Thiét ké va phat trién hé thong tay may phan loai
cac doi twong dang phworng tién dwa trén thi giac may tinh

TOM TAT

Viéc ung dung thi gidc mdy tinh trong cac hé thng phan loai ddi twong dang phuong tién gop phan nang cao
nang suit, d chinh x4c va giam thiéu sai s6t do con ngudi trong cac ddy chuyén san xuét cong nghiép. Thong qua
viéc khai thac cac dic trung thi gidc va két hop cac k§ thuat xir 1y anh, hoc sau cho phép nhan dang tu dong va déng
tin cdy cac dbi tugng phirc tap dudi cac diéu kién chiéu sang, goc quan sat va khoang cach 1am viéc khac nhau. Bai
béo nay trinh bay thiét ké va trién khai mot hé thong phan loai tw dong tich hop tay may robot v6i m6 hinh hoc séu
YOLO nhim phét hién va phan loai theo thoi gian thuc ba nhém phuong tién gom 6 t6 con, xe tai va xe buyt, dong
thoi mo rong kha nang phén loai thong qua nhén dang mau sic va ma QR. H¢ thong hd tro ba che d6 nhan dang gom
YOLO két hop mau sac, nhan dang dya trén ma QR va ché do lai. Két qua nhan dang dugc tmyen td1 PLC Siemens
S7-1200 dé diéu khién tay méay robot, trong khi viéc giam sat va van hanh dugc thyc hién théng qua giao dién SCADA.
Két qua thuc nghiém cho théiy hé théng hoat dong 6n dinh theo thoi gian thuc va dat d6 chinh xac cao dudi cac diéu
kién lam viéc khac nhau, qua d6 khéng dinh tinh kha thi va hi€u qua cta viéc tich hop thi giac may tinh dua trén hoc
sau v6i diéu khién PLC cho céc hé thong tu dong héa cong nghiép.

Tir khéa: Thi gidc may tinh, YOLO, md OR, Hé thong tay may, SCADA.



Design and Development of a Computer-Vision-Based
Robotic Arm System for Sorting of Vehicle-Like Objects

ABSTRACT

The application of computer vision in vehicle-like object sorting systems contributes to improving productivity,
accuracy, and reducing human-induced errors in industrial production lines. By exploiting visual features and
combining image-processing techniques, deep learning enables reliable and automated recognition of complex objects
under varying lighting conditions, viewing angles, and working distances. This paper presents the design and
implementation of an automated sorting system integrating a robotic arm with a YOLO-based deep learning model
for real-time detection and classification of three vehicle categories—cars, trucks, and buses—while extending
classification capability through color recognition and QR code identification. The system supports three recognition
modes: YOLO combined with color detection, QR code—based recognition, and a hybrid approach. Recognition results
are transmitted to a Siemens S7-1200 PLC to control the robotic arm, while monitoring and operation are performed
via a SCADA interface. Experimental results demonstrate that the proposed system operates stably in real time and
achieves high classification accuracy under different working conditions, confirming the feasibility and effectiveness
of integrating deep learning—based computer vision with PLC control for industrial automation systems.

Keywords: Computer vision, YOLO, QR code, Robotic arm, SCADA.

1. INTRODUCTION To address these limitations, this paper presents
the design and implementation of an automatic
sorting system that integrates a robotic arm, a
YOLO-based computer vision module, and a
Siemens S7-1200 PLC. The proposed system
detects and classifies three vehicle categories—
cars, trucks, and buses—and further analyzes
their colors using HSV color-space processing. In
addition, a QR code recognition module is
incorporated to enhance flexibility. The overall
architecture is designed to ensure real-time
operation and high classification accuracy.

