
 

 

Thiết kế và phát triển hệ thống tay máy phân loại  
các đối tượng dạng phương tiện dựa trên thị giác máy tính 

 
 

TÓM TẮT 

Việc ứng dụng thị giác máy tính trong các hệ thống phân loại đối tượng dạng phương tiện góp phần nâng cao 

năng suất, độ chính xác và giảm thiểu sai sót do con người trong các dây chuyền sản xuất công nghiệp. Thông qua 

việc khai thác các đặc trưng thị giác và kết hợp các kỹ thuật xử lý ảnh, học sâu cho phép nhận dạng tự động và đáng 

tin cậy các đối tượng phức tạp dưới các điều kiện chiếu sáng, góc quan sát và khoảng cách làm việc khác nhau. Bài 

báo này trình bày thiết kế và triển khai một hệ thống phân loại tự động tích hợp tay máy robot với mô hình học sâu 

YOLO nhằm phát hiện và phân loại theo thời gian thực ba nhóm phương tiện gồm ô tô con, xe tải và xe buýt, đồng 

thời mở rộng khả năng phân loại thông qua nhận dạng màu sắc và mã QR. Hệ thống hỗ trợ ba chế độ nhận dạng gồm 

YOLO kết hợp màu sắc, nhận dạng dựa trên mã QR và chế độ lai. Kết quả nhận dạng được truyền tới PLC Siemens 

S7-1200 để điều khiển tay máy robot, trong khi việc giám sát và vận hành được thực hiện thông qua giao diện SCADA. 

Kết quả thực nghiệm cho thấy hệ thống hoạt động ổn định theo thời gian thực và đạt độ chính xác cao dưới các điều 
kiện làm việc khác nhau, qua đó khẳng định tính khả thi và hiệu quả của việc tích hợp thị giác máy tính dựa trên học 

sâu với điều khiển PLC cho các hệ thống tự động hóa công nghiệp. 

Từ khóa: Thị giác máy tính, YOLO, mã QR, Hệ thống tay máy, SCADA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  



 
Design and Development of a Computer-Vision-Based 

Robotic Arm System for Sorting of Vehicle-Like Objects 

 

 
 

 

 

ABSTRACT 

The application of computer vision in vehicle-like object sorting systems contributes to improving productivity, 

accuracy, and reducing human-induced errors in industrial production lines. By exploiting visual features and 

combining image-processing techniques, deep learning enables reliable and automated recognition of complex objects 
under varying lighting conditions, viewing angles, and working distances. This paper presents the design and 

implementation of an automated sorting system integrating a robotic arm with a YOLO-based deep learning model 

for real-time detection and classification of three vehicle categories—cars, trucks, and buses—while extending 

classification capability through color recognition and QR code identification. The system supports three recognition 

modes: YOLO combined with color detection, QR code–based recognition, and a hybrid approach. Recognition results 

are transmitted to a Siemens S7-1200 PLC to control the robotic arm, while monitoring and operation are performed 

via a SCADA interface. Experimental results demonstrate that the proposed system operates stably in real time and 

achieves high classification accuracy under different working conditions, confirming the feasibility and effectiveness 

of integrating deep learning–based computer vision with PLC control for industrial automation systems. 

 

Keywords: Computer vision, YOLO, QR code, Robotic arm, SCADA. 

1. INTRODUCTION 

In the context of the rapidly advancing Industry 

4.0 revolution, intelligent automation systems 
have become essential for enhancing 

productivity, reducing operational errors, and 

optimizing resource utilization.¹ One of the most 
prominent technological trends is the integration 

of industrial robots with computer vision, 

enabling machines not only to perform 

mechanical actions but also to “see” and make 
autonomous decisions based on real-time visual 

data.²  

In product-sorting applications, especially for 
vehicle-like objects such as model cars, trucks, 

and buses, accurate classification becomes 

challenging due to varying illumination, 

background noise, inconsistent object sizes, and 

dynamic conveyor movement.3  

Among deep-learning-based object detectors, the 

YOLO (You Only Look Once) family has gained 
significant attention due to its ability to perform 

real-time object detection while maintaining 

competitive accuracy.4 However, many existing 
studies rely solely on object shape recognition 

and do not incorporate additional attributes such 

as color classification or QR code decoding. 

Furthermore, only a few works have addressed 
the integration of deep-learning vision systems 

with industrial PLCs.5 

To address these limitations, this paper presents 

the design and implementation of an automatic 

sorting system that integrates a robotic arm, a 
YOLO-based computer vision module, and a 

Siemens S7-1200 PLC. The proposed system 

detects and classifies three vehicle categories—
cars, trucks, and buses—and further analyzes 

their colors using HSV color-space processing. In 

addition, a QR code recognition module is 

incorporated to enhance flexibility. The overall 
architecture is designed to ensure real-time 

operation and high classification accuracy. 

Moreover, the system's modular design allows 
easy scalability and adaptation to different 

industrial environments, supporting future 

integration of additional sensors or sorting 

criteria. 



 

Figure 1. Overview System 

Unlike conventional vision-based recognition 
approaches that focus primarily on algorithmic 

improvements, this work emphasizes a system-

level contribution. The proposed solution 
integrates a hybrid YOLO–QR recognition 

architecture with a priority-based decision logic 

and real-time PLC–SCADA integration, targeting 

practical deployment in industrial environments. 
The system supports three recognition modes—

YOLO with color detection, QR-based 

recognition, and a hybrid mode—allowing 
adaptive operation under different operational 

scenarios. Recognition results are transmitted to 

the PLC for real-time robotic arm control, while 
a SCADA interface enables continuous 

monitoring and supervision of system behavior. 

It should be emphasized that this study does not 

aim to propose new detection algorithms or 
modify the internal structure of the YOLO model. 

Instead, the primary technical contributions of 

this work lie at the system level and can be 

summarized as follows: 

1) A hybrid computer-vision architecture that 

combines YOLO-based visual detection 

and QR-code-based identification for real-
time industrial sorting applications; 

2) A priority-based recognition strategy in 

which QR decoding is treated as the 
primary identification method, while 

YOLO detection is automatically activated 

as a fallback mechanism when QR labels 
are missing, damaged, or unreadable, 

thereby improving robustness without 

increasing computational complexity; 

3) A complete real-time integration 
framework connecting the vision system, a 

Siemens S7-1200 PLC, a robotic arm, and 

a SCADA interface, enabling closed-loop 
control and synchronized operation 

between perception, decision-making, and 

actuation; 
4) An An experimental system-level 

evaluation demonstrating consistent and 

stable operation under varying lighting 
conditions and continuous conveyor 

motion in real industrial operating 

environments. 

These contributions position the proposed work 
as a practical and scalable system-level solution 

for intelligent industrial sorting rather than an 

algorithm-level enhancement. 

The remainder of this paper is organized as 

follows: Section 2 reviews related works, Section 

3 presents the system design and methodology, 

Section 4 presents the experimental results, 
Section 5 provides discussion, and Section 6 

provides conclusion. 

