Thiét ké va trién khai robot di djng tw hanh dwa trén ROS véi giao
dién ho tr¢ di€u huwdng theo 19 trinh.

Phan Gia Tri*, Trin Xuin Khoa, Tran L& Minh Truwdéng, Bui Qudbc Cuong
Khoa Ky thudt va Cong nghé, Truong Dai hoc Quy Nhon, Viét Nam

Email: phangiatri@qnu.edu.vn

Ngady nhdn bai: dd/mm/yyyy; Ngay sia bai: dd/mm/yyyy;
Ngay nhan dang: dd/mm/yyyy; Ngay xuat ban: dd/mm/yyyy

TOM TAT

Robot di dong tu hanh (AMR) ngay cang dugc tng dung rong rai trong cac moi truong logistics va dich vu
trong nha, noi yéu cau phai bao dam kha nang lap ban do, dinh vi va diéu hudng tin ciy. Bai bao nay trinh bay thiét
ké va trién khai mot AMR nho gon dua trén ROS, trang bi Raspberry Pi 4, LIDAR 2D, IMU va encoder. Nham ting
tinh thuén tién khi van hanh, chung t6i phat trién mot giao dién dd hoa (GUI) doc lap, thay thé thao tac truc tiép trén
Rviz, ngudi dung c6 thé didu khién robot dén bon diém dich dinh sin hodc thyc thi 1§ trinh nhidu waypoint do ngudi
dung céu hinh, df)ng thoi theo ddi trang thai diéu huéng theo thoi gian thyc. Hé thong tich hop 2D SLAM dé xdy dung
ban d6, AMCL dé dinh vi, Dijkstra cho 1ap ké hoach toan cuc va Dynamic Window Approach (DWA) cho dleu hudng
cuc bo két hop tranh vat can. Thir nghiém trong cac kich ban indoor cho thay odometry tir encoder c6 sai s6 quang
dudng trung binh 5,8-7,0% trén doan 1-3 m; sai s6 do khoang cach LIDAR <3% dén 10 m; va kich thudc ban db tai
tao 1éch <1,3% so vdi gia tri thuc té. Trong thr nghiém diéu hudng, robot dat muyc ti€u on dinh & ca méi truong it va
nhiéu vét can sau khi tinh chinh tham s6, ddng thoi thuc thi tin cdy cac nhiém vu waypoint lién tiép. Két qua khang
dinh tinh kha thi cta viéc trién khai AMR duya trén ROS véi giao dién twong tac nguoi ding.

Tiur khoa: ROS, AMR, SLAM, AMCL, DWA.

Design and Implementation of a ROS-Based Autonomous
Mobile Robot with a GUI-Assisted Route Navigation Interface

Phan Gia Tri*, Trin Xuan Khoa, Tran Lé Minh Truéng, Bui Qudc Cuong

Faculty of Engineering and Technology, Quy Nhon University, Vietnam

*Email: phangiatri@qgnu.edu.vn

Received: dd/mm/yyyy, Revised: dd/mm/yyyy;
Accepted: dd/mm/yyyy; Published: dd/mm/yyyy

ABSTRACT

Autonomous mobile robots (AMRSs) are increasingly deployed in indoor logistics and service environments,
where reliable mapping, localization, and navigation are essential. This paper presents the design and implementation
of a compact ROS-based AMR equipped with a Raspberry Pi 4, a 2D LiDAR, an IMU, and wheel encoders. To
improve operational usability, we develop a standalone graphical user interface (GUI) that replaces direct RViz
interaction; users can command the robot to navigate to one of four predefined destinations or execute a user-
configurable multi-waypoint route while monitoring navigation status in real time. The system integrates 2D SLAM
for map construction, AMCL for localization, a Dijkstra-based global planner, and the Dynamic Window Approach
(DWA) for local motion generation with obstacle avoidance. Experiments in representative indoor scenarios show
that encoder-based odometry yields a mean distance error of 5.8—7.0% over 1-3 m trajectories; LiDAR ranging error
remains below 3% up to 10 m; and reconstructed map dimensions deviate by less than 1.3% from ground-truth
measurements. In navigation trials, the robot consistently reached target goals in both obstacle-free and obstacle-rich
environments after parameter tuning, and it reliably executed sequential waypoint missions. These results confirm the

feasibility of deploying ROS-based AMRs with an interactive user interface for practical indoor applications.

Keywords: ROS, AMR, SLAM, AMCL, DWA.

1. INTRODUCTION

Nowadays, autonomous mobile robots (AMRs)
are being widely deployed across numerous
domains, ranging from logistics systems, goods
transportation, surveillance, and quality inspection
to navigation tasks in complex environments.
These applications optimize operational
workflows, reduce human intervention, and
improve overall productivity. In robotics research,
robot localization and navigation constitute key
areas; algorithms such as SLAM (Simultaneous
Localization and Mapping), path planning, and
motion control play pivotal roles in enabling
robots to operate effectively in previously
unknown environments. '

The field of autonomous robotics can be traced
back to Leonard’s work in 1990, which introduced
fundamental approaches for 2D mapping and
robot localization in three-dimensional space. This
line of research established the foundations for

SLAM (Simultaneous Localization and Mapping),
which was later advanced by Durrant-Whyte and
Bailey, providing essential tools for localization
and mapping in unknown environments.>* These
contributions have significantly influenced the
development of modern autonomous robotic
technologies, particularly the adoption of ROS
(Robot Operating System) and SLAM algorithms
for mobile robots.