In the context of the rapidly advancing Industry
4.0 revolution, intelligent automation systems
have become essential for enhancing
productivity, reducing operational errors, and
optimizing resource utilization.' One of the most
prominent technological trends is the integration
of industrial robots with computer vision,
enabling machines not only to perform
mechanical actions but also to “see” and make
autonomous decisions based on real-time visual

2
data. Moreover, the system's modular design allows
In product-sorting applications, especially for easy scalability and adaptation to different
vehicle-like objects such as model cars, trucks, industrial environments, supporting future
and buses, accurate classification becomes integration of additional sensors or sorting
challenging due to varying illumination, criteria.

background noise, inconsistent object sizes, and
dynamic conveyor movement.’

Among deep-learning-based object detectors, the
YOLO (You Only Look Once) family has gained
significant attention due to its ability to perform
real-time object detection while maintaining
competitive accuracy.® However, many existing
studies rely solely on object shape recognition
and do not incorporate additional attributes such
as color classification or QR code decoding.
Furthermore, only a few works have addressed
the integration of deep-learning vision systems
with industrial PLCs.’
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Unlike conventional vision-based recognition
approaches that focus primarily on algorithmic
improvements, this work emphasizes a system-
level contribution. The proposed solution
integrates a hybrid YOLO-QR recognition
architecture with a priority-based decision logic
and real-time PLC-SCADA integration, targeting
practical deployment in industrial environments.
The system supports three recognition modes—
YOLO with color detection, QR-based
recognition, and a hybrid mode—allowing
adaptive operation under different operational
scenarios. Recognition results are transmitted to
the PLC for real-time robotic arm control, while
a SCADA interface enables continuous
monitoring and supervision of system behavior.

It should be emphasized that this study does not
aim to propose new detection algorithms or
modify the internal structure of the YOLO model.
Instead, the primary technical contributions of
this work lie at the system level and can be
summarized as follows:

1) A hybrid computer-vision architecture that
combines YOLO-based visual detection
and QR-code-based identification for real-
time industrial sorting applications;

2) A priority-based recognition strategy in
which QR decoding is treated as the
primary identification method, while
YOLO detection is automatically activated
as a fallback mechanism when QR labels
are missing, damaged, or unreadable,
thereby improving robustness without
increasing computational complexity;

3) A complete real-time integration
framework connecting the vision system, a
Siemens S7-1200 PLC, a robotic arm, and
a SCADA interface, enabling closed-loop
control and synchronized operation

between perception, decision-making, and
actuation;

4) An  An experimental system-level
evaluation demonstrating consistent and
stable operation under varying lighting
conditions and continuous conveyor
motion in real industrial operating
environments.

These contributions position the proposed work
as a practical and scalable system-level solution
for intelligent industrial sorting rather than an
algorithm-level enhancement.

The remainder of this paper is organized as
follows: Section 2 reviews related works, Section
3 presents the system design and methodology,
Section 4 presents the experimental results,
Section 5 provides discussion, and Section 6
provides conclusion.

2. RELATED WORKS

In recent years, the integration of computer
vision and deep learning technologies into
industrial automation has received significant
attention from researchers and engineers.
Traditional sensing-based classification methods,
such as RGB color sensors, proximity sensors,
and photoelectric detectors, are generally suitable
only for simple objects and stable operating
conditions. However, these methods often fail
when facing challenges such as variable
illumination, complex backgrounds, or objects
with diverse shapes and colors, leading to
reduced accuracy and system instability.® These
limitations have motivated the use of image-
processing and deep-learning approaches to
enhance recognition performance in real-world
environments.’

In object detection, the YOLO (You Only
Look Once) family has emerged as one of the
most widely adopted deep-learning models due to
its ability to perform fast and accurate real-time
detection. Models such as YOLOv3, YOLOv4,
YOLOVS, and the more recent YOLOVS8 have
been applied to various industrial tasks, including
defect detection,® agricultural sorting, traffic
monitoring, and vehicle recognition. Existing
studies show that YOLO-based systems can
achieve more than 30 FPS while maintaining high
detection accuracy even when objects are
partially occluded or captured under low-light
conditions.” Some research also integrates YOLO
with color-space analysis to extend classification
capabilities when objects share similar shapes but
differ in color.