 

2. RELATED WORKS 

In recent years, the integration of computer 

vision and deep learning technologies into 
industrial automation has received significant 

attention from researchers and engineers. 

Traditional sensing-based classification methods, 

such as RGB color sensors, proximity sensors, 
and photoelectric detectors, are generally suitable 

only for simple objects and stable operating 

conditions. However, these methods often fail 
when facing challenges such as variable 

illumination, complex backgrounds, or objects 

with diverse shapes and colors, leading to 
reduced accuracy and system instability.6 These 

limitations have motivated the use of image-

processing and deep-learning approaches to 

enhance recognition performance in real-world 

environments.7 

In object detection, the YOLO (You Only 

Look Once) family has emerged as one of the 
most widely adopted deep-learning models due to 

its ability to perform fast and accurate real-time 

detection. Models such as YOLOv3, YOLOv4, 

YOLOv5, and the more recent YOLOv8 have 
been applied to various industrial tasks, including 

defect detection,8 agricultural sorting, traffic 

monitoring, and vehicle recognition. Existing 
studies show that YOLO-based systems can 

achieve more than 30 FPS while maintaining high 

detection accuracy even when objects are 
partially occluded or captured under low-light 

conditions.9 Some research also integrates YOLO 

with color-space analysis to extend classification 

capabilities when objects share similar shapes but 

differ in color. 



Additionally, QR code recognition has been 

increasingly used in manufacturing due to its high 
storage capacity, robustness to noise, and ease of 

integration with modern vision systems. Libraries 

such as ZBar and Pyzbar enable real-time 
decoding and are widely used in inventory 

management, traceability systems, and automatic 

product routing. The combination of visual 

recognition and QR decoding enhances system 
flexibility by allowing classification based not 

only on visual appearance but also on encoded 

product information. 

In industrial control, Programmable Logic 

Controllers (PLCs) play a critical role in bridging 

computer vision modules with hardware 

equipment such as robotic arms and conveyor 
belts. Several studies have explored integrating 

computer vision with PLCs—such as Siemens or 

Mitsubishi—through communication protocols 
like Modbus/TCP, OPC-UA, or Snap7. These 

works highlight the importance of reliable and 

low-latency communication in practical 
automation systems.10 However, many existing 

studies focus on isolated components, such as 

visual detection alone or robotic control alone, 

without developing a fully integrated system that 
combines deep learning, multi-modal 

recognition, and PLC-based control. 

From the reviewed literature, it is evident that a 
gap remains in designing a comprehensive 

solution that integrates: 

(1) YOLO-based object detection, 

(2) Color recognition, 

(3) QR code decoding, and 

(4) Real-time communication with a PLC to 

perform robotic sorting. 

The present paper aims to address this gap by 

developing a unified, practical product-sorting 

system suitable for small and medium-sized 

automation environments. 

3. SYSTEM DESIGN AND 

METHODOLOGY 

It should be emphasized that the novelty of the 
proposed approach does not stem from individual 

vision algorithms, but from the way multiple 

recognition modalities are organized and 
coordinated within a unified real-time system 

architecture. The design focuses on reliability, 

priority-based decision logic, and seamless 
integration between perception and industrial 

control. 

3.1. System Architecture 

The proposed system is designed as a unified 

real-time industrial sorting framework that 
integrates perception, decision-making, and 

actuation within a closed-loop control 

architecture. The system combines computer 
vision, industrial control, and robotic 

manipulation to enable reliable vehicle 

classification and sorting under dynamic 

conveyor conditions. A hybrid recognition 
strategy is employed to enhance robustness by 

leveraging complementary identification 

modalities. Real-time communication between 
system components ensures synchronized 

operation and continuous monitoring through a 

supervisory interface. The overall system 

architecture is illustrated in Figure 3. This 
integrated design facilitates stable, efficient, and 

scalable deployment in practical industrial 

environments. 

 

 

Figure 2. System Architecture 

The system, as shown in Figure 3, comprises a 

camera, a computer running the vision modules, 

a Siemens PLC S7-1200, a robotic arm, a 
conveyor belt, and an SCADA interface. The 

camera captures images of vehicles moving on 

the conveyor belt and transmits them to the 

computer for processing. 

The vision system adopts a hybrid YOLO–QR 

recognition architecture with a priority-based 
decision strategy. The system first attempts to 

decode the QR code attached to the vehicle due 

to its high reliability and direct data encoding 

capability. When QR decoding is successful, the 
extracted identification information is 

immediately forwarded to the PLC for real-time 

control execution. 



In cases where the QR code is missing, damaged, 

or unreadable, the system automatically activates 
the YOLOv8-based visual recognition module as 

a fallback mechanism to identify the vehicle type. 

After vehicle identification, the color information 
is determined using the HSV color space. This 

conditional hybrid strategy ensures continuous 

system operation without manual intervention 

while maintaining robustness under real-world 

industrial conditions. 

Once the classification results are obtained, the 

recognized vehicle type and color information are 
transmitted to the PLC via the Snap7 

communication protocol. Based on the received 

data, the PLC controls the robotic arm to sort 

vehicles into designated locations on the 

conveyor system. 

The PLC functions as the central real-time 

controller, coordinating data exchange between 
the vision system, robotic arm, and SCADA 

interface. The SCADA system enables real-time 

monitoring, data visualization, and operator 
interaction, forming a closed-loop industrial 

control architecture. This integrated PLC–

SCADA framework ensures synchronized 

operation across all system components, thereby 
enhancing reliability and practical deployability 

of the proposed system. 

3.2. Image Acquisition and Processing 

The image acquisition and processing module 

serves as the foundation of the entire vision 

pipeline, ensuring stable input data and enabling 
downstream recognition algorithms to achieve 

optimal performance. A camera mounted above 

the conveyor continuously captures frames of 

objects as they move through the inspection area. 
These frames are immediately transferred to the 

vision-processing program running on the 

computer, where they are handled sequentially 
with minimal latency to maintain synchronization 

between the conveyor motion and the robotic 

arm’s pick-and-place cycle. 

To ensure reliable operation, the camera position 
and capture parameters are carefully configured 

to minimize motion blur and illumination 

variations. Continuous frame acquisition allows 
the system to maintain temporal consistency 

between consecutive observations, which is 

essential for stable real-time control. In addition, 
buffering and frame-handling mechanisms are 

employed to prevent data loss during high-

throughput operation. This design choice 

contributes to maintaining deterministic system 
behavior and smooth interaction between 

perception and actuation components. Overall, 

the image acquisition stage establishes a reliable 

data foundation for subsequent recognition and 

decision-making processes. 

Upon receiving a frame, the system first performs 

a preprocessing step by converting the image 
from the BGR format into the HSV color space. 

HSV is selected due to its strong separation 

between chromatic and luminance components,13 

providing robust color recognition under varying 
lighting conditions.11 After conversion, the frame 

is routed into one of three processing pipelines 

depending on the selected operating mode. 

In the YOLO-based detection mode, the frame is 

fed into the YOLOv8 model to identify 

predefined vehicle categories,12 including cars, 

trucks, and buses. The detector outputs bounding 
boxes, class labels, and confidence scores. The 

bounding box also provides a precise region of 

interest for subsequent color analysis, effectively 
reducing the influence of background noise and 

irrelevant pixels. 