Modern SLAM algorithms—especially methods
leveraging LiDAR and IMU sensing—have
demonstrated strong capability in accurate 2D
map reconstruction and effective robot
localization in three-dimensional space.
Nevertheless, deploying such SLAM approaches
in real-world settings can pose substantial
challenges, particularly when constrained by low-
cost, simplified hardware platforms. Several
recent studies have addressed this issue by
proposing cost-effective solutions that still
maintain high performance, especially for small-

and medium-scale autonomous robotic

applications.>”’

At present, many studies in mobile robotics
employ ROS to simulate SLAM algorithms or rely
on off-the-shelf robot platforms such as Pioneer
and Turtlebot. However, these platforms are often
incompatible with the financial constraints and
research infrastructure commonly encountered in
Vietnam, where funding for autonomous robotics
remains limited.® Moreover, solutions that use
sensors such as LiDAR and cameras for mapping
and navigation typically entail challenges related
to cost and computational resources.’

In Vietnam, mobile robotics continues to be a
focal research topic. Existing studies largely
concentrate on developing control systems for
mobile robots operating in known environments,
often based on two-wheel differential-drive
structures and fixed kinematic models. However,
such approaches may not satisfy the requirements
for mobility in complex environments
characterized by dense obstacles and continuously
changing spatial configurations.'’ Recent research
has therefore shifted toward path planning and
motion control, aiming to optimize trajectories for
autonomous robots in environments without
detailed pre-existing maps, supported by
algorithms such as A* and DWA (Dynamic
Window Approach).!!-1?

With the objective of providing a low-cost
solution while maintaining high performance, this
paper presents a ROS-based system for navigation
and mapping, together with the DWA algorithm
for local trajectory planning. Both real-world
experiments and simulation results are reported,
demonstrating that our robot platform can
transport goods to user-selected target locations
marked on the map with high accuracy, thereby
meeting the requirements of autonomous robotic
applications. 1314

The remainder of this paper is organized as
follows. Section 2 describes the system
architecture and hardware design, followed by the
differential-drive kinematic model and software
implementation under ROS. Section 3 presents the
adopted mapping, localization, and navigation
algorithms (slam_gmapping, AMCL, global
planning, and DWA-based local planning).
Section 4 reports experimental protocols and
quantitative results for sensor evaluation, mapping
accuracy, localization tuning, and navigation
performance. Section 5 concludes the paper and
outlines future improvements.

2. METHODS
2.1. Design methodology

An overview of the proposed system is illustrated
in Fig. 1. A user operates a host computer to
monitor the mapping process and to command the
robot to navigate to target locations via an
embedded Raspberry Pi 4. Both the host computer
and the Raspberry Pi 4 run ROS on Ubuntu 20.04
and communicate over a shared Wi-Fi network;
the Raspberry Pi is configured with a static IP
address. The embedded computer acquires LIDAR
measurements for map construction. Meanwhile,
the microcontroller collects inertial measurements
from the IMU and transmits them to the embedded
computer, and it also drives the actuators—two
DC motors—through a motor driver module.

Pin Rsspbery Pl Lidar

E¢%§@

®
ﬂ« Interact = I <> I
—_———

Mon

600
a. Laptop b. SLAM ROBOT

o
O

O

Actuation system

Figure 1. Overview of the proposed system

2.1.1. Hardware design

Figure 2. Dimensional drawing of the robot

The robot chassis is fabricated from aluminum to
reduce mass and improve maneuverability, with
overall dimensions of 300 x 300 x 170 mm.
Because the platform is intended to operate
indoors on flat terrain with low wheel slip,
conventional wheels are adopted with radius r =
34mm (Fig 3a). The robot frame is designed to
accommodate a top cover that mounts an RPLidar
Al sensor.

As shown in Fig. 3b, the robot body houses a
Raspberry Pi 4 for sensor processing and control-
board interfacing. A 9-DOF IMU (MPU-9250)
enables motion tracking along three spatial axes,
improving localization capability and motion
stability. Two BTS7960 motor driver modules
control two GA-25 DC geared motors equipped
with dual-channel A/B encoders, allowing

3

accurate motion execution and motor speed
feedback. The system is powered by a 12-V

(a) (b)
Figure 3. Robot prototype: (a) external view, (b)
internal layout.

2.1.2. Component selection

Embedded computer (Raspberry Pi 4). The
Raspberry Pi 4 is used as the main embedded
computer and communicates with the
microcontroller. It features a quad-core ARM
Cortex-A72 CPU at 1.5 GHz, 4 GB RAM, USB
3.0, Gigabit Ethernet, Wi-Fi 802.11ac, Bluetooth
5.0, and a 40-pin GPIO header, making it well-
suited for the proposed autonomous robot
platform. The embedded computer acquires motor
speed information, robot yaw angle, and LiDAR
measurements, processes these data using
integrated ROS software packages, and transmits
control commands to the microcontroller for
execution.

Laser rangefinder (RPLidar A1). The RPLidar Al
measures distances to surrounding obstacles,
enabling 360° environmental scanning and map
generation using the slam gmapping algorithm.
The sensor supports obstacle detection up to 12 m
with a sampling rate of 8000 samples/s. It is also
supported by ROS (Robot Operating System)
integration packages for robot applications.

IMU (9-DOF MPU-9250). The MPU-9250
integrates an accelerometer, gyroscope, and
magnetometer to measure tri-axial acceleration,
angular velocity, and magnetic field. Through I2C
communication, it provides nine sensor readings
that can be fused to estimate the robot’s Euler
angles (roll, pitch, yaw). This device is critical for
maintaining robot stability and heading
estimation, thereby supporting accurate and
efficient 2D navigation.

Geared DC motor with encoder (GA-25, 12
VDC). The GA-25 is a DC geared motor equipped
with an encoder to provide feedback signals. The
microcontroller counts encoder pulses and adjusts
motor actuation through the power driver,
enabling motor speed and rotation measurement.
Key specifications include: nominal voltage 12
VDC, shaft diameter 4 mm, gear ratio

approximately 46.8:1, no-load speed 130 rpm,
rated torque 0.9 kg-cm, and maximum torque 4.4
kg-cm. The encoder is dual-channel (A/B) with an
11-pulse disk per channel. This motor/encoder
pair enables accurate estimation of the robot’s
translational speed and displacement, and plays a
crucial role in motion control and trajectory
tracking.

