuses on worst-case disturbance . . . .
standard quantitative metrics, including RMSE,
NRMSE, and R?. Results confirm the robustness

and effectiveness of the observer design across a

attenuation.'"'> However, applying H, methods
directly to nonlinear systems is difficult due to

non-convexity. . . ..
wide range of operating conditions.

*Corresponding author.
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The main contributions of this paper are
summarized as follows:

e Provide a rigorous deterministic NLPV
reformulation for the Lorenz-63 dynamics
(starting from ODE) and clarify noise modeling
assumptions (process and measurement).

e A grid-based H, observer synthesis
procedure using LMIs and a common Lyapunov
function.

e A real-time gain scheduling strategy using
barycentric interpolation based on the observer
state.

e Simulation-based performance evaluation
under noisy and noise-free conditions using
RMSE, NRMSE, and R? metrics.

The rest of this paper is organized as follows.
Section II presents the NLPV modeling of the
Lorenz system. Section III introduces the observer
design approach via gridding and LMIs. Section
IV provides numerical simulations and evaluation.
Section V concludes the paper.

2. SYSTEM MODELING AND NLPV
REFORMULATION

deterministic
representation of the Lorenz—63 system and its
reformulation into an NLPV structure suitable for
LMI-based observer design. All noises in this
paper are treated as exogenous additive
disturbances, not intrinsic stochastic diffusions.
Therefore, the Lorenz model is described by an
ODE, consistent with its original formulation in
Lorenz (1963).

This section  presents a

2.1. Deterministic ODE form of the Lorenz
System

The classical Lorenz—63 system is described by the
nonlinear ordinary differential equation:

x(t) = f(x(®)),x(t) € R, €9)

where the nonlinear vector field is given by

o(xz — x1)
f(x) = [x1(p — x3) — x2|, (2
XXy — Bx3

Here, x denotes the system state, and the
classical Lorenz parameters are o = 10, p =

28,and B = g.

To account for modeling uncertainties and
external perturbations in a deterministic
framework, the system is augmented with an
additive process disturbance:

x(t) = f(x(t)) + Byw(t), 3)
y(@) = Cx(t) + Dyv(t),

where w(t), wv(t) denote process and
measurement disturbances, respectively. These
signals are treated as bounded-energy exogenous
inputs, consistent with the H,, estimation
framework. Equation (3) serves as the starting
point for building an NLPV representation of the
nonlinear dynamics.

2.2. Linearization and Jacobian-Based

Approximation

To reformulate the nonlinear ODE into an NLPV
structure, we use the Jacobian of f(x):

-0 g 0
J@) =L = [p —x; —1 —x1] )
X2 xg —B

Given that the Lorenz system evolves within a
bounded region D c R3, we approximate the
nonlinear function locally by:

fG) = JG&x + fan @), )
with, x[is a selected grid point, frgn x) =
flx)—] (x[i])x is the remainder term.

2.3. Lipschitz Property of the Nonlinear
Remainder

For each grid region (); € D, the remainder
satisfies the following Lipschitz inequality:

A ) = G i< Ll =2, 1, (6)
Vxq,%, € Q;
A conservative global bound Ly can be computed

as: Ly =sup I1J(x) I, (7
x€D

where ||l is the spectral norm. _
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2.4 NLPV Representation via Gridding

Let {x[1, ..., x[N1} be the chosen grid points in D.
At each grid point, define:

A =J (). ®)

Using barycentric interpolation, the state-
dependent linearization is:

Ap®) = X1 m(p()A, )

with barycentric weights:

wp®) 20, Y et =1 (10)

where  y; (p (t)) are interpolation  weights
depending on the scheduling parameter p(t).

The scheduling parameter is selected as:

p(t) = x(0), )

which ensures that all parameter-dependent
quantities are available in real time without
requiring access to the true state.

Combining the above results, the NLPV
representation of the Lorenz—63 system is obtained

|‘D
z

where the nonlinear remainder from(x(t)),
satisfies the Lipschitz bound (6).

This formulation is now suitable for constructing
an H, observer via LMIs in Section 3.

~
(¢}
&
=
| :
[y

The gridding-based NLPV formulation admits
a convex interpolation structure, which enables
tractable LMI-based observer synthesis.