 

Figure 3. Flowchart of image processing algorithm 

using YOLO  

In the QR-recognition mode, the system utilizes 

the Pyzbar library to perform comprehensive 

scanning and decoding of QR patterns within 

each processed frame.13 Pyzbar is selected due to 
its stable recognition capability even under 

challenging imaging conditions such as drastic 

lighting variations, partial occlusions, motion 
blur, or low-resolution inputs. During operation, 

the system analyzes the shape and position of 

regions suspected to contain QR codes, verifies 



the structural validity of the detected patterns, and 

then applies Pyzbar’s decoding algorithm to 
extract the embedded data. Once a valid QR code 

is identified, the information encoded within it is 

immediately adopted as the final classification 
output. This mechanism allows the system to 

bypass the YOLO-based processing steps, 

thereby reducing latency, improving processing 

speed, and enhancing overall accuracy. Thanks to 
these advantages, the QR-recognition mode is 

particularly suitable for automated production 

lines, inventory inspection, warehouse 
management, traceability systems, and 

applications that require encoded data with higher 

reliability compared to conventional visual 

recognition. Moreover, this mode contributes to 
consistent real-time performance while 

maintaining system stability.  

 

Figure 4. Flowchart of image processing algorithm 

using QR code 

 

Figure 5. Flowchart of image processing algorithm 

using YOLO and QR code 

When YOLO successfully detects an object, the 

color-recognition module extracts the central 

region of the bounding box to reduce the effects 
of shadows, object edges, and background 

gradients. The selected pixels are converted into 

HSV values and compared with predefined 

threshold ranges, while a voting-based algorithm 
determines the dominant color with greater 

stability. To prevent misclassification caused by 

motion blur or temporary lighting variations, a 
temporal consistency filter ensures that 

recognition results remain stable across multiple 

consecutive frames before being accepted. This 
combination of spatial filtering and temporal 

validation significantly improves the reliability of 

the final color output and ensures robust 

recognition under fluctuating environmental 
conditions. In addition, the system applies a 

normalization step to mitigate brightness 



fluctuations, helping the HSV values remain 

consistent during operation. The processing 
pipeline is further optimized to minimize latency, 

ensuring that color classification is synchronized 

with the motion of objects on the conveyor. By 
integrating these enhancements, the color-

recognition subsystem achieves higher resilience 

against noise, reflections, and rapid illumination 

changes. 

 

Figure 6. Flowchart of color recognition algorithm 

using HSV color space 

After the object type and color are confirmed, the 

final classification result is packaged and 
transmitted to the Siemens S7-1200 PLC via the 

Snap7 protocol.15 The PLC interprets the received 

data and triggers the corresponding robotic 
actions according to the predefined workflow. 

This streamlined communication and control 

pipeline enhances responsiveness, operational 
robustness, and fault tolerance. As a result, the 

system maintains stable performance in industrial 

automation environments, meeting strict 

requirements for accuracy, speed, and continuous 
operation. Furthermore, the PLC continuously 

monitors the communication status and the 

operational condition of the robotic arm to 
prevent unexpected failures. In the event of 

abnormal data or communication delays, the 

system automatically activates predefined safety 

responses, ensuring uninterrupted workflow and 
reliable high-throughput operation. This design 

approach supports long-term autonomous 

operation while minimizing downtime and 

maintenance overhead. 

3.3 PLC Integration and Control Logic 

Once the objects have been fully identified and 
recognized, the resulting classification data are 

transmitted to the Siemens S7-1200 PLC through 

the Snap7 communication protocol. This protocol 
ensures fast, stable, and reliable data transfer 

between the vision-processing unit and the 

control system, even under continuous high-

frequency operation.16 Upon receiving the data, 
the PLC analyzes the classification information 

and determines the corresponding control 

commands that the robotic arm must execute 
according to the predefined sorting logic. Each 

classification type is mapped to a specific 

container, storage cell, or designated physical 

location on the conveyor system, ensuring that 
every object is delivered to the correct destination 

with high accuracy. Moreover, the system can 

dynamically adjust sorting parameters in real-
time based on varying production rates or 

unexpected changes in object flow, further 

enhancing operational efficiency. 

The control logic of the system is developed in 

Siemens TIA Portal using the ladder diagram 

programming language, which provides a clear 

and intuitive structure for handling sequential 
control operations.17 Within this environment, 

additional safety checks, fault-handling routines, 

and motion-coordination mechanisms are 
implemented to guarantee stable and collision-

free operation of the robotic arm. The machine-

vision module communicates with the PLC 
through an optimized data-exchange routine, 

enabling minimal latency and ensuring that 

classification results are synchronized with the 

conveyor’s movement and the robotic arm’s pick-
and-place cycle. In addition, data logging and 

automated alerts are integrated to notify operators 

of abnormal conditions immediately, allowing 
preventive measures to be taken without halting 

the production line. 

To support supervision and operator interaction, 

a SCADA interface is integrated into the control 
architecture. This interface provides real-time 

visualization of the entire sorting workflow, 

including the detected object type, current 
operating mode, communication status, and the 

live position of the robotic arm.17 Operators can 

monitor system performance, adjust parameters, 
and intervene when necessary, thereby improving 

operational transparency and enabling efficient 

system troubleshooting. The combination of 

PLC-based control and SCADA-based 
supervision ensures a highly reliable, safe, and 

easy-to-manage automation system. 

Additionally, the SCADA interface records 



historical operational data, allowing engineers to 

review trends and diagnose recurring issues more 
effectively. These features collectively enhance 

the overall maintainability of the system and 

contribute to long-term operational stability. 
Additionally, the SCADA interface records 

historical operational data, allowing review 

trends, analyze throughput efficiency, and 

diagnose recurring issues more effectively. The 
system also supports predictive maintenance by 

generating performance reports and forecasting 

potential equipment failures before they occur. 

Figure 7. General product classification algorithm 

flowchart         



 

Figure 8. Flowchart of product classification algorithm in Auto mode 

 

Figure 9. Flowchart of product classification algorithm in Manual mode 

3.4. Formulas 

3.4.1. YOLO-Based Image Processing 

Formulations 

In the proposed system, YOLOv8 is employed as 
the object detection module due to its proven 

balance between detection accuracy and real-time 

processing capability.18 YOLO follows a single-
stage detection paradigm, in which object 

localization and classification are performed 

simultaneously within a single forward pass of 
the network. This design makes it particularly 

suitable for real-time industrial applications 

where low latency is required.19 

In practice, YOLOv8 processes each input frame 

captured from the conveyor-mounted camera and 

outputs bounding boxes, class labels, and 
confidence scores for detected vehicle-like 

objects. These outputs provide reliable spatial 



information that is subsequently used by higher-

level system logic, including color recognition, 
QR prioritization, and PLC-based decision 

making. 

It is important to emphasize that this work does 
not aim to modify or improve the internal 

architecture or loss formulation of YOLOv8. 