Motor driver (BTS7960). The BTS7960 motor
driver is used to regulate motor speed and
direction via PWM control signals. With a current
capability up to 43 A, it supports stable velocity
regulation and smooth directional changes. This
driver contributes to precise and responsive motor
actuation, improving the overall navigation
performance of the robot.

(O3

-

Figure 4. Hardware wiring diagram.

Figure 4 summarizes the hardware
interconnections, illustrating how key modules are
integrated into a complete control system.

2.2. Algorithmic description
2.2.1. Kinematic model

A differential-drive autonomous mobile robot
(AMR) consists of two independently driven
wheels mounted on either side of a central chassis,
with passive caster wheels used for mechanical
stabilization.

Figure 5. Kinematic model of a two-wheel
differential-drive mobile robot

A typical configuration of a differential-drive
wheeled mobile robot (DDWMR) is shown in Fig.
5. Let a fixed reference frame F be attached to the
ground, whose axes are represented by the
mutually orthogonal unit vectors x, y and z . A
body (mobile) frame M is attached at the midpoint

4

of the line segment connecting the wheel centers
c; and c,. The unit vectors h,l and =z are
associated with the moving frame M. The wheel
radius is denoted by r. To derive the kinematic
model of the DDWMR, the following key
relationships are considered.

The angular velocities of the left and right wheels
are denoted by 8, and @, , forming an independent
velocity vector:

6= [91] €))
The linear velocity V and the angular velocity ¢

in the moving frame M are related to 6 via a
Jacobian matrix:

roor
v=[%]=1(9’, K=|} _;] (2)
d d

To transform velocities from the moving frame M
to the fixed frame F, a rotation matrix is used:
cosp —sing O
R(#): R(¢p) = [sing}ﬁ cos¢ 0] 3)
0 0 1
The twist velocity in the fixed frame ¢ is obtained

by multiplying the rotation matrix with the
velocity vector v expressed in frame M:

G=R(@w | @
The Jacobian relating ¢ and 6 is:
=J0, J=R(HK (5)
Thus,
cos¢p —sing 01[L r
J= [sinqﬁ cos¢] [? %] (6)
0 da a

Accordingly, the robot’s angular and linear
velocities can be expressed in terms of wheel
angular velocities:
p==(61-6)vag="(6; + 6,) (7
In this study, pure rolling motion is assumed;
therefore, lateral slip angles and side-slip
displacement terms §; and & are neglected (set to
Zero).
Notation:

6,, angular velocities of the left and right
Ja} wheels
r wheel radius
d distance between the two drive wheels
V robot linear velocity
K Jacobian mapping wheel angular
velocity to [V, ¢]T
twist velocity expressed in the fixed
frame F
R(¢) rotation matrix from M to F.

] Jacobian mapping 6 to g.

M moving (body) frame

F fixed (world) frame

coordinate of the midpoint between the

: wheels
h wheel-ground contact location
representation.
c1, centers of the left and right wheels
C2
p1, left/right wheel ground contact points
b2

x,y unit vectors of the fixed frame F
z unit vector along the z-axis

2.2.2. Overall algorithm description

Deploying an autonomous robot typically requires
three core capabilities: mapping, localization, and
navigation. In this work, ROS (Robot Operating
System) is used to implement these capabilities, as
it provides a mature ecosystem of tools and
software packages. Specifically, we employ
slam_gmapping for map construction and amcl for
robot localization within a known map. For
navigation, the ROS navigation stack is adopted,
including move base, global planner, and
base local planner. The AMCL (Adaptive Monte
Carlo Localization) method uses a particle filter to
estimate the robot pose on the map, maintaining
localization accuracy during motion.

The ROS navigation framework is organized into
two planning layers: global planning and local
planning, corresponding to algorithms such as
Dijkstra (global planner) and the Dynamic
Window Approach (DWA) for local trajectory
generation.

Select the position or

SSH Remote control command Preplanned path

Navigate using both global and

local pa;h plamiin I3

Whether to
reach the end?

Yes

¥

Arrival notification

Accquisition of enviromental
data by LIDAR and IMU

I

Robot performs attitude
locallzation and build maps

Is the build
complete?
Yes i

Select the map
and import to ROS

Figure 6. Flowchart of localization and navigation.

Operationally, the robot explores an initially
unknown environment using LiDAR
measurements (with remote access/monitoring via
SSH when needed). Sensor data from the LiDAR
and IMU are continuously acquired to support
simultaneous localization and mapping. If the map

5

is not yet complete, the robot continues exploring
and updating the map. Once the mapping phase is
finalized, the user selects start and goal poses in
ROS RViz. The robot then computes an optimal
path from start to goal using global and local
planning modules. If the robot has not reached the
goal, the navigation loop continues; otherwise, the
process terminates. The procedure completes
when the robot successfully navigates to the
designated goal location.

In addition to the ROS-native workflow, we
introduce a mission-level graphical user interface
(GUI) that abstracts away direct RViz interaction
during deployment. The GUI enables non-expert
users to command the robot using high-level
navigation tasks: (i) selecting one of four
predefined goal locations, or (ii) executing a
sequential mission consisting of multiple
waypoints arranged in a user-defined order. Under
the hood, the GUI translates these task selections
into standard ROS navigation goals, dispatches
them to the navigation stack, and monitors
execution states in real time (e.g., goal accepted,
in-progress, succeeded, or aborted). For sequential
missions, the interface issues the next waypoint
only after the current one is completed (or after a
configured retry/termination condition), thereby
ensuring deterministic mission progression. This
design simplifies operational procedures,
improves usability outside laboratory settings, and
provides a practical pathway for integrating ROS-
based autonomy with application-oriented user
interaction.