Retaining the nonlinear remainder explicitly
avoids over-linearization and enables rigorous
robustness analysis within the H,, framework.

https://doi.org/10.52111/qnjs.2025.xxxxX

3. OBSERVER DESIGN VIA GRIDDING

3.1. NLPV System with Nonlinearity and
Disturbance

The NLPV model obtained in Section 2 is
rewritten in compact form as:

x(t) = A(p(®))x(®) + B, @ + frem (x(®))
y(t) = Cx(t) + D, i) (13)

where x(t) € R" is the system state, w(t) €
R™ is the process noise, v(t) € R™ is the
measurement disturbances. The matrices A(p)
and B,, are obtained by barycentric interpolation
of the Jacobians and disturbance matrices at the
selected grid points. The matrix D, models a
scheduling-dependent measurement noise
channel. The nonlinear remainder fi., (x) is
globally Lipschitz on the compact domain and

satisfies:

I frem (xl) - frem (xZ) < Lf [ X1 — X2 Il,
Vxy,x, €D, D R" (14)
This form isolates the linear parameter-
varying component and the nonlinear uncertainty,

providing a suitable structure for Hoo observer
synthesis.

3.2. Observer Structure

The structural form of the observer is presented
as follows:"”

x(t) = A(p(0)2(®) +
frem (2®) + L(p)) (y(®) = 9(©®);
y(t) = Cx(t)
Define the estimation error as:

e(t) = x(t) — 2(t).

(15)
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Substituting (13)—(15) yields the estimation error
dynamics:

e(®) = (A(p®) — L(p(O)C)e(®) + Af (D)

+By,w(t) — L(p(t))Dyv(t) (16)
where  Af(t) = frem (X(t)) = frem (£(t))  and
satisfies ||Af (D) < Lglle(O]l. (17)

Equation (16) explicitly separates the effects
of process disturbance w(t) and measurement
noise v(t), which facilitates the subsequent Hoo
analysis and LMI-based observer synthesis.

3.3. LMI Condition for # ., Observer

The following theorem provides sufficient
conditions for exponential stability and Hoo
performance of the proposed observer.

To ensure robustness against w(t), v(t), and
nonlinear uncertainties, a quadratic Lyapunov
function V(e) = e Pe is considered, with P > 0.
The objective is to ensure: Exponential stability
with decay rate f> 0, and H, disturbance
attenuation with level y > 0. These requirements
are enforced through the following dissipation
inequality:

V(e)+2BP +eTe —p2wTw=y2vTv <0 (18)

Calculate the derivative:
V(e)=e"(A—LC)"Pe+e"P(A—LC)e
+ 2e"PB,w — 2e"PLD,v + 2e " PAf (19)
Use Cauchy—Schwarz + Young'®!%:
2eTPAf <21 Pelll Af IS 211 P Il e N Af 1l (20)
For ease, use Young with the parameter €, > 0:
2eTPAf < e AfTAf +— (21)
f
Due || Af II*< L} Il e II%, we have:
e AfTAf < efLzeTe. (22)
If we choose €f and (or) normalize such that
lP2 < L2P, then infer:
ef f

2e"PAf < L7ePe. (23)

Substitute (23) into 19:

V(e)<eT((A—LC)TP+P(A—LC) + L3P)e +
2e"PB,w — 2e"PLD,v (24)

Introduce the standard change of variables:
L(p) = =P~ (p) (25)
which yields:
(A= LC)TP+P(A-LC) =
ATP+PA+CTYT +YC (26)
At each grid vertex i, define:
B, =AP+PAl +CTY" +YC (27)
Substituting (24), (26)—(27) into (18) gives

V+2BP+eTe—y?wTw—y2vTy
<eT(E;+2BP +L%P)e +2¢"PB,,;w +
2" D, v+eTe—2ww—y2vTv <0

Rearranging terms yields the quadratic form:

o7 [Ei+2BP +[BP PB,; YD,
[W] B, P =i 0
v DI YT 0 -y

e
w
v

<0 (28

Inequality (28) is equivalent to the LMI condition
E;+2BP+L;P PB,; YD,

By ;P -3 0
Dy YT 0 -V

M

<0 (29)

which must hold at each grid pointi =1, ..., N.

Since the NLPV model is a convex
interpolation of its vertices and a common
Lyapunov matrix P is used, the feasibility of (19)
at all vertices guarantees the dissipation inequality
(18) for all admissible scheduling trajectories p(t).

