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TÓM TẮT 

Bài báo này đề xuất một phương pháp thiết kế bộ quan sát ℋ∞  bền vững cho hệ Lorenz 63 thông qua mô hình 

hóa lại theo dạng hệ phi tuyến với tham số thay đổi (NLPV). Bằng cách sử dụng phương pháp chia lưới theo không gian 

trạng thái và xây dựng các mô hình tuyến tính cục bộ, chúng tôi thiết lập một tập hợp các bất đẳng thức ma trận tuyến 

tính (LMI) để thiết kế bộ quan sát tại mỗi điểm lưới. Các ma trận bộ quan sát thu được sẽ được nội suy theo thời gian 

thực dựa trên trạng thái của bộ quan sát. Phương pháp này cho phép ước lượng chính xác các trạng thái của hệ trong cả 

hai trường hợp có nhiễu và không nhiễu. Kết quả mô phỏng và so sánh với bộ lọc Kalman mở rộng (EKF) xác nhận 

hiệu quả của phương pháp đề xuất thông qua các chỉ số đánh giá  Sai số bình phương trung bình (RMSE), Chuẩn hóa 

RMSE (NRMSE) và hệ số xác định 𝑅2.  

Từ khóa: Hệ thống Lorenz, Bộ quan sát ℋ∞ , Hệ phi tuyến với tham số thay đổi (NLPV), Tiếp cận LMI, Phương pháp 

chia lưới 
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ABSTRACT 

This paper presents a robust ℋ∞ observer design for the Lorenz 63 system based on a Nonlinear Parameter-

Varying (NLPV) reformulation. The nonlinear dynamics are approximated by gridding the state space and 

constructing local linear models. At each grid point, an observer gain is synthesized by solving a linear matrix 

inequality (LMI), with a common Lyapunov function ensuring stability across the operating range. The observer gain 

is updated online through barycentric interpolation based on the current estimated state. The approach enables real-

time state estimation with guaranteed stability and disturbance attenuation. Simulation results under both noisy and 

noise-free conditions and comparison with an Extended Kalman Filter (EKF) confirm the effectiveness of the 

proposed design. Quantitative evaluations using Root Mean Square Error (RMSE), Normalized RMSE (NRMSE), 

and the coefficient of determination 𝑅2 demonstrate high estimation accuracy and robustness of the observer across a 

range of dynamic behaviors in the Lorenz 63 system. 

Keywords: Lorenz system, ℋ∞ observer, Nonlinear parameter-varying (NLPV), LMI approach, Gridding method.  

 

1. INTRODUCTION 

The Lorenz 63 system is a classical benchmark in 

nonlinear dynamics and chaos theory.1-3 Due to its 

strong nonlinearities and sensitivity to initial 

conditions, it provides an ideal platform for testing 

observer design techniques. Designing observers 

for such systems is challenging, especially when 

dealing with unknown inputs, external 

disturbances, and nonlinearities.4-8 

Traditional methods like the EKF often rely on 

linearization and statistical assumptions,  which 

may not provide robustness in chaotic regimes.9-10 

An alternative is the ℋ∞ observer framework, 

which focuses on worst-case disturbance 

attenuation.11-13 However, applying ℋ∞ methods 

directly to nonlinear systems is difficult due to 

non-convexity.  

To overcome this issue, the nonlinear system 

can be reformulated into an NLPV structure. The 

state space is discretized through gridding, and 

LMIs are employed to design observer gains at 

multiple linearization points. During online 

execution, the observer gain is interpolated in real-

time based on the current estimated state using 

barycentric weights.14 Although some existing 

works formulate the Lorenz system within a 

stochastic15 framework using SDEs9 and Itô 

calculus16, this paper considers a purely 

deterministic ODE model and focuses on robust 

observer design without relying on statistical 

assumptions. Estimation performance is evaluated 

under both noisy and noise-free scenarios using 

standard quantitative metrics, including RMSE, 

NRMSE, and  𝑅2. Results confirm the robustness 

and effectiveness of the observer design across a 

wide range of operating conditions. 
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The main contributions of this paper are 

summarized as follows: 

• Provide a rigorous deterministic NLPV 

reformulation for the Lorenz-63 dynamics 

(starting from ODE) and clarify noise modeling 

assumptions (process and measurement). 

• A grid-based ℋ∞ observer synthesis 

procedure using LMIs and a common Lyapunov 

function. 

• A real-time gain scheduling strategy using 

barycentric interpolation based on the observer 

state. 

• Simulation-based performance evaluation 

under noisy and noise-free conditions using 

RMSE, NRMSE, and 𝑅2  metrics. 

The rest of this paper is organized as follows. 

Section II presents the NLPV modeling of the 

Lorenz system. Section III introduces the observer 

design approach via gridding and LMIs. Section 

IV provides numerical simulations and evaluation. 

Section V concludes the paper. 

2. SYSTEM MODELING AND NLPV 

REFORMULATION 

This section presents a deterministic 

representation of the Lorenz–63 system and its 

reformulation into an NLPV structure suitable for 

LMI-based observer design. All noises in this 

paper are treated as exogenous additive 

disturbances, not intrinsic stochastic diffusions. 

Therefore, the Lorenz model is described by an 

ODE, consistent with its original formulation in 

Lorenz (1963). 