2.2.3. SLAM-based mapping algorithm

SLAM (Simultaneous Localization and Mapping)
is a class of algorithms that enables a robot to
construct a map of its environment while
simultaneously estimating its own pose. During
motion, sensors such as LIDAR, IMU, and wheel
encoders acquire measurements of the
surroundings, which are then transformed into a
structured map representation. A reliable map is a
prerequisite for subsequent localization and
navigation, since the robot must be able to
estimate its pose with respect to the constructed
map.
The SLAM problem can be formulated as the
following posterior probability:
P(myg, x¢ | 016, u1e) (8)

where:

= x; denotes the robot state (pose) at time t.

* m, is the environment map

* 04 represents the sensor observations

from time 1 to t.
* u,.; denotes the control inputs from time
Itot.

The continuous Bayesian update for the map and
pose can be expressed as:
P(x¢loy.e ugemye) o P(0¢]x, my)

fP Cee | xe—1, U) P(Xp—1 | 01261, Unp—1, M) dXp g

SLAM not only yields an optimization solution,
but also provides a real-time probabilistic
estimate, allowing the robot to continuously
update both the map and its pose in dynamic
environments.

2.2.4. AMCL localization algorithm

After the environment map has been constructed,
the robot must estimate its current pose within this
map. This functionality is provided by Adaptive
Monte Carlo Localization (AMCL), which is a
particle-filter-based approach. AMCL typically
consists of two main steps: (i) sampling candidate
poses from the process (motion) model, and (ii)
computing particle weights using the
measurement model, followed by resampling to
emphasize high-weight particles.
The AMCL filter proceeds as follows:
Step 1. Initialize empty particle sets:
Xe=X =0 (9)

Step 2. For each particle, sample a predicted pose
and compute its weight:
Sampling: xP] ~p (xt|ut,x£l]) (10)
Weight computation:

ol = p (z|x") (11)
Update the temporary particle set:

X =X+ oy (12)
Compute the mean weight:

_ 1 m

Wapg = Wapg + Mwi (13)

Short-term weight estimate:
Wsiow = Wslow T aslow(wavg - (‘)slow) (14)
Long-term weight estimate:
Wrast = Wrast + afast(wavg - (‘)fast) (15)

Step 3. Inject random particles into the official set
X; with probability:

w
max (0.0,1.0 _ Hast

) ae

Step 4. Resample xgm] from the temporary set
X, according to the corresponding weights, and
update the particle set:

X=X + (™ o™ (17)

The short- and long-term update rates should
satisfy:

0< Asiow K Afast

When the short-term estimate exceeds the long-
term estimate, the filter is performing well,
indicating that additional random particle
injection is unnecessary.

Wsiow

2.2.5. Navigation algorithm

We employ Dijkstra’s algorithm, a shortest-path
method for graphs with non-negative edge
weights. The environment is represented as a
costmap, where each grid cell is assigned a
traversal cost (e.g., obstacle cells have high cost).

G391

2
)
/ \@”
v
@ (ane6

Figure 7. Illustration of Dijkstra-based path planning.
The core Dijkstra update rule is:

d(v) = min(d(uw) + w(u,v)) V(u,v)
where:
d(v) is the current best estimate of the minimum
cost to node v, and w(u, v)is the traversal cost
from node uto node v. Starting from the initial
node, the algorithm iteratively expands nodes in
increasing order of cost to compute the shortest
path to all reachable nodes, and terminates once
the goal is reached.
For global planning, the pre-built map is
discretized into grid cells and Dijkstra’s algorithm
is applied to obtain an optimal path from the start
pose to the goal pose.
For local planning, relying solely on a global
planner is insufficient because unexpected
obstacles may appear during execution, rendering
the precomputed global path infeasible. Therefore,
we adopt the DWA local planner (Dynamic
Window Approach), which provides a reactive
control layer coupled to the planner. DWA
evaluates candidate velocity commands using a
grid-based cost function that encodes traversal
costs. The controller selects the command
velocities (3&, v, é)to be issued to the robot.
The key steps of DWA are summarized as follows:
Step 1: Independently sample control commands
in the robot control space (J&, v, 9)
Step 2: For each sampled command, perform
forward simulation from the current robot state
over a short time horizon to predict the resulting
motion.
Step 3: Score each simulated trajectory using a
weighted objective that accounts for factors such
as obstacle clearance, goal proximity, adherence
to the global path, and velocity; discard invalid
trajectories that lead to collisions.

Step 4: Select the highest-scoring trajectory and
send the corresponding velocity and angular-rate
commands to the robot.

3. EXPERIMENTS AND EVALUATION
3.1. Encoder evaluation

The robot employs two wheel encoders to
independently control the left and right drive
wheels. To assess encoder accuracy, we measured
the robot’s actual traveled distance and compared
it with the distance estimated from encoder pulse
counts, in conjunction with the robot kinematic
model. Experiments were conducted for
commanded travel distances of 1 m, 2 m, and 3 m,
with three trials per distance.

Table 1. Encoder evaluation results.

Actual |Theoretical Trial Measured | Estimated | Error
(m) | (pulses) (pulses) (m) (%)
1 2566 1.06334 | 6.33

2 2509 1.03972 | 3.97

! 2415 3 2581 1.06955 | 6.96
Avg 2552 1.05787 | 5.79

1 5188 2.14989 | 7.49

2 5089 2.10886 | 5.44

2 4831 3 5192 2.15154 | 7.58
Avg 5156.3 2.13676 | 6.84

1 7722 3.19997 | 6.67

2 7751 3.21199 | 7.07

3 7247 3 7848 3.22135 | 7.38
Avg 7773.6 3.2111 7.04

To compute the theoretical encoder pulses for
each travel distance, the wheel circumference is
obtained by:

C=m XD

Where: Cis the wheel circumference and Dis the
wheel diameter. With D = 68mm, the wheel
circumference is approximately C = 213.6mm.