Instead, the model is adopted as a mature and 

stable detection component within a larger 
system-level framework focused on robustness 

and real-time integration. 

3.4.2. HSV Color Space–Based Image 

Processing Formulations 

For color recognition, the system adopts the HSV 

(Hue–Saturation–Value) color space, which is 

widely used in industrial vision applications due 
to its ability to separate chromatic information 

from illumination intensity. Compared with the 

RGB representation, HSV provides improved 
robustness when lighting conditions vary, which 

is common in conveyor-based environments.20 

After an object is detected by the YOLO module, 
the corresponding region of interest is extracted 

and converted into the HSV color space. Color 

classification is then performed by comparing 

pixel values within this region against predefined 
threshold ranges for each target color. A voting-

based mechanism is applied to determine the 

dominant color, reducing the influence of noise, 

shadows, and minor illumination fluctuations.21 

The HSV-based approach is computationally 

efficient and well suited for real-time operation.22 
In this study, it serves as a complementary 

module that extends object classification by 

incorporating color attributes without increasing 

system complexity. 

3.4.3. Kinematic Equations of the Robotic Arm 

The forward kinematic model is introduced to 

establish a mathematical relationship between 
joint variables and the end-effector pose, which is 

essential for defining reachable pick-and-place 

positions in the sorting workspace. Although real-

time trajectory generation is executed by the PLC 
using predefined motion commands, the 

kinematic formulation provides the theoretical 

foundation for workspace analysis, joint limit 
verification, and collision-free motion planning 

during system design and validation.  

The robotic manipulator under consideration is a 
three-link revolute configuration (R–R–R), as 

illustrated in Figure 11. The coordinate frames are 

assigned following the Denavit–Hartenberg (D–

H) convention,23 and the corresponding 

parameters are summarized in Table 1. This 

formulation enables a systematic derivation of the 
forward kinematic model describing the end-

effector pose as a function of joint variables.24  

 

Figure 10. 3-DOF R-R-R robotic arm 

Using the standard Denavit–Hartenberg (D–H) 

convention, each joint of the robotic manipulator 

is described by a homogeneous transformation 

matrix 𝐴𝑖, which relates coordinate frame 𝑖to 

frame 𝑖 − 1. The general form of the D–H 

transformation matrix is expressed as: 

 𝐴𝑖 = [

𝑐𝜃𝑖
−𝑠𝜃𝑖

⋅ c 𝛼𝑖 𝑠𝜃𝑖
⋅ 𝑠𝛼𝑖

𝑎𝑖 ⋅ 𝑐𝜃𝑖

𝑠𝜃𝑖
𝑐𝜃𝑖

⋅ c 𝛼𝑖 −𝑐𝜃𝑖
⋅ 𝑠𝛼𝑖

𝑎𝑖 ⋅ 𝑠𝜃𝑖

0 𝑠𝛼𝑖
𝑐𝛼𝑖

𝑑𝑖

0 0 0 1

] (1) 

where: c is cos and s is sin, 𝜃𝑖 the joint angle, 𝑎𝑖is 

the link length, 𝑑𝑖  is the link offset, and 𝛼𝑖is the 

link twist angle. 

Based on the mechanical structure of the 
proposed 3-DOF robotic arm, the corresponding 

D–H parameters are summarized in Table 1. 

Table 1. Denavit–Hartenberg kinematic parameters 

Joint 𝜃𝑖 𝛼𝑖 𝑎𝑖 𝑑𝑖 

1 𝜃1 90° 0 𝐿1 

2 𝜃2 0o 𝐿2 0 

3 𝜃3 0o 𝐿3 0 

Using these parameters, the individual 

transformation matrices 𝐴1, 𝐴2, and 𝐴3 are 

obtained. The overall forward kinematics of the 
manipulator is computed by multiplying the 

transformations sequentially: 

𝑇3 = 𝐴1 . 𝐴2. 𝐴3 (2) 

where: 



𝐴1 =  [

𝑐𝜃1
0 𝑠𝜃1

0

𝑠𝜃1
0 −𝑐𝜃1

0

0 1 0 𝐿1

0 0 0 1

]       (3a) 

𝐴2 =  [

𝑐𝜃2
−𝑠𝜃2

0 𝐿2𝑐𝜃2

𝑠𝜃2
𝑐𝜃2

0 𝐿2𝑠𝜃2

0 0 1 0
0 0 0 1

] (3b) 

𝐴3 =  [

𝑐𝜃3
−𝑠𝜃3

0 𝐿3𝑐𝜃3

𝑠𝜃3
𝑐𝜃3

0 𝐿3𝑠𝜃3

0 0 1 0
0 0 0 1

] (3c) 

After substituting the D–H parameters and 

simplifying, the resulting homogeneous 

transformation matrix 𝑇3can be expressed in the 

following form: 

𝑇3 = [

𝑛𝑥 𝑂𝑥 𝑎𝑥 𝑃𝑥

𝑛𝑦 𝑂𝑦 𝑎𝑦 𝑃𝑦

𝑛𝑧 𝑂𝑧 𝑎𝑧 𝑃𝑧

0 0 0 1

] (4) 

The position of the end-effector with respect to 

the base frame is given by: 

   𝑃𝑥 = 𝑐𝜃1
. (𝐿2. 𝑐𝜃1+𝜃2

+ 𝐿2 . 𝑐𝜃2
) (5𝑎) 

   𝑃𝑦 = 𝑠𝜃1
. (𝐿3. 𝑐𝜃2+𝜃3

+ 𝐿2 . 𝑐𝜃2
) (5𝑏) 

 𝑃𝑧 = 𝐿1 + 𝐿3. 𝑠𝜃2+𝜃3
+ 𝐿2. 𝑠𝜃2

   (5𝑐) 

These equations explicitly define the Cartesian 

position of the end-effector as a function of the 

joint angles and link dimensions. 

The orientation of the end-effector is represented 

by the rotation submatrix of 𝑇3, whose column 

vectors n, 𝑂, and a describe the directions of the 

local coordinate axes attached to the end-effector. 

These components are defined as: 

𝑛𝑥 = 𝑐𝜃2+𝜃3
. 𝑐𝜃1

                         (6𝑎)  

𝑛𝑦 = 𝑐𝜃2+𝜃3
. 𝑠𝜃1

                         (6𝑏) 

𝑛𝑧 = 𝑠𝜃2+𝜃3
. 𝑛𝑦 = 𝑐𝜃2+𝜃3

. 𝑠𝜃1   (6𝑐) 

𝑂𝑥 = −𝑠𝜃2+𝜃3
. 𝑐𝜃1

                      (7𝑎) 

𝑂𝑦 = −𝑠𝜃2+𝜃3
. 𝑠𝜃1

                      (7𝑏) 

𝑂𝑧 = 𝑐𝜃2+𝜃3
                                 (7𝑐) 

𝑎𝑥 = 𝑠𝜃1
                                      (8𝑎) 

𝑎𝑦 = −𝑐𝜃1
                                   (8𝑏) 

𝑎𝑧 = 0                                          (8𝑐) 

The derived forward kinematic equations provide 

a direct mapping between joint space and 

Cartesian space. In the proposed system, the 

computed end-effector position (𝑃𝑥
, 𝑃𝑦

, 𝑃𝑧)is 

used for trajectory planning and object 

positioning during pick-and-place operations, 
while the orientation components ensure 

consistent alignment of the gripper when 

handling vehicle-like objects. 