2.1. Deterministic ODE form of the Lorenz 

System 

The classical Lorenz–63 system is described by the 

nonlinear ordinary differential equation: 

 𝑥̇(𝑡) = 𝑓(𝑥(𝑡)), 𝑥(𝑡) ∈ ℝ3, (1) 

where the nonlinear vector field is given by 

  𝑓(𝑥) = [

𝜎(𝑥2 − 𝑥1)

𝑥1(𝜌 − 𝑥3) − 𝑥2

𝑥1𝑥2 − 𝛽𝑥3

], (2) 

Here, 𝑥   denotes the system state, and the 

classical Lorenz parameters are 𝜎 = 10, 𝜌 =

28, and 𝛽 =
8

3
. 

To account for modeling uncertainties and 

external perturbations in a deterministic 

framework, the system is augmented with an 

additive process disturbance:   

 𝑥̇(𝑡) = 𝑓(𝑥(𝑡)) + 𝐵𝑤𝑤(𝑡), (3) 

  𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑣𝑣(𝑡),  

where 𝑤(𝑡) , 𝑣(𝑡) denote process and 

measurement disturbances, respectively. These 

signals are treated as bounded-energy exogenous 

inputs, consistent with the ℋ∞ estimation 

framework. Equation (3) serves as the starting 

point for building an NLPV representation of the 

nonlinear dynamics. 

2.2. Linearization and Jacobian-Based 

Approximation 

To reformulate the nonlinear ODE into an NLPV 

structure, we use the Jacobian of 𝑓(𝑥): 

 𝐽(𝑥) =
∂𝑓

∂𝑥
(𝑥) = [

−𝜎 𝜎 0
𝜌 − 𝑥3 −1 −𝑥1

𝑥2 𝑥1 −𝛽
] (4) 

Given that the Lorenz system evolves within a 

bounded region 𝒟 ⊂ ℝ3, we approximate the 

nonlinear function locally by: 

 𝑓(𝑥) = 𝐽(𝑥[𝑖])𝑥 + 𝑓rem
[𝑖]

(𝑥), (5) 

with, 𝑥[𝑖] is a selected grid point, 𝑓rem
[𝑖] (𝑥) =

𝑓(𝑥) − 𝐽(𝑥[𝑖])𝑥 is the remainder term. 

2.3. Lipschitz Property of the Nonlinear 

Remainder 

For each grid region Ω𝑖 ⊂ 𝒟, the remainder 

satisfies the following Lipschitz inequality: 

 ∥ 𝑓rem
[𝑖] (𝑥1) − 𝑓rem

[𝑖] (𝑥2) ∥≤ 𝐿𝑓 ∥ 𝑥1 − 𝑥2 ∥, (6) 

∀𝑥1, 𝑥2 ∈ Ω𝑖 

A conservative global bound 𝐿𝑓 can be computed 

as:                  𝐿𝑓 = sup 
𝑥∈𝒟

∥ 𝐽(𝑥) ∥2, (7) 

where ∥⋅∥2 is the spectral norm. The Lipschitz 

bound provides a structured way to handle the 

nonlinear remainder in the Lyapunov-based 

stability analysis without introducing stochastic 

assumptions. 
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2.4 NLPV Representation via Gridding 

Let {𝑥[1], … , 𝑥[𝑁]} be the chosen grid points in 𝒟. 

At each grid point, define: 

 𝐴𝑖 = 𝐽(𝑥[𝑖]). (8) 

Using barycentric interpolation, the state-

dependent linearization is: 

 𝐴(𝜌(𝑡)) = ∑ 𝜇𝑖(𝜌(𝑡))𝐴𝑖,
𝑁

𝑖=1
 (9) 

with barycentric weights: 

 𝜇𝑖(𝜌(𝑡)) ≥ 0, ∑ 𝜇𝑖(𝜌(𝑡)) = 1
𝑁

𝑖=1
. (10) 

where 𝜇𝑖(𝜌(𝑡)) are interpolation weights 

depending on the scheduling parameter 𝜌(𝑡). 

The scheduling parameter is selected as: 

 𝜌(𝑡) = 𝑥(𝑡), (11) 

which ensures that all parameter-dependent 

quantities are available in real time without 

requiring access to the true state. 

Combining the above results, the NLPV 

representation of the Lorenz–63 system is obtained 

as: 

𝑥̇(𝑡) = 𝐴(𝜌(𝑡)) 𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝑓rem(𝑥(𝑡)) (12) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑣𝑣(𝑡). 

where the nonlinear remainder 𝑓rem(𝑥(𝑡)), 
satisfies the Lipschitz bound (6). 

This formulation is now suitable for constructing 

an ℋ∞ observer via LMIs in Section 3. 

Remark 1 

The NLPV representation (11)–(12) is fully 

consistent with the original deterministic ODE 

(1)–(2) and does not introduce any stochastic 

interpretation or approximation of the system 

dynamics. 

The gridding-based NLPV formulation admits 

a convex interpolation structure, which enables 

tractable LMI-based observer synthesis. 

Retaining the nonlinear remainder explicitly 

avoids over-linearization and enables rigorous 

robustness analysis within the ℋ∞ framework. 