For a 1 m displacement, the required number of
wheel revolutions is:

Distance
c

N=

which yields N = 4.68revolutions. Since each
revolution generates 514 pulses, the theoretical
pulse count for a 1 m displacement is 2415 pulses.
Similarly, the theoretical pulse counts for 2 m and
3 mare 4831 pulses and 7247 pulses, respectively.

The results indicate that for a 1 m displacement,
the average error is 5.79%, reflecting relatively
high encoder accuracy over short distances. For 2
m, the average error increases slightly to 6.84%;
however, this level remains within a reasonable
range and does not significantly affect the robot’s
overall performance. For 3 m, the average error is
7.04%, which is the largest among the three tested

7

distances but is still acceptable. Overall, the
results suggest that the estimation error tends to
increase with travel distance.

In summary, the wheel encoders provide
sufficiently accurate distance measurement for the
proposed AMR platform, with errors ranging from
5.79% to 7.04% under low-disturbance indoor
conditions. This accuracy is considered acceptable
for autonomous navigation tasks in the target
operating environment.

3.2. IMU sensor evaluation

The IMU performance is evaluated by measuring
the robot’s yaw angle, which represents the
robot’s rotation about the vertical z-axis. The yaw
angle is used to determine the robot heading
during motion and is therefore critical for
localization and navigation.

(@) (b c) (d

Figure 8. IMU evaluation: (a) initial yaw angle, (b)
—90°, (¢) 90°, and (d) 180°.

In this study, the IMU accuracy was assessed
through three rotational maneuvers. The IMU
outputs include raw yaw (unprocessed) and
filtered yaw (after applying the proposed filter).
This comparison is used to evaluate (i) the
practical accuracy of the IMU under real operating
conditions and (ii) the effectiveness of filtering in
improving measurement accuracy. Throughout
the experiments, yaw follows the right-hand
convention, where counterclockwise rotations are
positive and clockwise rotations are negative.

i —— Yaw filtered (deg) 0, —— Yow fitered (deg)

Yow raw (deg) Yow raw (deg)

Yaw (deg)
Yaw (deg)

2 4 6 [10 0 2

4 6 8
Time (s) Time (s)

Figure 9. Raw and filtered yaw profiles for rotations 1
and 2.

The robot was initially aligned at a fixed heading
of 0°(Fig. 8a), then rotated to a target heading of
—90°(Fig. 8b). Next, it was commanded to rotate
to 180°(Fig. 8d). The corresponding raw and
filtered yaw measurements are shown in Fig. 9.

Yaw titered (dog)
——— Yaw raw (deqg)

Yaw {deg)

=L i v ' v v ' v v i
o 1 2 3 a 5 & 5 4 a
Time (%)

Figure 10. Raw and filtered yaw profiles for rotation
3.

Finally, the robot was rotated to a target heading
of 90°(Fig. 8c). The raw and filtered yaw signals
for this third maneuver are reported in Fig. 10.
Table 2. Comparison of raw and filtered yaw
measurements.

Actual | Yaw Yaw Raw | Filtered
filtered | error| error

O 1™Ol e ||

Rotation

1 90 | -90.2 | -89.5 | 022 | 0.56
2 180 | 179.2 | 180.1 | 0.44 | 0.06
3 90 87.5 90 2.78 0

For rotation 1, the IMU raw yaw exhibited high
accuracy with an error of 0.22%, whereas filtering
did not improve the estimate and resulted in an
error of 0.56%. For rotation 2, the raw
measurement remained accurate (0.44%), and
filtering further improved the estimate, reducing
the error to 0.06%. For rotation 3, the raw yaw
error increased to 2.78%; however, the filtered
yaw achieved 0% error, indicating that the filter
effectively mitigated noise and bias in this
maneuver. Overall, the IMU provides reasonably
accurate raw yaw estimates, while filtering
significantly reduces errors, particularly during
rapid or large-angle rotations.

Overall, the IMU provides reasonably accurate
raw yaw estimates, but the error may increase
under rapid heading changes or large rotations.
The applied filter significantly reduces the error
and improves yaw accuracy under such
conditions.

3.3. LiDAR sensor evaluation

Figure 11. Experimental setup for LIDAR evaluation.

The accuracy of the RPLidar A1 laser rangefinder
was evaluated as showed in Fig 11. A target
obstacle was placed at a distance of exactly one
floor-tile length from the LiDAR sensor (each tile

8

is 40 cm). The sensor’s measured distance was
recorded and compared against the ground-truth
distance. The procedure was repeated by
incrementally increasing the obstacle distance by
integer multiples of the tile length. For each
distance, 10 measurements were collected and
averaged. The results are reported in Table 3.

Table 3. LiDAR distance measurement evaluation.

Actual mgg:f:?e d Absolute | Error
(m) (m) error (m) (%)
0.4 0.4033 0.0033 0.825
0.8 0.8086 0.0086 1.075
1.2 1.2162 0.0161 1.34

2 2.0315 0.0315 1.58
3.6 3.6639 0.0639 1.78
4.6 4.6882 0.0882 1.92
6.6 6.7531 0.1531 2.31
8.2 8.412 0.221 2.59
10 10.2835 0.2835 2.84

The LiDAR performs effectively at short ranges
(below 5 m), where the measurement error
remains under 2%. However, the error increases
with distance, indicating reduced accuracy at
longer ranges. The maximum observed error is
2.84% at 10 m. Although the manufacturer-rated
maximum range is 12 m, repeated measurements
suggest that the practical effective range is
approximately 10—10.5 m, with an error increasing
from about 0.8% to 2.8% as distance grows. These
errors remain acceptable for the mapping stage in
our application.

3.4. Mapping accuracy evaluation

Figure 12. 2D map construction results.