Additionally, QR code recognition has been
increasingly used in manufacturing due to its high
storage capacity, robustness to noise, and ease of
integration with modern vision systems. Libraries
such as ZBar and Pyzbar enable real-time
decoding and are widely used in inventory
management, traceability systems, and automatic
product routing. The combination of visual
recognition and QR decoding enhances system
flexibility by allowing classification based not
only on visual appearance but also on encoded
product information.

In industrial control, Programmable Logic
Controllers (PLCs) play a critical role in bridging
computer vision modules with hardware
equipment such as robotic arms and conveyor
belts. Several studies have explored integrating
computer vision with PLCs—such as Siemens or
Mitsubishi—through communication protocols
like Modbus/TCP, OPC-UA, or Snap7. These
works highlight the importance of reliable and
low-latency ~ communication in  practical
automation systems.'® However, many existing
studies focus on isolated components, such as
visual detection alone or robotic control alone,
without developing a fully integrated system that
combines deep learning, multi-modal
recognition, and PLC-based control.

From the reviewed literature, it is evident that a
gap remains in designing a comprehensive
solution that integrates:

(1) YOLO-based object detection,
(2) Color recognition,
(3) QR code decoding, and

(4) Real-time communication with a PLC to
perform robotic sorting.

The present paper aims to address this gap by
developing a unified, practical product-sorting
system suitable for small and medium-sized
automation environments.

3. SYSTEM DESIGN AND
METHODOLOGY

It should be emphasized that the novelty of the
proposed approach does not stem from individual
vision algorithms, but from the way multiple
recognition modalities are organized and
coordinated within a unified real-time system
architecture. The design focuses on reliability,
priority-based decision logic, and seamless
integration between perception and industrial
control.

3.1. System Architecture

The proposed system is designed as a unified
real-time industrial sorting framework that
integrates perception, decision-making, and
actuation within a closed-loop control
architecture. The system combines computer
vision, industrial control, and robotic
manipulation to enable reliable vehicle
classification and sorting under dynamic
conveyor conditions. A hybrid recognition
strategy is employed to enhance robustness by
leveraging complementary identification
modalities. Real-time communication between
system components ensures synchronized
operation and continuous monitoring through a
supervisory interface. The overall system
architecture is illustrated in Figure 3. This
integrated design facilitates stable, efficient, and
scalable deployment in practical industrial
environments.
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Figure 2. System Architecture

The system, as shown in Figure 3, comprises a
camera, a computer running the vision modules,
a Siemens PLC S7-1200, a robotic arm, a
conveyor belt, and an SCADA interface. The
camera captures images of vehicles moving on
the conveyor belt and transmits them to the
computer for processing.

The vision system adopts a hybrid YOLO-QR
recognition architecture with a priority-based
decision strategy. The system first attempts to
decode the QR code attached to the vehicle due
to its high reliability and direct data encoding
capability. When QR decoding is successful, the
extracted  identification  information s
immediately forwarded to the PLC for real-time
control execution.



In cases where the QR code is missing, damaged,
or unreadable, the system automatically activates
the YOLOv8-based visual recognition module as
a fallback mechanism to identify the vehicle type.
After vehicle identification, the color information
is determined using the HSV color space. This
conditional hybrid strategy ensures continuous
system operation without manual intervention
while maintaining robustness under real-world
industrial conditions.

Once the classification results are obtained, the
recognized vehicle type and color information are
transmitted to the PLC via the Snap7
communication protocol. Based on the received
data, the PLC controls the robotic arm to sort
vehicles into designated locations on the
conveyor system.