 

 

 

 

3. OBSERVER DESIGN VIA GRIDDING 

This section develops a robust state observer for 

the NLPV representation of the Lorenz–63 

system introduced in Section 2. The proposed 

method relies on (i) formulating the estimation 

error dynamics, (ii) constructing an ℋ∞-type 

dissipation inequality to attenuate disturbances 

and nonlinear uncertainties, and (iii) enforcing 

stability across all grid points through convex 

LMIs using a common Lyapunov matrix. 

3.1. NLPV System with Nonlinearity and 

Disturbance 

The NLPV model obtained in Section 2 is 

rewritten in compact form as: 

𝑥̇(𝑡) = 𝐴(𝜌(𝑡))𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝑓rem(𝑥(𝑡))
 

  𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑣𝑣(𝑡) (13) 

where 𝑥(𝑡) ∈ ℝ𝑛 is the system state, 𝑤(𝑡) ∈

ℝ𝑛𝑤   is the process noise, 𝑣(𝑡) ∈ ℝ𝑛𝑣 is the 

measurement disturbances. The matrices 𝐴(𝜌) 

and 𝐵𝑤  are obtained by barycentric interpolation 

of the Jacobians and disturbance matrices at the 

selected grid points. The matrix 𝐷𝑣  models a 

scheduling-dependent measurement noise 

channel. The nonlinear remainder 𝑓rem (𝑥)  is 

globally Lipschitz on the compact domain and 

satisfies: 

∥ 𝑓rem (𝑥1) − 𝑓rem (𝑥2) ∥≤ 𝐿𝑓 ∥ 𝑥1 − 𝑥2 ∥,  

  ∀𝑥1, 𝑥2 ∈ 𝒟, 𝒟 ⊂ ℝ𝑛
  (14) 

This form isolates the linear parameter-

varying component and the nonlinear uncertainty, 

providing a suitable structure for H∞ observer 

synthesis. 

3.2. Observer Structure 

The structural form of the observer is presented 

as follows:17 

  
𝑥̇̂(𝑡) = 𝐴(𝜌(𝑡))𝑥̂(𝑡) +

𝑓rem (𝑥̂(𝑡)) + 𝐿(𝜌(𝑡))(𝑦(𝑡) − 𝑦̂(𝑡));
 (15) 

𝑦̂(𝑡) = 𝐶𝑥̂(𝑡) 

Define the estimation error as: 

𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡). 
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Substituting (13)–(15) yields the estimation error 

dynamics: 

𝑒̇(𝑡) = (𝐴(𝜌(𝑡)) − 𝐿(𝜌(𝑡))𝐶)𝑒(𝑡) + Δ𝑓(𝑡) 

+𝐵𝑤𝑤(𝑡) − 𝐿(𝜌(𝑡))𝐷𝑣𝑣(𝑡)  (16) 

where Δ𝑓(𝑡) = 𝑓rem (𝑥(𝑡)) − 𝑓rem (𝑥̂(𝑡)) and 

satisfies ‖Δ𝑓(𝑡)‖ ≤ 𝐿𝑓‖𝑒(𝑡)‖. (17) 

Equation (16) explicitly separates the effects 

of process disturbance 𝑤(𝑡) and measurement 

noise 𝑣(𝑡), which facilitates the subsequent H∞ 

analysis and LMI-based observer synthesis. 

3.3. LMI Condition for 𝓗∞ Observer 

The following theorem provides sufficient 

conditions for exponential stability and H∞ 

performance of the proposed observer.  

To ensure robustness against 𝑤(𝑡), 𝑣(𝑡),  and 

nonlinear uncertainties, a quadratic Lyapunov 

function 𝑉(𝑒) = 𝑒⊤𝑃𝑒 is considered, with 𝑃 > 0. 

The objective is to ensure: Exponential stability 

with decay rate 𝛽 > 0, and ℋ∞ disturbance 

attenuation with level 𝛾 > 0. These requirements 

are enforced through the following dissipation 

inequality: 

 𝑉̇(𝑒) + 2𝛽𝑃 + 𝑒⊤𝑒 − 𝛾2𝑤⊤𝑤−𝛾2𝑣⊤𝑣 ≤ 0  (18) 

Calculate the derivative: 

𝑉̇(𝑒) = 𝑒⊤(𝐴 − 𝐿𝐶)⊤𝑃𝑒 + 𝑒⊤𝑃(𝐴 − 𝐿𝐶)𝑒 

 + 2𝑒⊤𝑃𝐵𝑤𝑤 − 2𝑒⊤𝑃𝐿𝐷𝑣𝑣 + 2𝑒⊤𝑃Δ𝑓  (19) 

Use Cauchy–Schwarz + Young18,19: 

2𝑒⊤𝑃Δ𝑓 ≤ 2 ∥ 𝑃𝑒 ∥∥ Δ𝑓 ∥≤ 2 ∥ 𝑃 ∥∥ 𝑒 ∥∥ Δ𝑓 ∥ (20) 

For ease, use Young with the parameter 𝜖𝑓 > 0:  

 2𝑒⊤𝑃Δ𝑓 ≤ 𝜖𝑓Δ𝑓⊤Δ𝑓 +
1

𝜖𝑓
   (21) 

Due ∥ Δ𝑓 ∥2≤ 𝐿𝑓
2 ∥ 𝑒 ∥2, we have: 