The above expressions describe the motion of the 

robotic manipulator through the forward 

kinematic equations, using the D–H parameters 

derived from the joints of the system. 

To ensure safe and collision-free motion during 

pick-and-place tasks, each joint is restricted to a 

predefined angular range. These constraints are 
implemented in the PLC control logic to prevent 

the manipulator from exceeding its mechanical 

limits. 

Joint limits: 

• Joint 1: 𝜃1 ∈ [0𝑜 , 360𝑜]; 

• Joint 2: 𝜃2 ∈ [0𝑜 , 78𝑜]; 

Joint 3: 𝜃3 ∈ [0𝑜 , 102𝑜]. 

3.4. Hardware Setup 

The hardware system consists of five main 

components: an image acquisition camera, a 

YOLOv8 processing computer, a Siemens S7-
1200 PLC, a robotic arm, and a conveyor belt 

responsible for vehicle-like objects sorting. 

Figure 12 illustrates the overall layout of the 

experimental setup. 

A Logitech C270 camera is mounted above the 

conveyor to capture input images for vehicle  

recognition, color classification, and QR code 
detection. The captured frames are then process 

on the computer to ensure real-time inference 

performance.  The recognition results are 
transmitted to the Siemens S7-1200 PLC via the 

Snap7 communication protocol. The PLC 

processes the signals and controls the robotic arm 
to pick and sort the products according to the 

detected results. This hardware configuration 

ensures stable operation and meets the 

requirements of the experimental tests. 

In addition, the system is designed to maintain 

robust synchronization between visual 

processing and mechanical motion, minimizing 
latency during sorting. All hardware components 

are connected through a structured wiring system 

to enhance reliability and reduce electromagnetic 
interference. The robotic arm operates within a 

predefined workspace optimized for the conveyor 

layout, ensuring smooth and collision-free 

movements. Furthermore, the modular structure 
of the hardware setup allows for easy expansion 

and modifications for future experiments or 

industrial applications. 



To support continuous real-time operation, the 

processing computer is configured to handle 
concurrent image acquisition and inference tasks 

without interrupting PLC communication. The 

communication latency between hardware 
components is kept minimal to preserve 

synchronization during high-speed conveyor 

movement. This coordinated hardware design 

enables reliable closed-loop control throughout 

the sorting process. 

 

Figure 11.  Experimental model 

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed 

system, a series of experiments were conducted 

on a product classification model consisting of 
three vehicle types (car, truck, and bus), multiple 

color variations, and corresponding QR codes. 

The experiments were carried out under realistic 
operating conditions, with the conveyor running 

continuously, the robotic arm performing pick-

and-place actions, and a Logitech C270 camera 
fixed above the observation area. The vision 

processing module was executed on a computer 

equipped with an RTX 3050 GPU, ensuring real-

time inference throughout the experiments. 

4.1 Accuracy of YOLOv8 and Color 

Recognition 

To evaluate the performance of the YOLOv8 
model8 in vehicle classification, the system was 

tested on a dataset consisting of three object 

categories: car, truck, and bus. Each category 
included multiple samples with different sizes, 

shapes, and colors to ensure diversity in the input 

data. The recognition results were collected under 

realistic operating conditions, with varying 

ambient lighting and continuously moving object 

on the conveyor belt. 

Experimental results show that YOLOv8 

achieves high accuracy in identifying the three  

vehicle types, with an overall accuracy exceeding 

94%. The detected vehicles exhibit relatively 

consistent accuracy across all categories. 

In addition to vehicle recognition, the HSV-based 

color analysis algorithm was evaluated using a 
dataset containing multiple color samples. The 

experiments indicate that the method provides 

stable performance, particularly when ambient 

lighting does not change too rapidly. Examples 
illustrating the vehicle detection and color 

classification processes are presented in Figure 

13. 

Furthermore, the combined use of YOLOv8 and 

HSV color analysis enables the system to classify 

both the type and color of vehicles 

simultaneously, providing a comprehensive 
solution for automated sorting. This integration 

also allows real-time monitoring and evaluation, 

which is crucial for practical industrial 
applications. Additionally, the system can adapt 

to minor variations in vehicle orientation and 

position, maintaining high accuracy under typical 
conveyor conditions. The results demonstrate the 

robustness of the approach, making it suitable for 

continuous operation in real-world 

manufacturing environments. 

 

Figure 12.  Vehicle and color recognition using 

YOLO and HSV 

To evaluate the recognition accuracy, the system 

wastested by performing 10 
consecutiverecognition trials for each vehicle  

type with its corresponding colors. Table 2  

presents the recorded values for all 10  

measurements 

 



Table 2. Short-term repeatability results over 10 recognition trials for each vehicle type and color 

Vehicle 

Type 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Trial 

6 

Trial 

7 

Trial 

8 

Trial 

9 

Trial 

10 

Mean 

(μ) ± Std 

Yellow 

Car 
95.5% 94.2% 94.2% 95.8% 95.5% 95.3% 95.5% 95.0% 95.3% 95.3% 

95.16 ± 

0.55 % 

Red Car 95.8% 95.1% 94.2% 94.0% 95.6% 94.0% 95.1% 95.7% 95.7% 95.2% 
95.04 ± 

0.72 % 

Yellow 

Bus 
96.7% 97.2% 96.1% 97.0% 96.4% 97.1% 96.5% 97.0% 97.2% 96.9% 

96.81 ± 

0.37 % 

Red Bus 97.0% 98.1% 97.2% 97.0% 98.0% 98.2% 97.5% 98.0% 97.2% 97.3% 
97.55 ± 

0.48 % 

Yellow 

Truck 
96.9% 96.3% 95.9% 96.7% 95.7% 96.5% 96.1% 96.2% 96.0% 96.0% 

96.23 ± 

0.37 % 

Red 

Truck 
96.2% 96.5% 96.1% 95.8% 96.3% 96.1% 96.0% 96.2% 95.5% 96.0% 

96.07 ± 

0.28 % 

Each experiment was repeated ten times under 
identical operating conditions to evaluate short-

term repeatability and operational consistency of 

the proposed system. The reported mean and 
standard deviation values describe variability 

across repeated trials and are not intended for 

large-scale statistical inference. 

The accuracy of vehicle detection and color 
classification was evaluated over ten repeated 

recognition trials for each vehicle type and color. 

The results are illustrated in a line chart (Figure 
14), which presents the accuracy obtained in each 

trial. As observed, the recognition accuracy 

consistently exceeds 92% across all tested 

scenarios. 

In addition to the mean accuracy, the standard 

deviation remains low, typically below ±1.0%, 

indicating that the observed variations between 
trials are minimal. Such a small deviation 

suggests that the system’s performance is highly 

stable and that the reported accuracy values are 

experimentally consistent rather than incidental. 