The PLC functions as the central real-time
controller, coordinating data exchange between
the vision system, robotic arm, and SCADA
interface. The SCADA system enables real-time
monitoring, data visualization, and operator
interaction, forming a closed-loop industrial
control architecture. This integrated PLC-
SCADA framework ensures synchronized
operation across all system components, thereby
enhancing reliability and practical deployability
of the proposed system.

3.2. Image Acquisition and Processing

The image acquisition and processing module
serves as the foundation of the entire vision
pipeline, ensuring stable input data and enabling
downstream recognition algorithms to achieve
optimal performance. A camera mounted above
the conveyor continuously captures frames of
objects as they move through the inspection area.
These frames are immediately transferred to the
vision-processing program running on the
computer, where they are handled sequentially
with minimal latency to maintain synchronization
between the conveyor motion and the robotic
arm’s pick-and-place cycle.

To ensure reliable operation, the camera position
and capture parameters are carefully configured
to minimize motion blur and illumination
variations. Continuous frame acquisition allows
the system to maintain temporal consistency
between consecutive observations, which is
essential for stable real-time control. In addition,
buffering and frame-handling mechanisms are
employed to prevent data loss during high-
throughput operation. This design choice
contributes to maintaining deterministic system
behavior and smooth interaction between
perception and actuation components. Overall,

the image acquisition stage establishes a reliable
data foundation for subsequent recognition and
decision-making processes.

Upon receiving a frame, the system first performs
a preprocessing step by converting the image
from the BGR format into the HSV color space.
HSV is selected due to its strong separation
between chromatic and luminance components, "
providing robust color recognition under varying
lighting conditions."" After conversion, the frame
is routed into one of three processing pipelines
depending on the selected operating mode.

In the YOLO-based detection mode, the frame is
fed into the YOLOv8 model to identify
predefined vehicle categories,'” including cars,
trucks, and buses. The detector outputs bounding
boxes, class labels, and confidence scores. The
bounding box also provides a precise region of
interest for subsequent color analysis, effectively
reducing the influence of background noise and
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Figure 3. Flowchart of image processing algorithm
using YOLO

In the QR-recognition mode, the system utilizes
the Pyzbar library to perform comprehensive
scanning and decoding of QR patterns within
each processed frame.'* Pyzbar is selected due to
its stable recognition capability even under
challenging imaging conditions such as drastic
lighting variations, partial occlusions, motion
blur, or low-resolution inputs. During operation,
the system analyzes the shape and position of
regions suspected to contain QR codes, verifies



the structural validity of the detected patterns, and
then applies Pyzbar’s decoding algorithm to
extract the embedded data. Once a valid QR code
1s 1dentified, the information encoded within it is
immediately adopted as the final classification
output. This mechanism allows the system to
bypass the YOLO-based processing steps,
thereby reducing latency, improving processing
speed, and enhancing overall accuracy. Thanks to
these advantages, the QR-recognition mode is
particularly suitable for automated production
lines, inventory  inspection,  warehouse
management,  traceability  systems, and
applications that require encoded data with higher
reliability compared to conventional visual
recognition. Moreover, this mode contributes to
consistent  real-time  performance  while
maintaining system stability.
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Figure 4. Flowchart of image processing algorithm
using QR code
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When YOLO successfully detects an object, the
color-recognition module extracts the central
region of the bounding box to reduce the effects
of shadows, object edges, and background
gradients. The selected pixels are converted into
HSV wvalues and compared with predefined
threshold ranges, while a voting-based algorithm
determines the dominant color with greater
stability. To prevent misclassification caused by
motion blur or temporary lighting variations, a
temporal consistency filter ensures that
recognition results remain stable across multiple
consecutive frames before being accepted. This
combination of spatial filtering and temporal
validation significantly improves the reliability of
the final color output and ensures robust
recognition under fluctuating environmental
conditions. In addition, the system applies a
normalization step to mitigate brightness



fluctuations, helping the HSV values remain
consistent during operation. The processing
pipeline is further optimized to minimize latency,
ensuring that color classification is synchronized
with the motion of objects on the conveyor. By
integrating these enhancements, the color-
recognition subsystem achieves higher resilience
against noise, reflections, and rapid illumination

changes.
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Figure 6. Flowchart of color recognition algorithm
using HSV color space