We performed 2D mapping in an indoor
environment. The objective is to evaluate mapping
accuracy by comparing the reconstructed map
dimensions with the ground-truth environment
dimensions and quantifying the resulting errors. In
the map, black regions represent obstacles, while

white regions denote free space where the robot
can traverse.

Table 4. Comparison between ground-truth and map-
measured environment dimensions.

Dimension Actual | Measured | Absolute | Error
(m) |on map (m)| error (m) | (%)

Length 10.6 | 10.46336 | 0.13664 [1.29%
Width 4.08 4.04712 | 0.03288 0.81%

The reconstructed map closely matches the real
environment. The length error is 1.29%, which is
acceptable, while the width error is only 0.81%.
Errors below 2% indicate that the proposed system
provides reliable measurement and mapping
performance. It should be noted that obstacles are
detected only if they are approximately at the same
height as the LiDAR sensor and lie within the
sensing range; therefore, environmental and
system noise can introduce additional mapping
artifacts. Nonetheless, the observed errors remain
within acceptable limits for the intended
application.

3.5. AMCL
evaluation

We first evaluated the AMCL filter under different
particle set sizes to identify a configuration that
provides the best trade-off between accuracy and
computational efficiency.

localization performance

AMCL employs a particle filter to estimate the
robot pose within the environment. The number of
particles is a critical factor that strongly influences
both estimation accuracy and computational cost.
In this experiment, three particle counts (1000,
5000, and 7000) were tested to evaluate AMCL
performance.

Figure 13. AMCL particle filter initialization with

1000, 5000, and 7000 particles.

Table 5. Impact of particle count on AMCL
erformance.

Performanc | Accurac .
. Error |Computation
Particles e y (%) time (s)
(%) (m) ’
1000 70 1.45 1(;'2 0.5
5000 90 0.93 6.75 1.2
7000 95 0.75 5.31 2.3

With 1000 particles, AMCL is able to estimate
robot pose, but the accuracy is limited, yielding a
relatively large error (10.25%) despite low
computation time. Increasing the particle count to
5000 improves pose estimation accuracy and
reduces the error to 6.75%, although the accuracy
remains moderate. The 7000-particle
configuration achieves the best localization
accuracy (error reduced to 5.31%), at the expense
of longer computation time.

Based on these results, 7000 particles is selected
as the optimal configuration, providing a
favorable balance between localization accuracy
and overall system performance. After the robot
moves for a period of time, the particle set
converges and the estimated pose aligns most
closely with the given map.

3.6. Navigation performance evaluation

We evaluated the robot navigation capability in
two types of environments:

= Obstacle-free environment with a straight-
line trajectory

Figure 14. Robot navigation in an obstacle-free
environment (straight trajectory).
= Complex environment with obstacles

Figure 15. Robot navigation in a complex
environment with obstacles.

Table bellow summarizes the navigation
performance in both scenarios, Particles were
fixed at 7000 in all navigation tria

Table 6. Navigation performance under obstacle-free

and obstacle-rich environments

Time to| Travel
goal | distance

Error

(s) (m) | (%)
No obstacles 4.5s 4.0m 0
(Ocl())ztat?alstSOF 1.5) 6.3s 4.2m Ho
(Oc:ttafciztsor —1py | 28| 4Sm 07
(Oclcj)ztagjtsor =1.0) >ls 4.5m 04

In the obstacle-free case, the robot reached the
goal with a short travel time and path length,
achieving accurate motion without noticeable
deviation. In the obstacle-rich environment, a
higher cost factor (cost factor = 1.5) caused the
robot to perform overly conservative obstacle
avoidance, increasing the time to reach the goal
while still maintaining acceptable accuracy. When
the cost factor was reduced to 1.0, the time-to-goal
decreased significantly by reducing unnecessary
detours, and the error dropped to 0.4%, indicating
robust navigation behavior. Therefore, cost factor
= 1.0 was selected as the most suitable setting for
our system, achieving faster navigation while
preserving reliable performance.

3.7. Navigation to predefined target locations

To enable navigation to predefined target
positions, we developed a user interface with a
simple and intuitive design. The operator can
easily select the destination point, which
streamlines autonomous operation and allows the
AMR to navigate to predefined locations on the
map. The interface displays several preset goal
markers (Position 1, Position 2, Position 3, and
Position 4) that the robot can navigate to.

Robot Control GUI o ®

Route: (empty);
e
2 °

POINT 2

POINT 4

- N7

Figure 16. Ul layout and labeled goals.

10

Figure 17. Ul screenshot during experiment and robot
trajectory overlay.

The interface provides real-time updates of the
robot’s current state, allowing the operator to
monitor the navigation process conveniently. The
preset goal points represent key task locations.
During navigation, the robot must pass through
narrow regions, which require accurate and agile
motion control. The control system and interface
support continuous observation and performance
verification throughout the mission.

Route:1 .3 . 2 . 4

EXCIEEE

3

N
tom m {]

POINT 1 POINT 2 —1-
4 -
|

S
1~ - F

swmrsore | [

—

Figure 18. Robot navigation user interface.

We evaluated a multi-goal mission in which the
robot started at Position 4, then navigated
sequentially to Position 1, Position 3, Position 2,
and finally returned to Position 4.

Figure 19. Robot navigation in real-world
environment.

Table 7. Navigation performance for predefined goal
locations.
Goal | Accuracy | Timeto |Navigation outcome

(%) goal (s)
95 25

Position
1
Position Wheel slip occurred

85 21)
3 in a narrow passage
Heading deviation

Smooth

POS;thIl 9 13 during goal
reorientation
Pos:‘tlon 90 20 Smooth

Overall, the proposed navigation system performs
effectively in both obstacle-free and complex
obstacle environments. The highest accuracy is
obtained in open areas (up to 98%), whereas
accuracy decreases to approximately 90% in
narrow passages. Although the robot maintains
high accuracy in most cases, deviations increase
when traversing tight corners and during heading
alignment toward the commanded goal. The
LiDAR and IMU sensors provide reliable distance
measurements and pose-related information;
however, the control strategy and sensor
configuration can be further improved to reduce
deviation in constrained environments.