+ Disturbance-free case (w = 0,v = 0):
V428V <0=le@) lI< ce Pl e0) I,
implying exponential stability with decay rate [5.
+ General case: integrating (18) from O0to
o yields:

fowll e(t) I? dt < y? fow(ll w(t) 17 +

Il v(t) 1%)dt,
establishing the desired #,, performance bound.
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34. Gridding and
Interpolation Approach

Barycentric

To effectively design an observer for nonlinear
parameter-varying systems, the state-dependent

A(p(t)) and L(p(t)) must  be
approximated. Direct continuous-time synthesis is

matrices

generally intractable due to infinite-dimensional
dependency on the scheduling parameter p(t).
Therefore, a gridding approach is adopted to
discretize the state space.

The state space X € x(t) € R" is partitioned
into a finite number of grid points {x!1}"_, where
a local LMI observer synthesis is performed. At
each grid point x[ an observer gains L[ is
computed by solving the corresponding LMI
condition. These gains are stored for online use.

To enable smooth gain variation and avoid
chattering between discrete observers, the gains
are interpolated during runtime using barycentric
weights. Let £(t) denote the current observer
state. The interpolated gain L(%(t))is calculated
as:

L(#(®) = T, 4, (2(®) L1, (30)

where 44,(-) are barycentric interpolation weights

satisfying ZIiV=1/1i (£(©)) =1,and u; = 0.

4. NUMERICAL SIMULATION

This section evaluates the performance of the
proposed gridding-based H,, NLPV observer on
the Lorenz—63 system. The objective is to
demonstrate robust state estimation under both
process and measurement disturbances and to
highlight the advantages of the proposed approach
over conventional observers.

4.1. System Setup

The Lorenz 63 system is a well-known nonlinear
chaotic system governed by the following
differential equations:

x(t) = Byw(t) + f(x(1)),

y(t) = Cx(t) + D, w(t) S

where x(t) = [xq, X5,x3] T € R3is the system
state, w(t) € R3denotes external disturbances, and

https://doi.org/10.52111/qnjs.2025.xxXxXx

the measurement output is y(t) € R. The matrices
are defined as:

y()=Cx(t), C=[1 0 0] (32)

The nonlinear vector field f(x) is given by

o(xz —x1)
fx(@) = |x1(p —x3) — x; (33)
X1X; = fx3
with parameters o =10,p =28, = g. To
facilitate  observer design using convex

optimization tools, we reformulate the nonlinear
system into an NLPV structure by approximating
the dynamics through local linearizations.

The nonlinear vector field f(x) is linearized

. . . N -

around multiple grid points {x(‘)}i=1 within a
bounded region D < R3. At each point x®, the
Jacobian matrix is computed as:

AD; = J(x®) = g_i

NO) (34)

This results in a set of locally linearized models:

2(t) = ADx(t) + Byw(t) + frem (%) (35)

where  fiem (x):= f(x) — A®@x is the residual
nonlinearity. Assuming that f(x) is Lipschitz
continuous over D, the residual satisfies:

| frem (1) = frem O < Lellx — 21|, Vx, £ € D (36)

for some constant Ly > 0. To express the system in

NLPV form, we introduce a parameter trajectory
p(t) = x(t), leading to:

x(t) = A(p(©))x(t) + Byw(t) + frem (%)

y(t) = Cx(t) + D,v(t) (37)

The matrix A(p(t)) is obtained via online
interpolation of {A(i)} using barycentric weights:

Alp®) =X 1 (p®)A®,  (38)
where }; 4, =1, 4, 20

This interpolation ensures a smooth and
accurate approximation of the nonlinear dynamics
across the grid.
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Remark 2

The scheduling parameter is chosen as p(t) =
X(t) to ensure real-time implementability of the
observer.  This avoids dependence on
unmeasurable states while maintaining consistency
between the NLPV model and the observer
dynamics. As the estimation error converges, the
scheduling variable naturally approaches the true

state, thereby reducing interpolation mismatch.

4.2. Lipschitz Constant Estimation

The observer gains are designed at grid points
uniformly sampled over [—20,20]3. At each grid
point, the local Jacobian is computed and used to
define A(p;).

The nonlinear drift term f(x) of the Lorenz 63
system is defined in equation (27). To facilitate
observer design with Lipschitz-type nonlinearities,
the Lipschitz constant L is required. A vector

field f(x) is said to be Lipschitz continuous over
the domain D c R™ if there exists a scalar Ly > 0

which satisfies the equation (36).