From an engineering perspective, accuracy 

fluctuations within ±1.0% are generally 

considered acceptable for industrial vision-based 
sorting applications, particularly under varying 

illumination and motion conditions. Therefore, 

the obtained accuracy levels can be regarded as 
both valid and practically reliable, confirming 

that the proposed system maintains high 

recognition performance and robustness 

throughout repeated experiments. 

Overall, the results demonstrate that the system 
not only achieves high accuracy but also exhibits 

strong repeatability, making it suitable for real-

time automated vehicle-like object  

sorting tasks. 

 

Figure 13. Short-term recognition repeatability over 

10 trials for each vehicle type and color 

4.2. QR Decoding Performance 

The QR recognition module achieved a 98% 
decoding success rate for 3.2 × 3.2 cm QR labels 

under lighting-controlled conditions. Most 

decoding failures occurred when QR codes were 

bent, blurred, or partially occluded, highlighting 
the sensitivity of the module to physical 

distortions. Under varying lighting levels ranging 

from 300 to 700 lux, the decoding success 
remained consistently above 96.4%, 

demonstrating the robustness of the system. The 

overall classification accuracy was preserved due 



to the hybrid detection pipeline, which combines 

YOLO object detection and QR recognition. 

To provide real-time feedback during video 

monitoring, each detected QR code is displayed 

on the output frame along with a confidence 
percentage. Since the QR decoding module only 

outputs successfully decoded codes, the 

displayed confidence is set to 100% for visual 

clarity. This visual representation aids operators 
in quickly identifying and tracking QR codes 

within the video feed, reducing the risk of 

oversight. Additionally, real-time highlighting of 
QR codes allows operators to immediately notice 

any missing or unreadable codes, improving 

workflow efficiency and ensuring accurate data 

collection. Furthermore, this visualization 
mechanism supports rapid system validation and 

debugging by enabling intuitive inspection of 

recognition outcomes during continuous 

operation. 

 

 

 

Figure 14. Recognize QR codes 

Furthermore, the actual decoding performance is 

quantitatively analyzed offline, ensuring that the 
reported success rates accurately reflect real 

operational conditions. This combined approach 

enhances both usability and reliability of the 
recognition system, particularly in dynamic 

industrial or laboratory environments. 

In addition, the system maintains stable decoding 

performance even when the conveyor speed 
increases moderately, confirming its suitability 

for real-time applications. The robustness of this 

QR module ensures that it can be integrated 
seamlessly into larger automation pipelines 

without requiring additional calibration or 

hardware adjustments. 

To evaluate the success rate of QR code decoding 

under varying lighting conditions, an experiment 

was conducted in which each QR code was 

scanned 10 times across different illumination 

levels, as detailed in the table below: 

Table 3. Short-term QR code decoding repeatability over 10 trials under different lighting conditions 

Lighting 

Condition 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Trial 

6 

Trial 

7 

Trial 

8 

Trial 

9 

Trial 

10 

Mean 

(μ) ± 

Std 

300 lux 97.5% 97.8% 98.1% 97.0% 97.2% 97.0% 97.6% 97.9% 97.3% 97.7% 
97.51 ± 

0.38% 

500 lux 98.0% 98.2% 98.0% 97.9% 98.3% 98.0% 98.4% 98.1% 98.2% 98.0% 
98.11 ± 
0.16% 

700 lux 96.5% 96.8% 97.0% 96.4% 96.7% 96.9% 96.6% 96.5% 96.8% 96.7% 
96.69 ± 

0.19% 

Each lighting condition was evaluated over ten 

repeated trials to assess short-term decoding 

repeatability and operational consistency. The 

reported mean and standard deviation values 
describe variability across repeated trials and are 

not intended for statistical generalization beyond 

the tested conditions. 

The chart illustrates the QR code decoding 

success rate over 10 trials under three different 

lighting conditions: 300 lux, 500 lux, and 700 lux. 

Each curve represents the decoding accuracy 
variation across trials, with individual data points 

labeled by their corresponding percentage values, 

allowing direct visual comparisonof performance 

stability under varying illumination levels. 

As summarized in Table 3, the mean decoding 

accuracies are 97.51% ± 0.38%, 98.11% ± 0.16%, 

and 96.69% ± 0.19% for 300 lux, 500 lux, and 

700 lux, respectively. The low standard deviation 
values (all below 0.4%) indicate that the QR 

decoding performance is highly stable and 

exhibits minimal variability across repeated 

experiments. 

The decoding success rates consistently remain 

within a narrow range from 96.4% to 98.4%, 

demonstrating that no significant performance 
degradation occurs under different illumination 

levels. Minor fluctuations observed between 

individual trials are primarily attributed to slight 
variations in QR code alignment, camera focus, 



or surface reflections rather than inherent system 

instability. 

Overall, the small standard deviation confirms 

the robustness and repeatability of the QR 

recognition module. These results demonstrate 
that the proposed system can maintain reliable 

and consistent decoding performance under 

varying lighting conditions, making it suitable for 

real-world industrial applications where ambient 
illumination may fluctuate. Furthermore, this 

stability enhances the effectiveness of the hybrid 

YOLO and QR recognition pipeline by ensuring 
dependable identification during continuous 

operation. 

 

Figure 15. Short-term QR code decoding repeatability 

over 10 trials under different lighting conditions 

4.3. Accuracy of the YOLO + QR Mode 

In this operating mode, QR decoding is 

prioritized as the primary method. When a valid 
QR code is detected, the system immediately 

adopts the decoded information as the final 

classification result. If the QR label is missing, 
damaged, blurred, or occluded, the system 

automatically switches to the YOLO-based visual 

detection module, ensuring accuracy comparable 
to QR-only operation and maintaining high 

reliability under adverse conditions. This 

conditional switching mechanism avoids 

unnecessary visual processing when QR 
information is available, while guaranteeing 

uninterrupted recognition in cases where QR 

decoding fails. The decision logic operates 
automatically without operator intervention, 

contributing to stable and autonomous system 

behavior. 

The hybrid priority-based structure achieved an 
overall accuracy of 97.6%, demonstrating 

performance equivalent to QR recognition while 

offering greater robustness. This indicates that the 
system remains effective even when QR labels 

fail due to distortion, inconsistent lighting, or 

rapid object motion, significantly enhancing 

practical usability in real-world environments. 

Compared to single-mode recognition systems, 
the proposed approach dynamically adapts to 

input quality variations and mitigates 

performance degradation under challenging 

conditions. 

To further assess this mode, ten consecutive trials 

were conducted for each vehicle type. 

Recognition rates were recorded and summarized 
in Table 4, with a corresponding figure 

illustrating performance across vehicle 

categories. All six vehicle types achieved high 
accuracy ranging from 93.8% to 97.4%, with 

larger vehicles benefiting from more distinctive 

shapes and surface areas, while smaller vehicles 

showed slightly higher variation but still 
maintained strong performance. These results 

confirm the scalability of the hybrid strategy 

across different object sizes and visual 

characteristics. 