4. DISCUSSION

Previous studies on autonomous robots have
mainly focused on wusing expensive robot
platforms or complex sensing suites to achieve
localization and mapping. In contrast, the
proposed indoor AMR platform demonstrates that
low-cost and simple hardware—including
Raspberry Pi 4, LiDAR, IMU, and wheel
encoders—can be effectively integrated with ROS
to achieve high-performance mapping,
probabilistic localization, and navigation in small-
to medium-scale industrial environments, even
under complex conditions. This approach not only
reduces research and deployment costs, but also
broadens applicability to laboratories and
industries with limited budgets.

A notable contribution of this work is the intuitive
user interface, which improves human-robot
interaction, particularly in scenarios requiring
flexible route changes or emergency handling.
This is important because many prior works
emphasize complex control architectures while
paying less attention to usability and operator
interaction. 316

Our system differs clearly from related studies.
For example, Zhou et al. (2022), in “LiDAR-Based
Mobile Mapping System for an Indoor

11

Environment”, used LiDAR to construct 2D maps
for autonomous robots, but the system relied on
relatively expensive hardware and sensors,
required substantial computational resources, and
may be difficult to deploy under budget
constraints.!” In contrast, our platform adopts a
simplified hardware configuration that reduces
cost while still achieving effective mapping,
localization, and navigation in complex indoor
environments.

Similarly, “Autonomous Navigation System of
Indoor Mobile Robots Using 2D LiDAR”
(Mathematics, 2023) presented an indoor SLAM-
based navigation system using 2D LiDAR for data
acquisition, mapping, and path planning.'® The
work emphasized RBPF-SLAM for robust
localization in complex settings; however, it still
relied on comparatively capable computing
hardware and did not highlight low-cost
implementation. In comparison, our design uses
Raspberry Pi 4, a widely available low-cost
platform that remains sufficiently capable of
running ROS-based SLAM and navigation,
demonstrating that accurate autonomous operation
is achievable without high-end hardware.

Other studies, such as “Research on SLAM Path
Planning of ROS Robot based on LiDAR” (2021)
and (2023), have proposed strong SLAM systems
using ROS, LiDAR, and IMU to optimize
mapping and localization in complex
environments.'” Nevertheless, these systems
generally do not emphasize user-interface
optimization, focusing instead on map accuracy
and navigation algorithm performance.

5. CONCLUSIONS AND FUTURE WORK

In this study, we designed and implemented an
indoor autonomous mobile robot system based on
ROS, integrating wheel encoders, an IMU, and a
LiDAR sensor to realize key functionalities
including odometry estimation, yaw/heading
measurement, 2D map construction, probabilistic
localization, and navigation in environments with
and without obstacles. The system was evaluated
through a set of real-world experiments targeting
individual sensors and core tasks (mapping,
localization, and navigation), thereby assessing
both component-level performance and overall
operational capability in indoor settings.

The main contributions of this work are as
follows: (i) development of a differential-drive
motion model and control mechanism based on
encoder feedback, combined with a mathematical
model for traveled-distance estimation; (ii)
utilization of the IMU for yaw measurement and
application of noise filtering to improve heading

signal stability; (iii) use of LiDAR for distance
sensing and 2D mapping, including verification of
geometric map errors against ground-truth
dimensions; (iv) implementation of AMCL
localization using a particle filter and investigation
of the impact of particle count (1000/5000/7000)
on pose stability and computational cost; (v)
navigation experiments in both obstacle-free and
obstacle-rich scenarios, including parameter
tuning (e.g., cost_factor, costmap parameters, and
local-controller parameters) to improve trajectory
quality and time-to-goal; and (vi) development of
a user interface that enables selection of
predefined goal locations and real-time
monitoring of robot status, improving system
usability and operator interaction.

Quantitatively, the encoder experiments show that
the average error for 1-3 m travel distances lies in
the range of 5.79% to 7.04%, indicating that
encoder-based distance estimation is acceptable
for indoor navigation tasks. For the IMU, raw yaw
errors were as low as 0.44% in the tested rotations;
after filtering, errors were reduced to
approximately 0.56% down to 0%, confirming
that noise filtering is necessary to improve
heading reliability, especially for in-place
rotations. For the LiDAR, distance-measurement
errors from 0.4 m to 10 m ranged from 0.82% to
2.84%, and map dimension verification produced
length and width errors of 1.29% and 0.81%,
respectively, indicating that LiDAR
measurements are sufficiently accurate for
mapping in the experimental environment.
Regarding AMCL, increasing the particle count
from 1000 to 7000 improved pose convergence
but increased processing time, highlighting the
trade-off between localization accuracy and
computational efficiency. At the system level, the
robot successfully completed navigation scenarios
with an overall stability of approximately 95%,
and tuning the cost factor from 1.5 to 1.0 reduced
overly conservative detours and improved time-
to-goal.

Despite these promising results, several
limitations remain. Encoder error tends to increase
with distance due to wheel slip, accumulated error,
and floor surface conditions. The IMU may be
affected by slip and mechanical vibration, causing
heading drift during rapid maneuvers if calibration
and appropriate sensor fusion are not applied.
LiDAR performance is constrained by surface
reflectivity and scan-plane geometry; obstacles
above or below the sensor height, or outside the
effective sensing range, may not be fully detected.
In addition, AMCL performance depends strongly
on map quality, environmental features, and

12

parameter configuration; larger particle sets
improve accuracy but increase computational load
and may reduce update rates in dynamic scenarios.