 𝜖𝑓Δ𝑓⊤Δ𝑓 ≤ 𝜖𝑓𝐿𝑓
2𝑒⊤𝑒.   (22) 

If we choose 𝜖𝑓 and (or) normalize such that 

1

𝜖𝑓
𝑃2 ⪯ 𝐿𝑓

2𝑃, then infer:  

 2𝑒⊤𝑃Δ𝑓 ≤ 𝐿𝑓
2𝑒⊤𝑃𝑒.   (23)  

 

Substitute (23) into 19: 

 𝑉̇(𝑒) ≤ 𝑒⊤((𝐴 − 𝐿𝐶)⊤𝑃 + 𝑃(𝐴 − 𝐿𝐶) + 𝐿𝑓
2𝑃)𝑒 +

 2𝑒⊤𝑃𝐵𝑤𝑤 − 2𝑒⊤𝑃𝐿𝐷𝑣𝑣  (24) 

 

 

Introduce the standard change of variables: 

 𝐿(𝜌) = −𝑃−1𝑌(𝜌)  (25) 

which yields: 

(𝐴 − 𝐿𝐶)⊤𝑃 + 𝑃(𝐴 − 𝐿𝐶) = 

 𝐴⊤𝑃 + 𝑃𝐴 + 𝐶⊤𝑌⊤ + 𝑌𝐶  (26) 

At each grid vertex 𝑖, define: 

 Ξ𝑖 = 𝐴𝑖𝑃 + 𝑃𝐴𝑖
⊤ + 𝐶⊤𝑌𝑖

⊤ + 𝑌𝑖𝐶 (27) 

Substituting (24), (26)–(27) into (18) gives 

𝑉̇ + 2𝛽𝑃 + 𝑒⊤𝑒 − 𝛾2𝑤⊤𝑤 − 𝛾2𝑣⊤𝑣

≤ 𝑒⊤(Ξ𝑖 + 2𝛽𝑃 + 𝐿𝑓
2 𝑃)𝑒 + 2𝑒⊤𝑃𝐵𝑤,𝑖𝑤 +

2𝑒⊤𝑌𝑖𝐷𝑣,𝑖𝑣 + 𝑒⊤𝑒 − 𝛾2𝑤⊤𝑤 − 𝛾2𝑣⊤𝑣 < 0
 

Rearranging terms yields the quadratic form: 

[
𝑒
𝑤
𝑣

]

⊤

[

Ξ𝑖 + 2𝛽𝑃 + 𝐿𝑓
2𝑃 𝑃𝐵𝑤,𝑖 𝑌𝑖𝐷𝑣,𝑖

𝐵𝑤,𝑖
⊤ 𝑃 −𝛾2𝐼 0

𝐷𝑣,𝑖
⊤ 𝑌⊤ 0 −𝛾2𝐼

] [
𝑒
𝑤
𝑣

] < 0  (28) 

Inequality (28) is equivalent to the LMI condition 

𝑀 = [

Ξ𝑖 + 2𝛽𝑃 + 𝐿𝑓
2𝑃 𝑃𝐵𝑤,𝑖 𝑌𝑖𝐷𝑣,𝑖

𝐵𝑤,𝑖
⊤ 𝑃 −𝛾2𝐼 0

𝐷𝑣,𝑖
⊤ 𝑌⊤ 0 −𝛾2𝐼

] < 0  (29) 

which must hold at each grid point 𝑖 = 1, … , 𝑁. 

Since the NLPV model is a convex 

interpolation of its vertices and a common 

Lyapunov matrix 𝑃 is used, the feasibility of (19) 

at all vertices guarantees the dissipation inequality 

(18) for all admissible scheduling trajectories 𝜌(𝑡). 

+  Disturbance-free case (𝑤 = 0, 𝑣 = 0): 

𝑉̇ + 2𝛽𝑉 < 0 ⇒∥ 𝑒(𝑡) ∥≤ 𝑐𝑒−𝛽𝑡 ∥ 𝑒(0) ∥,  

implying exponential stability with decay rate 𝛽. 

+ General case: integrating (18) from 0 to 

∞ yields: 

∫ ∥ 𝑒(𝑡)
∞

0

∥2 𝑑𝑡 ≤ 𝛾2 ∫ (∥ 𝑤(𝑡)
∞

0

∥2 +

∥ 𝑣(𝑡) ∥2)𝑑𝑡, 
establishing the desired ℋ∞ performance bound. 
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3.4. Gridding and Barycentric 

Interpolation Approach 

To effectively design an observer for nonlinear 

parameter-varying systems, the state-dependent 

matrices 𝐴(𝜌(𝑡)) and 𝐿(𝜌(𝑡)) must be 

approximated. Direct continuous-time synthesis is 

generally intractable due to infinite-dimensional 

dependency on the scheduling parameter 𝜌(𝑡). 

Therefore, a gridding approach is adopted to 

discretize the state space. 

The state space X ⊂ 𝑥(𝑡) ∈ ℝ𝑛 is partitioned 

into a finite number of grid points {𝑥[𝑖]}1=1
𝑁 , where 

a local LMI observer synthesis is performed. At 

each grid point 𝑥[𝑖], an observer gains 𝐿[𝑖] is 

computed by solving the corresponding LMI 

condition. These gains are stored for online use. 