A sufficient condition to obtain Lf 1S to

evaluate the spectral norm of the Jacobian matrix

J(x):
Ly = ilelglll(x)llz (39)

9f (%)

where J(x) = ~or

drift function.

is the Jacobian matrix of the

For the Lorenz system, the Jacobian is
computed as:

—0 o 0
Jx) =Vf(x) = [P —x3 —1 —xll (40)
X2 Xy =B

The spectral norm ||/(x)||, is the largest
singular value of J(x), which can be numerically
evaluated over a bounded region D. In this work,
the domain is chosen as D = [—20,20]3, covering
the typical range of Lorenz state trajectories.

A grid-based scan of J(x) across D yields an
upper bound: Ly ~ 56.6092

Figure 1 describes the distribution of |[J(x)||-
over a bounded domain in (xq,xy,x3). It is
observed that the
significantly, reaching values above Ly = 56.6092

spectral norm  varies

in lower regions of the state space (i.e., x3 < 0),
while staying below 25 in upper regions (i.e.,
x3 >10). This spatial variability reflects the strong
local nonlinearity of the Lorenz system, which
motivates the use of a gridding-based observer
design. By selecting local Lipschitz bounds within
each grid cell, the observer gain can be adapted
more accurately to the system's local dynamics,
avoiding conservatism associated with a global
Lipschitz constant.

This bound is used in the LMI formulation to
handle the nonlinear remainder term using
Lipschitz inequalities, ensuring robust estimation
even in the presence of nonlinear uncertainties.

Using CVX
programming (SDP)¥, a set of LMI conditions is

toolbox and semidefinite

solved to obtain observer gains {L;}. At runtime,

the gain L(X) is interpolated using barycentric
weights based on proximity to the grid centers.

The standard Jacobian distribution || J(z)| in state space
. . 55
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Figure 1. A graph representation of the Jacobian

|[J (x)]| in the state space.

Specifically, for each grid point i €{1, 2,..., 4}
of the NLPV system in equation (24), the LMI
condition in equation (29) is solved to synthesize a
robust H ., observer.

The CVX toolbox in MATLAB is employed to
solve the optimization problem and compute the
observer gain matrices L; corresponding to each
value of the scheduling parameter p, using the

system matrices defined in section 3.4.
https://doi.org/10.52111/qnjs.2025.xxxxx
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The optimization yields a disturbance attenuation
level of y = 0.0023. The resulting observer gain
L(%) of the four grid points of p are as follows:

L(®) = [519.9294; —17.1069; 6.3601]7

4.3. Simulation Scenarios and Discussion

To evaluate and compare the performance of the
proposed H,, observer and the EKF’, numerical
simulations are carried out on the Lorenz 63
system. The initial state of the system is set as
x(0) = [-5,—5,—5]7, and both observers are
initialized at the origin [0,0,0]". The EKF is
implemented using a first-order prediction-
correction structure, where the time-varying
Jacobian matrix of the Lorenz system is used in the
prediction step. The initial covariance matrix is
selected as Py = 2 - I3 to ensure sufficient initial
uncertainty for the EKF. In contrast, the H,
observer uses a gridding structure interpolated via
barycentric weights over a predefined grid of the
state space.

To provide a comprehensive performance
analysis, two sets of simulation conditions are
examined:

Noise-Free Scenario: The system evolves
without any disturbances to establish a baseline.

Figure 2 illustrates the comparison between the
actual states x;to x3 and their corresponding
estimated values X; to X3. In the plots, the solid
green line represents the true system states, the red
dashed line indicates the estimates from the
proposed H,, observer, while the blue dash-dot
line corresponds to the estimates obtained using the
EKF.
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Figure 2. Comparison of system states with noise-free

It is evident from Figure 2 plots that both H,
observer and the EKF closely track the true system
states. The estimation errors are negligible for all
state variables, reflecting excellent accuracy in the
absence of noise. Notably:

In x;, both observers almost overlap with the
ground truth across the entire time span, with only
very slight divergence in highly dynamic segments.
The inset zoomed plots confirm sub-millisecond
response agreement.

In x,, the estimations remain aligned even
during sharp transient oscillations. This highlights
the observers’ ability to capture rapid nonlinear
dynamics.