For future work, localization and navigation
robustness in more complex environments can be
enhanced by implementing sensor fusion (e.g.,
fusing wheel odometry and IMU via an EKF) to
mitigate slip effects and stabilize pose estimation
over time. Moreover, a systematic parameter-
tuning workflow for AMCL/costmap/local
planner based on experimental data (including
supervised optimization) can reduce reliance on
manual tuning. Evaluation metrics should also be
extended using standard robotics criteria such as
success rate, time-to-goal, path length, number of
replans, minimum obstacle clearance, and
CPU/RAM utilization to provide more objective
benchmarking. Algorithmically, alternative
planners and local controllers can be tested for
quantitative comparison, and handling of dynamic
obstacles and “stuck” recovery can be added to
improve robustness in real deployments. Finally,
the user interface can be expanded to support
multi-goal mission management, task history
logging, and real-time system-health monitoring
for indoor transport applications in corridors,
classrooms, and warehouse-like environments.

In summary, this work demonstrates the feasibility
of an indoor ROS-based autonomous robot system
with an end-to-end pipeline comprising mapping,
localization, navigation, and an operational user
interface. Experimental results show that encoder-
based odometry yields an average distance error of
5.79—-7.04% over 1-3 m trajectories, while LIDAR
ranging error remains below 3% up to 10 m. After
AMCL parameter tuning (7000 particles), the
robot achieved reliable goal-reaching performance
in both obstacle-free and obstacle-rich indoor
scenarios, with reduced deviations when costmap
cost_factor was set to 1.0. These results validate
the feasibility of a low-cost ROS-based indoor
AMR and provide a reproducible baseline for
further robustness improvements in narrow
passages and during heading reorientation.
Acknowledgments

This research is conducted within the
framework of science and technology projects at
institutional level of Quy Nhon University under
the project code T2025.894.14.
REFERENCES
1. H. Durrant-Whyte, T. Bailey. Simultaneous
Localization and Mapping: Part I, I[EEE Robotics &
Automation Magazine, 2006, 13, 99-110.
2. Feder, H. J. S., Leonard, J. J., & Smith, C. M.
Adaptive mobile robot navigation and mapping. The
International Journal of Robotics Research, 1999,

Volume 18, 650-668.

3. J. J. Leonard and H. F. Durrant-Whyte.
Simultaneous map building and localization for an
autonomous mobile robot, in Proceedings of the
IEEE/RSJ International Workshop on Intelligent
Robots and Systems, Osaka, Japan, 1991.

4. S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics, MIT Press, 2005.

5. J. Zhu, J. et al., Camera, LiDAR, and IMU Based
Multi-Sensor Fusion SLAM: A Survey, [EEE
Transactions on Instrumentation and Measurement,
2024, 73, 1-22.

6. X. Yue, Y. Zhang, J. Chen, J. Chen, X. Zhou, and
M. He. LiDAR-based SLAM for robotic mapping: state
of the art and new frontiers, Industrial Robot: the
international journal of robotics research and
application, 2024, 51, 196-205.

7. W. Chen, W. Chi, S. Ji, H. Ye, J. Liu, Y. Jia, J. Yu
and J. Cheng. A survey of autonomous robots and
multi-robot navigation: Perception, planning and
collaboration, Biomimetic Intelligence and Robotics,
2025, 5, 100203.

8. N. AbulJabal, M. Baziyad, R. Fareh, B. Brahmi, T.
Rabie, and M. Bettayeb. A Comprehensive Study of
Recent Path-Planning Techniques in Dynamic
Environments for Autonomous Robots, Sensors, 2024,
24, 8089.

9. P. Chen, H. Liu and Z. Qiao. A review of research
on SLAM technology based on the fusion of LiDAR
and vision, Sensors, 2025, 25, 1447.

10.Y. Bai, Z. Wang, and H. Xu. Path planning for
mobile robots based on A* algorithm, Journal of
Robotics and Automation, 2017, 34, 169-177.

11. K. Cai, C. Wang, J. Cheng, C. W. De Silva, and M.
Q.-H. Meng. Mobile Robot Path Planning in Dynamic
Environments: A Survey, arXiv, 2021.

12. K. Trejos, L. Rincon, M. Bolafios, J. Fallas and
L. Marin. 2D SLAM algorithms characterization,
calibration, and comparison considering pose error,
map accuracy as well as CPU and memory usage,
Sensors, 2022, 22, 6903.

13. F. G. Sayyad and D. Salunke. Autonomous mobile
robot base: cost effective solution for ROS-based
navigation, in Proceedings of the Advances in Robotics
(AIR) Conference, New York, NY, USA, 2023.

14.Z. Wang, H. Tu, S.Chan, C. Huang and Y. Zhao.
Vision-based initial localization of AGV and path
planning with PO-JPS algorithm, Egyptian Informatics
Journal, 2024, 27, 100527.

15.W. Xu, Y. Cai, D. He, J. Lin and F. Zhang.
FAST-LIO2: Fast Direct LiDAR-Inertial Odometry,
IEEE Transactions on Robotics, 2022, 38,2053-2073.

16. Y. Huy, F. Xie, J. Yang, J. Zhao, Q. Mao, F. Zhao, and
X. Liu. Efficient Path Planning Algorithm Based on
Laser SLAM and an Optimized Visibility Graph for
Robots, Remote Sensing, 2024, 16, 2938.

17.J.Sun, J.Zhao, X.Hu, H.Gao and J. Yu.
Autonomous Navigation System of Indoor Mobile

13

Robots Using 2D LiDAR, Mathematics, 2023, 11,
1455.

18. H. Hu, L. Sun and H. Xu. Research on SLAM path
planning of ROS robot based on LiDAR, in Highlights
in Science, Engineering and Technology, 2022, 24,

179-181.

19.J. M. Santos, D. Portugal and R. P. Rocha. An
Evaluation of 2D SLAM Techniques Available in
Robot Operating System, in [EEE Int. Symp. Safety,
Security, and Rescue Robotics (SSRR), 2013.

14