To enable smooth gain variation and avoid 

chattering between discrete observers, the gains 

are interpolated during runtime using barycentric 

weights. Let 𝑥̂(𝑡) denote the current observer 

state. The interpolated gain 𝐿(𝑥̂(𝑡)) is calculated 

as: 

  𝐿(𝑥̂(𝑡)) = ∑ 
𝑖(𝑥̂(𝑡)) 𝐿[𝑖]𝑁

𝑖=1 , (30) 

where 
𝑖
(⋅) are barycentric interpolation weights 

satisfying  ∑ 
𝑖(𝑥̂(𝑡)) 𝑁

𝑖=1 = 1, and 
𝑖

≥ 0. 

4. NUMERICAL SIMULATION   

This section evaluates the performance of the 

proposed gridding-based ℋ∞ NLPV observer on 

the Lorenz–63 system. The objective is to 

demonstrate robust state estimation under both 

process and measurement disturbances and to 

highlight the advantages of the proposed approach 

over conventional observers. 

4.1. System Setup 

The Lorenz 63 system is a well-known nonlinear 

chaotic system governed by the following 

differential equations: 

 
𝑥̇(𝑡) = 𝐵𝑤𝑤(𝑡) + 𝑓(𝑥(𝑡)),

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑤 𝑤(𝑡)
 (31) 

where 𝑥(𝑡) = [𝑥1,  𝑥2, 𝑥3] ⊤ ∈ ℝ3 is the system 

state, 𝑤(𝑡) ∈ ℝ3denotes external disturbances, and  

 

 

the measurement output is 𝑦(𝑡) ∈ ℝ. The matrices 

are defined as: 

  𝑦(𝑡) = 𝐶𝑥(𝑡), 𝐶 = [1 0 0]. (32) 

The nonlinear vector field 𝑓(𝑥) is given by1: 

  𝑓(𝑥(𝑡)) = [

𝜎(𝑥2 − 𝑥1)

𝑥1(𝜌 − 𝑥3) − 𝑥2

𝑥1𝑥2 − 𝛽𝑥3

]  (33)  

with parameters 𝜎 = 10, 𝜌 = 28, 𝛽 =
8

3
. To 

facilitate observer design using convex 

optimization tools, we reformulate the nonlinear 

system into an NLPV structure by approximating 

the dynamics through local linearizations. 

The nonlinear vector field 𝑓(𝑥) is linearized 

around multiple grid points {𝑥(𝑖)}
𝑖=1

𝑁
 within a 

bounded region 𝒟 ⊂ ℝ3. At each point 𝑥(𝑖), the 

Jacobian matrix is computed as: 

  𝐴(𝑖): = 𝐽(𝑥(𝑖)) =
𝜕𝑓

𝜕𝑥
|

𝑥(𝑖)
 (34) 

This results in a set of locally linearized models: 

 𝑥̇(𝑡) ≈ 𝐴(𝑖)𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝑓rem(𝑥) (35) 

where 𝑓rem (𝑥): = 𝑓(𝑥) − 𝐴(𝑖)𝑥 is the residual 

nonlinearity. Assuming that 𝑓(𝑥) is Lipschitz 

continuous over 𝒟, the residual satisfies: 

‖𝑓rem (𝑥) − 𝑓rem (𝑥̂)‖ ≤ 𝐿𝑓‖𝑥 − 𝑥̂‖, ∀𝑥, 𝑥̂ ∈ 𝒟 (36) 

for some constant 𝐿𝑓 > 0. To express the system in 

NLPV form, we introduce a parameter trajectory 

𝜌(𝑡) = 𝑥̂(𝑡), leading to: 

 
𝑥̇(𝑡) = 𝐴(𝜌(𝑡))𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝑓rem (𝑥)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑣𝑣(𝑡)
 (37) 

The matrix 𝐴(𝜌(𝑡)) is obtained via online 

interpolation of {𝐴(𝑖)} using barycentric weights: 

  𝐴(𝜌(𝑡)) = ∑  𝑁
𝑖=1 

𝑖(𝜌(𝑡))𝐴(𝑖),  (38) 

 where ∑  𝑖 𝑖
= 1,

𝑖
≥ 0  

This interpolation ensures a smooth and 

accurate approximation of the nonlinear dynamics 

across the grid. 
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Remark 2 

The scheduling parameter is chosen as 𝜌(𝑡) =

𝑥(𝑡) to ensure real-time implementability of the 

observer. This avoids dependence on 

unmeasurable states while maintaining consistency 

between the NLPV model and the observer 

dynamics. As the estimation error converges, the 

scheduling variable naturally approaches the true 

state, thereby reducing interpolation mismatch. 

4.2. Lipschitz Constant Estimation  

The observer gains are designed at grid points 

uniformly sampled over [−20, 20]3. At each grid 

point, the local Jacobian is computed and used to 

define 𝐴(𝜌𝑖).  

The nonlinear drift term 𝑓(𝑥) of the Lorenz 63 

system is defined in equation (27). To facilitate 

observer design with Lipschitz-type nonlinearities, 

the Lipschitz constant 𝐿𝑓 is required. A vector 

field 𝑓(𝑥) is said to be Lipschitz continuous over 

the domain 𝒟 ⊂ ℝ𝑛 if there exists a scalar 𝐿𝑓 > 0 

which satisfies the equation (36). 