In x3, where chaotic oscillations dominate, both
Xg,, and Xggp accurately replicate the system

evolution.

In the noise-free scenario, both the proposed
gridding-based NLPV H,, observer and the EKF
provide accurate state estimation, indicating that
both approaches are capable of tracking the Lorenz
dynamics under ideal measurement conditions.

Nevertheless, a closer inspection of the zoomed-
in sub-figures reveals subtle but consistent
differences between the two observers. In
particular, the proposed observer exhibits a slightly
reduced phase lag during transient convergence, as
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well as smoother tracking behavior with fewer
oscillatory artifacts. These differences become
more visible in time intervals characterized by
rapid state variations, where local linearization
effects may limit the EKF performance.

Although the overall estimation accuracy of
both observers is comparable in this noise-free
case, the observed improvements indicate that the
proposed gridding-based NLPV  formulation
provides a more consistent representation of the
underlying nonlinear dynamics, even in the
absence of disturbances.

Noisy  Scenario:  Both  process and

measurement noise are activated.

The state dynamics are subjected to an additive
zero-mean Gaussian process noise w(t) ~
N(0, Q) and measurement noise v(t) ~ N (0, R),
where the covariance matrices are chosen as
follows:

Q=05-I3;R=1 (41)

The process noise w(t) is generated at each
time step as:

Wi = /Q - g, w ~ N(0,15) (42)
while the measurement noise is:
Ve = VR - Vi, v ~ N(0, 1) (43)

Figure 3 compares the actual states x; to x3 and
their corresponding estimated values X; to X3, in
the presence of noise as described above. The
figures demonstrate that both observers track the
system well, but the performance diverges during
fast transients and in regions of strong nonlinear
coupling.

Estimation of x;: During the early transient
phase around t € [5.1,5.3]s (left zoom-in)] the
trajectories of the true state and both observers
start to converge after a rapid change in system
dynamics. The zoomed view clearly shows that the
proposed H,, observer tracks the true state with
smaller phase lag and reduced oscillation
amplitude compared to the EKF. This behavior
indicates a faster convergence rate, which is

consistent with the decay-rate
constraint incorporated in the LMI-based observer

explicit

design.
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Figure 3. Comparison of system states with noise

In the highly nonlinear region around t €
[17.6,17.8]s (right zoom-in), the Lorenz system
exhibits sharp peaks and rapid variations. In this
interval, the EKF estimation shows noticeable
deviations from the true state, whereas the
proposed H,, observer maintains closer alignment.
This demonstrates the improved robustness of the
proposed approach against nonlinear amplification
effects and disturbances in regions where local
linearization becomes less accurate.

For the second state x,, the zoomed=in interval
t € [5.1, 5.3]s highlights the convergence behavior
during a steep state transition. The proposed
observer exhibits a smoother transient response

with reduced overshoot compared to the EKF. This
https://doi.org/10.52111/gnjs.2025.xXXXX
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suggests that the proposed method effectively
speed and robustness,
avoiding aggressive corrections that can amplify

balances convergence

noise.

In the later imterval € € [17.6,17.8]s, where

X, undergoes rapid sign changes and strong
nonlinear coupling, the EKF trajectory deviates
more significantly from the true state. In contrast,
tightly
bounded around the true trajectory. This confirms
the advantage of the gridding-based NLPV
formulation, which captures dominant variations of

the Jacobian over the attractor domain and

the proposed H,, observer remains

provides robustness beyond local linearization.

Estimation of x3:The estimation results for
x3further emphasize the robustness properties of
the proposed observer. In the zoomed-in window
around t € [5.1,5.3]s, both observers converge
toward the true state; however, the proposed H o,
observer shows smaller steady-state oscillations
once convergence is achieved.

More importantly, in the interval tBE
[1796)1738]s, where x5 reaches higher amplitudes
and the effect of nonlinear coupling is pronounced,
the EKF exhibits increased estimation error. The
proposed observer, on the other hand, maintains
accurate tracking with reduced sensitivity to noise.
This behavior highlights the effectiveness of
explicitly accounting for nonlinear remainder
bounds and disturbance attenuation in the observer

design.