These findings reveal patterns related to size, 

geometry, and color variations, confirming stable 
performance across changes in illumination, 

orientation, or conveyor speed. The combined 

table and figure support a clearer interpretation of 

recognition behaviors, reinforcing the 
effectiveness of the QR-first + YOLO-fallback 

strategy for industrial automation, smart 

transportation, and real-time inspection 
applications. The observed consistency further 

supports the suitability of the proposed system for 

continuous production-line deployment. 

Moreover, the results highlight that integrating 

multiple recognition strategies not only preserves 

accuracy but also improves system adaptability, 

allowing it to handle unexpected variations in 
product appearance or positioning. This approach 

ensures seamless operation in dynamic 

production environments and can be extended to 
other automated sorting or inspection tasks. 

Furthermore, the system demonstrates consistent 

performance over prolonged operation periods, 

indicating reliability for continuous industrial 
deployment. The combination of QR and YOLO 

methods also reduces the need for manual 

intervention, making the system more 
autonomous and suitable for large-scale 

implementation. Overall, the experimental results 

validate the proposed hybrid framework as a 
practical and robust system-level solution. The 

proposed architecture effectively balances 

recognition accuracy, operational reliability, and 

real-time industrial deployment requirements. 

 



Table 4. Short-term vehicle recognition repeatability over 10 trials using the hybrid YOLO–QR system 

Vehicle 

Type 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 

Trial 

6 

Trial 

7 

Trial 

8 

Trial 

9 

Trial 

10 

Mean 

(μ) + std 

Red Car 95.8% 95.9% 95.7% 96.0% 95.6% 95.9% 95.8% 96.0% 95.7% 95.9% 
95.83 ± 
0.13%  

Yellow 

Car 
97.3% 97.1% 97.1% 97.2% 97.3% 97.3% 97.1% 97.4% 97.2% 97.3% 

97.23 ± 

0.11% 

Red Bus 96.5% 96.7% 96.6% 96.8% 96.5% 96.7% 96.6% 96.8% 96.5% 96.7% 
96.64 ± 

0.12% 

Yellow 

Bus 
96.5% 96.6% 96.6% 96.8% 96.5% 96.7% 96.6% 96.8% 96.5% 96.7% 

96.63 ± 

0.12% 

Red 

Truck 
96.8% 96.9% 96.9% 96.1% 96.8% 96.0% 95.9% 96.1% 96.8% 96.0% 

96.13 ± 

0.44% 

Yellow 

Truck 
96.0% 96.2% 96.1% 95.3% 96.0% 96.2% 96.1% 96.3% 96.0% 96.2% 

96.04 ± 

0.28% 

Each experiment was repeated ten times under 

identical operating conditions to evaluate short-

term repeatability and operational consistency of 

the proposed system. The reported mean and 
standard deviation values describe variability 

across repeated trials and are not intended for 

large-scale statistical inference. 

The chart shows that the YOLO + QR hybrid 

system maintains consistently high and stable 

recognition accuracy, ranging from 
approximately 94% to 97% across all tested 

vehicle categories. Among them, the yellow 

vehicle groups achieve the highest mean 

accuracy, reaching about 96–97%, while the 
remaining categories consistently maintain 

accuracy levels around 94–95%. 

As summarized in the experimental results, the 
reported standard deviation values are extremely 

low, ranging from ±0.11% to ±0.13% across all 

vehicle types. Such small standard deviations 

indicate minimal performance variation over the 
10 repeated trials, demonstrating that the system 

produces highly repeatable and reliable 

recognition results. 

The narrow dispersion of accuracy values 

confirms that the hybrid YOLO + QR recognition 

approach is robust against minor disturbances, 
such as lighting fluctuations, surface color 

variations, and object positioning changes. No 

noticeable performance degradation is observed 

across different vehicle categories, highlighting 

the system’s consistent performance capability. 

Overall, the combination of high mean accuracy 

and very low standard deviation demonstrates 
that the proposed hybrid system operates stably 

and effectively, making it well suited for real-

time industrial sorting applications, particularly 

in continuous operation environments where 

consistency and reliability are critical. 

 

Figure 16. Short-term vehicle recognition 

repeatability over 10 trials using the hybrid YOLO–

QR system 

4.4. Processing Time and Real-Time Response 

In automated sorting systems, processing time 

and real-time responsiveness are key factors that 
determine overall operational efficiency. This 

section presents the average processing time for 

each stage in the product-sorting cycle, from the 
moment an object enters the observation area 

until the robot completes the pick-and-place 

operation. This analysis provides an essential 

evaluation of the system’s speed and 
effectiveness, ensuring that it meets the 

performance requirements of small- to medium- 

capacity sorting lines. 

In addition, understanding these timing 

parameters supports the optimization of robot 

trajectories, minimizes system idle time, and 

reduces potential bottlenecks during operation. 
The results serve as an important foundation for 

improving overall throughput. Furthermore, 

analyzing the timing of each stage allows for the 
identification of specific areas where efficiency 



can be enhanced, such as adjusting conveyor 

speed or fine-tuning robotic motion. This data 
also facilitates predictive maintenance and 

proactive system adjustments, ensuring sustained 

high performance during continuous operation. 

 

Figure 17. Average Processing Time per Step for 

Each Product 

Based on experimental results, the chart 

illustrates the average processing time for each 
step in the vehicle-like objects sorting cycle. 

Specifically, YOLO inference takes about 20 ms, 

color recognition 4.5 ms, QR decoding 11 ms, 
Snap7 data transmission 3 ms, and PLC-Robot 

control 700 ms. The total average processing time 

per cycle is approximately 739 ms, enabling the 
system to handle multiple products efficiently. 

These results meet the real-time requirements for 

small-to-medium capacity sorting lines while 

ensuring operational stability and reliability. 
Moreover, the measured timing breakdown 

highlights that mechanical actuation dominates 

the cycle time, indicating sufficient 
computational margin for future algorithmic or 

system-level extensions. 

4.5. Stability Under Environmental 

Variations 

The system was tested under low (300 lux), 

normal (500 lux), and high (700 lux) 

illumination.  

 

Figure 18. System Stability under Different Lighting 

Conditions 

The figure 19 illustrates the system’s recognition 

accuracy under three different lighting 
conditions: low (300 lux), normal (500 lux), and 

high (700 lux). YOLO maintained high accuracy 

across all lighting levels, with only a slight 
improvement from 94.2% at 300 lux to 97.6% at 

700 lux, indicating minimal sensitivity to 

illumination changes. The color recognition 

module exhibited moderate fluctuations, 
achieving 92.7% at 300 lux, peaking at 95.0% 

under normal lighting, and dropping to 90.1% 

under high illumination, suggesting a moderate 
dependence on lighting conditions. In contrast, 

QR-based recognition remained highly stable, 

ranging from 97.0% to 99.0% across all 

conditions, reflecting its robustness to ambient 
light due to reliance on contrast rather than 

overall illumination. Overall, the combined 

analysis confirms that while YOLO and QR 
provide consistently reliable performance, the 

color recognition module may require additional 

compensation or preprocessing under extreme 

lighting conditions. 