A sufficient condition to obtain 𝐿𝑓 is to 

evaluate the spectral norm of the Jacobian matrix 

𝐽(𝑥): 

 𝐿𝑓 = sup
𝑥∈𝒟

 ‖𝐽(𝑥)‖2 (39) 

where 𝐽(𝑥) =
𝜕𝑓(𝑥)

𝜕𝑥
  is the Jacobian matrix of the 

drift function. 

For the Lorenz system, the Jacobian is 

computed as: 

 𝐽(𝑥) = ∇𝑓(𝑥) = [

−𝜎 𝜎 0
𝜌 − 𝑥3 −1 −𝑥1

𝑥2 𝑥1 −𝛽
] (40) 

The spectral norm ‖𝐽(𝑥)‖2 is the largest 

singular value of 𝐽(𝑥), which can be numerically 

evaluated over a bounded region 𝒟. In this work, 

the domain is chosen as 𝒟 = [−20, 20]3, covering 

the typical range of Lorenz state trajectories. 

A grid-based scan of 𝐽(𝑥) across 𝒟 yields an 

upper bound: 𝐿𝑓 ≈ 56.6092 

 

 

 

Figure 1 describes the distribution of ‖𝐽(𝑥)‖2 

over a bounded domain in (𝑥1, 𝑥2, 𝑥3). It is 

observed that the spectral norm varies 

significantly, reaching values above 𝐿𝑓 = 56.6092 

in lower regions of the state space (i.e., 𝑥3 < 0), 

while staying below 25 in upper regions (i.e., 

𝑥3 >10). This spatial variability reflects the strong 

local nonlinearity of the Lorenz system, which 

motivates the use of a gridding-based observer 

design. By selecting local Lipschitz bounds within 

each grid cell, the observer gain can be adapted 

more accurately to the system's local dynamics, 

avoiding conservatism associated with a global 

Lipschitz constant. 

This bound is used in the LMI formulation to 

handle the nonlinear remainder term using 

Lipschitz inequalities, ensuring robust estimation 

even in the presence of nonlinear uncertainties. 

Using CVX toolbox and semidefinite 

programming (SDP)20, a set of LMI conditions is 

solved to obtain observer gains {𝐿𝑖}. At runtime, 

the gain 𝐿(𝑥̂) is interpolated using barycentric 

weights based on proximity to the grid centers. 

 

 

Figure 1.  A graph representation of the Jacobian 

‖𝐽(𝑥)‖2 in the state space. 

Specifically, for each grid point 𝑖 ∈{1, 2,…, 4} 

of the NLPV system in equation (24), the LMI 

condition in equation (29) is solved to synthesize a 

robust ℋ∞ observer.  

The CVX toolbox in MATLAB is employed to 

solve the optimization problem and compute the 

observer gain matrices 𝐿𝑖  corresponding to each 

value of the scheduling parameter ρ, using the 

system matrices defined in section 3.4. 
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The optimization yields a disturbance attenuation 

level of 𝛾 =  0.0023. The resulting observer gain 

𝐿(𝑥̂) of the four grid points of ρ are as follows: 

𝐿(𝑥̂)  = [519.9294; −17.1069;  6.3601]𝑇 

4.3. Simulation Scenarios and Discussion  

To evaluate and compare the performance of the 

proposed ℋ∞ observer and the EKF9, numerical 

simulations are carried out on the Lorenz 63  

system. The initial state of the system is set as 

𝑥(0) = [−5, −5, −5]𝑇, and both observers are 

initialized at the origin [0, 0, 0]𝑇. The EKF is 

implemented using a first-order prediction-

correction structure, where the time-varying 

Jacobian matrix of the Lorenz system is used in the 

prediction step. The initial covariance matrix is 

selected as 𝑃0 = 2 ⋅ 𝐼3 to ensure sufficient initial 

uncertainty for the EKF. In contrast, the ℋ∞ 

observer uses a gridding structure interpolated via 

barycentric weights over a predefined grid of the 

state space. 

To provide a comprehensive performance 

analysis, two sets of simulation conditions are 

examined: 

Noise-Free Scenario: The system evolves 

without any disturbances to establish a baseline. 

Figure 2 illustrates the comparison between the 

actual states 𝑥1 to 𝑥3  and their corresponding 

estimated values 𝑥1 to 𝑥3.  In the plots, the solid 

green line represents the true system states, the red 

dashed line indicates the estimates from the 

proposed ℋ∞ observer, while the blue dash-dot 

line corresponds to the estimates obtained using the 

EKF.  

 

 

 

 

 

 

 

Figure 2. Comparison of system states with noise-free 

It is evident from Figure 2 plots that both ℋ∞ 

observer and the EKF closely track the true system 

states. The estimation errors are negligible for all 

state variables, reflecting excellent accuracy in the 

absence of noise. Notably: 

In 𝑥1, both observers almost overlap with the 

ground truth across the entire time span, with only 

very slight divergence in highly dynamic segments. 

The inset zoomed plots confirm sub-millisecond 

response agreement. 

In 𝑥2, the estimations remain aligned even 

during sharp transient oscillations. This highlights 

the observers’ ability to capture rapid nonlinear 

dynamics. 