Tables 1-3 present the state estimation
performance indices, including RMSE, NRMSE,
and the R?- for both the EKF and the proposed

H,, observer, under noise-free and noisy
conditions, respectively.
e Root Mean Square Error (RMSE):
1 o
RMSE, = (130, (0 - %002 (39)
e Normalized RMSE (NRMSE):
NRMSE; = —M5E; (39)

max(x;)—min(x;)

https://doi.org/10.52111/qnjs.2025.xxxxx
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e Coefficient of Determination (R?) :

RE=1- T (40)
Table 1. RMSE index of states
RMSE With noise-free With Noise
EKF Ho EKF Ho
X1 0.04042 0.00197 | 0.25921 0.00313
Xy 0.06177 0.15654 | 0.33442 0.16664
X3 0.07490 0.16884 | 0.27328 0.17989
Table 2. NRMSE index of states
N With noise-free With Noise
RMSE | ggF Hop EKF Hop
X1 0.00114 5.62e-05 | 0.00757 9.14e-05
Xy 0.00131 0.00336 | 0.00743 0.00370
X3 0.00197 0.00455 | 0.00679 0.00447
Table 3. R? index of states
R? With noise-free With Noise
EKF Ho EKF He
X1 0.99996 1.00000 | 0.99896 0.99999
X, 0.99995 0.99968 | 0.99857 0.99964
X3 0.99991 0.99955 | 0.99872 0.99944

The numerical values reported in Tables 1-3 are
computed directly from the full simulated state
trajectories over the specified time intervals,
whereas Figures 2 and 3 provide qualitative
visualization of the corresponding estimation
performance.

The
comprehensive comparison between the proposed
H, observer and the EKF under both noise-free
and noisy conditions. As presented in Tables 1-3,
the Ho.The exhibits
robustness, especially in the presence of process

simulation results demonstrate a

observer superior

and measurement noise.

EKF achieves
slightly better RMSE values for x, and x3, while

In the noise-free scenario,
the H,, observer delivers the best accuracy for x4,
achieving an RMSE of only 0.00197 and a
R%?=1.0000.
However, in the noisy case, the performance of

coefficient of determination

EKF significantly degrades across all states. For

Quy Nhon University Journal of Science, 2025, xx(XX), XXX-XXX
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instance, the RMSE for x; increases to 0.25921
under EKF, whereas the proposed observer
maintains a remarkably low RMSE of 0.00313.

The NRMSE analysis further supports these
findings, with the 3, observer consistently
achieves lower normalized errors under noisy
conditions. Specifically, for x;, the NRMSE of the
H, observer remains as low as 9.14x107,
compared to 7.57x1073 for EKF.

In terms of the coefficient of determination, the
H,, observer consistently attains higher R? values
in both scenarios, indicating a better match
between estimated and actual states. Notably, the
observer preserves an R? of over 0.9999 for all
states even in the presence of noise, whereas EKF
drops to 0.9985 or lower.

Overall, these results validate the robustness
and estimation accuracy of the proposed
H, observer design. The gridding-based LMI
synthesis, combined with barycentric interpolation
of the observer gain, enables the observer to
maintain high precision under strong nonlinearities
and measurement uncertainties. In contrast, EKF
performance is more sensitive to noise and model
mismatch, highlighting the conservative yet

effective design philosophy of the H, approach.

5. CONCLUSIONS

This paper has developed a gridding-based NLPV
H. observer for the Lorenz—63 system,
addressing the challenges posed by strong
nonlinear coupling and chaotic dynamics. By
reformulating the original nonlinear system into an
NLPV structure with an explicitly bounded
nonlinear remainder, the proposed approach
enables a convex LMI-based observer synthesis
with guaranteed stability properties.

The main results demonstrate that the
proposed observer ensures exponential
convergence of the estimation error with a
prescribed decay rate and achieves effective
attenuation of both process disturbances and
measurement noise. The use of a small number of
representative grid points allows a practical trade-
off between robustness and computational
efficiency while maintaining feasibility of a

common Lyapunov function.

Simulation results confirm that, in the noise-
free case, the proposed observer provides
comparable accuracy under ideal conditions and
improved robustness in the presence of
disturbances compared to the EKF. Under
disturbed conditions, the proposed method
exhibits superior robustness, with reduced
sensitivity to noise and improved estimation
accuracy across all state variables.

Overall, the results validate the effectiveness
of the proposed gridding-based NLPV H,,
observer as a reliable and robust estimation
framework for nonlinear chaotic systems. Future
work will investigate extensions to higher-
dimensional nonlinear systems and experimental
validation on physical platforms.
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