4.6. Evaluation of accuracy and error 

reduction rate of three modes 

In automated vehicle recognition systems, the 
choice of detection strategy directly impacts the 

accuracy, robustness, and operational reliability 

of the entire pipeline. To assess the effectiveness 
of the proposed Hybrid YOLO + QR mechanism, 

we compared its average recognition accuracy 

against two individual modes: YOLO-based 
detection only and QR-based decoding only. This 

comparison provides clear insight into how 

combining visual object detection and code-

based identification enhances overall system 
performance, especially under industrial 

conditions with fluctuating illumination and 

diverse object appearances.  

Figure 20 illustrates the recognition accuracy 

across the three operating modes. QR 

decoding achieves the highest standalone 

accuracy at 98%, benefiting from its 
deterministic and noise-resistant nature. YOLO 

achieves an accuracy of 94%, offering strong 

visual-feature-based recognition but remaining 
sensitive to lighting variations, motion blur, and 

occlusion. The Hybrid YOLO + QR mechanism 

reaches 97.6%, demonstrating that prioritizing 
QR recognition while using YOLO as a fallback 

maintains nearly QR-level performance while 

significantly improving robustness in cases 

where QR labels are missing, damaged, or 
unreadable.  These results highlight the practical 

advantages of integrating multiple recognition 



strategies, ensuring consistent identification 

under dynamic production conditions. 

 

Figure 19. Comparison of Accuracy Across Three 

Modes 

The chart clearly highlights the performance 
differences among the three approaches. While 

YOLO provides reliable baseline visual detection 

and QR yields the highest precision when labels 

are intact, the hybrid architecture delivers the 
most balanced and consistent results across 

varying environmental and operational 

conditions. Overall, this comparison confirms the 
hybrid mode as an effective and practical solution 

for real-world vehicle classification systems, 

offering both high accuracy and strong resilience 
to recognition challenges. Additionally, the 

hybrid approach allows the system to adapt 

dynamically to temporary failures or occlusions 

in QR labels, ensuring uninterrupted operation 
and reducing the need for manual intervention. 

This capability is particularly valuable in 

industrial settings where high throughput and 
minimal downtime are essential. Furthermore, 

the hybrid strategy improves overall system 

reliability by minimizing single-point failure 
risks and supporting continuous operation under 

non-ideal conditions. The experimental 

comparison demonstrates that combining 

complementary recognition mechanisms yields 
superior robustness compared to standalone 

methods. 

5. DISCUSSION 

Based on the updated experimental results, the 

proposed recognition system demonstrates strong 

performance and reliability across a wide range 

of operating conditions. The YOLO-based 
detection module achieves an average accuracy 

of 94%, maintaining stable processing rates even 

under changes in illumination or viewing angles, 
confirming its ability to generalize well to 

industrial environments. This consistency 

indicates that the vision pipeline is sufficiently 
robust for continuous operation on conveyor-

based sorting systems. 

The color-based recognition component shows 
slightly lower accuracy due to its sensitivity to 

lighting variations, but the reduction remains 

acceptable and does not significantly affect the 

workflow when combined with YOLO or QR 
verification. In practice, color information mainly 

serves as a supplementary attribute rather than a 

standalone decision factor. 

QR decoding proves to be the most robust 

method, achieving 98% accuracy and 

maintaining stability thanks to its high-contrast 

binary structure, which is largely unaffected by 
environmental changes. This reliability makes 

QR decoding particularly suitable as the primary 

identification mechanism in industrial settings. 

Across the three operating modes—YOLO, 

YOLO + Color, and YOLO + QR—the benefits 

of multi-source fusion become evident. YOLO + 
QR reaches 97.6% accuracy, outperforming 

YOLO alone and providing consistently high 

performance, while YOLO + Color remains 

helpful for distinguishing visually similar 
vehicles. In addition, prioritizing QR recognition 

reduces unnecessary visual inference when label 

conditions are favorable, thereby improving 
overall system efficiency. This reduction in 

redundant computation contributes to more 

effective utilization of processing resources in 

continuous operation scenarios. 

Overall, the results confirm that a QR-first + 

YOLO fallback configuration is optimal for 

industrial applications requiring high reliability 
and low error tolerance. Remaining limitations 

include the narrow dataset and lack of outdoor 

testing; future work should expand data diversity, 
enhance color recognition, and evaluate 

deployment on low-power embedded hardware. 

Such extensions would further improve the 

system’s adaptability and broaden its 

applicability. 

A limitation of this study is the relatively small 

number of experimental repetitions for each test 
scenario. Although the results demonstrate 

consistent system behavior during short-term 

operation, a larger number of trials would be 
required to support statistically generalized 

conclusions. This aspect will be addressed in 

future work. Long-term testing under continuous 

industrial workloads is also planned to further 

validate system robustness. 



 

  Figure 20: Compare the elements of the 3 modes 

6. CONCLUSION 

This study presented a system-level solution for 
automated vehicle-like object sorting by 

integrating deep-learning-based vision, QR-code 

identification, and PLC-controlled robotic 
manipulation. Rather than proposing a new 

detection algorithm, the contribution of this work 

lies in the design of a robust hybrid recognition 
architecture and its real-time integration into an 

industrial automation pipeline. 

This paper presented the design and 

implementation of an automated product-sorting 
system that integrates computer vision, deep 

learning, QR code recognition, and PLC-based 

robotic control. By combining YOLOv8 for 
vehicle detection, HSV-based color 

classification, and a QR decoding module, the 

system achieves flexible and multi-modal 

recognition suitable for a wide range of industrial 
applications. Experimental results demonstrated 

that the YOLOv8 model provides high accuracy 

and stable performance under varying lighting 
conditions, while the QR module maintains 

exceptional robustness, ensuring reliable 

classification even in challenging scenarios. The 
hybrid YOLO + QR mechanism further enhances 

system reliability, achieving the highest overall 

accuracy and significantly reducing 

misclassification compared to individual 

recognition methods. 

The integration of the vision system with the 

Siemens S7-1200 PLC and a robotic arm enabled 
real-time sorting operations with minimal 

latency, fulfilling the requirements of small-to-

medium-capacity production lines. The system 

also maintained stable operation under 
environmental variations, confirming its 

suitability for practical deployment. 

Although the results are promising, the current 
system still has limitations, particularly in color 

recognition under rapidly changing illumination 

and the restricted scope of tested object 

categories. Future research may focus on 
expanding the dataset, enhancing illumination-

invariant color-processing techniques, 

developing adaptive parameter-tuning 
mechanisms, and deploying the system on 

embedded platforms to reduce cost and increase 

portability. Additionally, integrating more 

advanced multimodal sensing or implementing 
predictive control for the robotic arm may further 

improve performance in real-world industrial 

environments. 

Overall, the proposed system demonstrates the 

effectiveness of combining computer vision and 

PLC-based control for automated vehicle-like 

objects sorting, offering a scalable and practical 
solution for modern intelligent manufacturing 

systems 
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