In 𝑥3, where chaotic oscillations dominate, both 

𝑥ℋ∞
 and 𝑥𝐸𝐾𝐹  accurately replicate the system 

evolution.  

In the noise-free scenario, both the proposed 

gridding-based NLPV ℋ∞ observer and the EKF 

provide accurate state estimation, indicating that 

both approaches are capable of tracking the Lorenz 

dynamics under ideal measurement conditions. 

Nevertheless, a closer inspection of the zoomed-

in sub-figures reveals subtle but consistent 

differences between the two observers. In 

particular, the proposed observer exhibits a slightly 

reduced phase lag during transient convergence, as  
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well as smoother tracking behavior with fewer 

oscillatory artifacts. These differences become 

more visible in time intervals characterized by 

rapid state variations, where local linearization 

effects may limit the EKF performance. 

Although the overall estimation accuracy of 

both observers is comparable in this noise-free 

case, the observed improvements indicate that the 

proposed gridding-based NLPV formulation 

provides a more consistent representation of the 

underlying nonlinear dynamics, even in the 

absence of disturbances.  

Noisy Scenario: Both process and 

measurement noise are activated.  

The state dynamics are subjected to an additive 

zero-mean Gaussian process noise 𝑤(𝑡) ∼

𝒩(0, 𝑄) and measurement noise 𝑣(𝑡) ∼ 𝒩(0, 𝑅), 

where the covariance matrices are chosen as 

follows: 

 𝑄 = 0.5 ⋅ 𝐼3, 𝑅 = 𝐼1 (41)   

The process noise 𝑤(𝑡) is generated at each 

time step as: 

 𝑤𝑘 = √𝑄 ⋅ 𝜔𝑘, 𝜔𝑘 ∼ 𝒩(0, 𝐼3) (42) 

while the measurement noise is: 

 𝑣𝑘 = √𝑅 ⋅ 𝜈𝑘 , 𝜈𝑘 ∼ 𝒩(0, 𝐼1) (43) 

Figure 3 compares the actual states 𝑥1 to 𝑥3 and 

their corresponding estimated values 𝑥1 to 𝑥3, in 

the presence of noise as described above. The 

figures demonstrate that both observers track the 

system well, but the performance diverges during 

fast transients and in regions of strong nonlinear 

coupling. 

Estimation of 𝑥1: During the early transient 

phase around 𝑡 ∈ [5.1, 5.3]s (left zoom-in), the 

trajectories of the true state and both observers 

start to converge after a rapid change in system 

dynamics. The zoomed view clearly shows that the 

proposed ℋ∞ observer tracks the true state with 

smaller phase lag and reduced oscillation 

amplitude compared to the EKF. This behavior 

indicates a faster convergence rate, which is  

 

 

 

consistent with the explicit decay-rate 

constraint incorporated in the LMI-based observer 

design. 

 

 

 

Figure 3. Comparison of system states with noise 

In the highly nonlinear region around 𝑡 ∈

[17.6, 17.8]s (right zoom-in), the Lorenz system 

exhibits sharp peaks and rapid variations. In this 

interval, the EKF estimation shows noticeable 

deviations from the true state, whereas the 

proposed ℋ∞ observer maintains closer alignment. 

This demonstrates the improved robustness of the 

proposed approach against nonlinear amplification 

effects and disturbances in regions where local 

linearization becomes less accurate. 

For the second state 𝑥2, the zoomed-in interval 

𝑡 ∈ [5.1, 5.3]s highlights the convergence behavior 

during a steep state transition. The proposed 

observer exhibits a smoother transient response 

with reduced overshoot compared to the EKF. This  
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suggests that the proposed method effectively 

balances convergence speed and robustness, 

avoiding aggressive corrections that can amplify 

noise. 

In the later interval 𝑡 ∈ [17.6, 17.8]s, where 

𝑥2 undergoes rapid sign changes and strong 

nonlinear coupling, the EKF trajectory deviates 

more significantly from the true state. In contrast, 

the proposed ℋ∞ observer remains tightly 

bounded around the true trajectory. This confirms 

the advantage of the gridding-based NLPV 

formulation, which captures dominant variations of 

the Jacobian over the attractor domain and 

provides robustness beyond local linearization. 

Estimation of 𝑥3: The estimation results for 

𝑥3further emphasize the robustness properties of 

the proposed observer. In the zoomed-in window 

around 𝑡 ∈ [5.1, 5.3]s, both observers converge 

toward the true state; however, the proposed ℋ∞  

observer shows smaller steady-state oscillations 

once convergence is achieved. 

More importantly, in the interval 𝑡 ∈

[17.6, 17.8]s, where 𝑥3 reaches higher amplitudes 

and the effect of nonlinear coupling is pronounced, 

the EKF exhibits increased estimation error. The 

proposed observer, on the other hand, maintains 

accurate tracking with reduced sensitivity to noise. 

This behavior highlights the effectiveness of 

explicitly accounting for nonlinear remainder 

bounds and disturbance attenuation in the observer 

design. 

Tables 1–3 present the state estimation 

performance indices, including RMSE, NRMSE, 

and the 𝑅2- for both the EKF and the proposed 

ℋ∞ observer, under noise-free and noisy 

conditions, respectively. 
 

• Root Mean Square Error (RMSE): 

RMSE𝑖 = √
1

𝑁
∑  𝑁

𝑘=1   (𝑥𝑖(𝑘) − 𝑥̂𝑖(𝑘))2 (38) 

• Normalized RMSE (NRMSE): 

NRMSE𝑖 =
RMSE𝑖

max(𝑥𝑖)−min(𝑥𝑖)
  (39) 

 

 

 

• Coefficient of Determination (R2) : 

 𝑅𝑖
2 = 1 −

∑  (𝑥𝑖−𝑥̂𝑖)2

∑  (𝑥𝑖−𝑥‾𝑖)2 (40) 

Table 1. RMSE index of states 

RMSE With noise-free With Noise 

 𝐸𝐾𝐹           ℋ∞   𝐸𝐾𝐹          ℋ∞ 

𝑥1 0.04042    0.00197 0.25921    0.00313 

𝑥2 0.06177    0.15654 0.33442    0.16664 

𝑥3 0.07490    0.16884 0.27328    0.17989 

Table 2. NRMSE index of states 

N 

RMSE 

With noise-free With Noise 

  𝐸𝐾𝐹          ℋ∞   𝐸𝐾𝐹          ℋ∞ 

𝑥1 0.00114    5.62e-05 0.00757    9.14e-05 

𝑥2 0.00131    0.00336 0.00743    0.00370 

𝑥3 0.00197    0.00455 0.00679    0.00447 

Table 3. 𝑅2 index of states 

𝑅2 With noise-free With Noise 

  𝐸𝐾𝐹              ℋ∞   𝐸𝐾𝐹            ℋ∞ 

𝑥1 0.99996    1.00000 0.99896    0.99999  

𝑥2 0.99995    0.99968 0.99857    0.99964 

𝑥3 0.99991    0.99955  0.99872    0.99944  

The numerical values reported in Tables 1–3 are 

computed directly from the full simulated state 

trajectories over the specified time intervals, 

whereas Figures 2 and 3 provide qualitative 

visualization of the corresponding estimation 

performance. 

The simulation results demonstrate a 

comprehensive comparison between the proposed 

ℋ∞ observer and the EKF under both noise-free 

and noisy conditions. As presented in Tables 1–3, 

the ℋ∞. The observer exhibits superior 

robustness, especially in the presence of process 

and measurement noise. 

In the noise-free scenario, EKF achieves 

slightly better RMSE values for 𝑥2 and 𝑥3, while 

the ℋ∞ observer delivers the best accuracy for 𝑥1, 

achieving an RMSE of only 0.00197 and a 

coefficient of determination 𝑅2 = 1.0000. 

However, in the noisy case, the performance of 

EKF significantly degrades across all states. For  
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instance, the RMSE for 𝑥1 increases to 0.25921 

under EKF, whereas the proposed observer 

maintains a remarkably low RMSE of 0.00313. 

The NRMSE analysis further supports these 

findings, with the ℋ∞ observer consistently 

achieves lower normalized errors under noisy 

conditions. Specifically, for 𝑥1, the NRMSE of the 

ℋ∞ observer remains as low as 9.14×10−5, 

compared to 7.57×10−3 for EKF. 

In terms of the coefficient of determination, the 

ℋ∞ observer consistently attains higher 𝑅2 values 

in both scenarios, indicating a better match 

between estimated and actual states. Notably, the 

observer preserves an 𝑅2 of over 0.9999 for all 

states even in the presence of noise, whereas EKF 

drops to 0.9985 or lower. 

Overall, these results validate the robustness 

and estimation accuracy of the proposed 

ℋ∞ observer design. The gridding-based LMI 

synthesis, combined with barycentric interpolation 

of the observer gain, enables the observer to 

maintain high precision under strong nonlinearities 

and measurement uncertainties. In contrast, EKF 

performance is more sensitive to noise and model 

mismatch, highlighting the conservative yet 

effective design philosophy of the ℋ∞ approach. 

5. CONCLUSIONS 

This paper has developed a gridding-based NLPV 

ℋ∞ observer for the Lorenz–63 system, 

addressing the challenges posed by strong 

nonlinear coupling and chaotic dynamics. By 

reformulating the original nonlinear system into an 

NLPV structure with an explicitly bounded 

nonlinear remainder, the proposed approach 

enables a convex LMI-based observer synthesis 

with guaranteed stability properties. 

The main results demonstrate that the 

proposed observer ensures exponential 

convergence of the estimation error with a 

prescribed decay rate and achieves effective 

attenuation of both process disturbances and 

measurement noise. The use of a small number of 

representative grid points allows a practical trade-

off between robustness and computational 

efficiency while maintaining feasibility of a  

 

 

common Lyapunov function. 

Simulation results confirm that, in the noise-

free case, the proposed observer provides 

comparable accuracy under ideal conditions and 

improved robustness in the presence of 

disturbances compared to the EKF. Under 

disturbed conditions, the proposed method 

exhibits superior robustness, with reduced 

sensitivity to noise and improved estimation 

accuracy across all state variables. 

Overall, the results validate the effectiveness 

of the proposed gridding-based NLPV ℋ∞ 

observer as a reliable and robust estimation 

framework for nonlinear chaotic systems. Future 

work will investigate extensions to higher-

dimensional nonlinear systems and experimental 

validation on physical platforms. 
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