After the object type and color are confirmed, the
final classification result is packaged and
transmitted to the Siemens S7-1200 PLC via the
Snap7 protocol.' The PLC interprets the received
data and triggers the corresponding robotic
actions according to the predefined workflow.
This streamlined communication and control
pipeline enhances responsiveness, operational
robustness, and fault tolerance. As a result, the
system maintains stable performance in industrial
automation  environments, meeting  strict
requirements for accuracy, speed, and continuous
operation. Furthermore, the PLC continuously
monitors the communication status and the
operational condition of the robotic arm to
prevent unexpected failures. In the event of
abnormal data or communication delays, the
system automatically activates predefined safety
responses, ensuring uninterrupted workflow and
reliable high-throughput operation. This design
approach  supports long-term autonomous
operation while minimizing downtime and
maintenance overhead.

3.3 PLC Integration and Control Logic

Once the objects have been fully identified and
recognized, the resulting classification data are
transmitted to the Siemens S7-1200 PLC through
the Snap7 communication protocol. This protocol
ensures fast, stable, and reliable data transfer
between the vision-processing unit and the
control system, even under continuous high-
frequency operation.'® Upon receiving the data,
the PLC analyzes the classification information
and determines the corresponding control
commands that the robotic arm must execute
according to the predefined sorting logic. Each
classification type is mapped to a specific
container, storage cell, or designated physical
location on the conveyor system, ensuring that
every object is delivered to the correct destination
with high accuracy. Moreover, the system can
dynamically adjust sorting parameters in real-
time based on varying production rates or
unexpected changes in object flow, further
enhancing operational efficiency.

The control logic of the system is developed in
Siemens TIA Portal using the ladder diagram
programming language, which provides a clear
and intuitive structure for handling sequential
control operations."” Within this environment,
additional safety checks, fault-handling routines,
and motion-coordination mechanisms are
implemented to guarantee stable and collision-
free operation of the robotic arm. The machine-
vision module communicates with the PLC
through an optimized data-exchange routine,
enabling minimal latency and ensuring that
classification results are synchronized with the
conveyor’s movement and the robotic arm’s pick-
and-place cycle. In addition, data logging and
automated alerts are integrated to notify operators
of abnormal conditions immediately, allowing
preventive measures to be taken without halting
the production line.

To support supervision and operator interaction,
a SCADA interface is integrated into the control
architecture. This interface provides real-time
visualization of the entire sorting workflow,
including the detected object type, current
operating mode, communication status, and the
live position of the robotic arm.'” Operators can
monitor system performance, adjust parameters,
and intervene when necessary, thereby improving
operational transparency and enabling efficient
system troubleshooting. The combination of
PLC-based  control and  SCADA-based
supervision ensures a highly reliable, safe, and
casy-to-manage automation system.
Additionally, the SCADA interface records



historical operational data, allowing engineers to
review trends and diagnose recurring issues more
effectively. These features collectively enhance
the overall maintainability of the system and
contribute to long-term operational stability.
Additionally, the SCADA interface records
historical operational data, allowing review
trends, analyze throughput efficiency, and
diagnose recurring issues more effectively. The
system also supports predictive maintenance by
generating performance reports and forecasting
potential equipment failures before they occur.
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3.4. Formulas

3.4.1. YOLO-Based Image Processing
Formulations

In the proposed system, YOLOVS is employed as
the object detection module due to its proven
balance between detection accuracy and real-time
processing capability.'"® YOLO follows a single-
stage detection paradigm, in which object
localization and classification are performed

simultaneously within a single forward pass of
the network. This design makes it particularly
suitable for real-time industrial applications
where low latency is required."’

In practice, YOLOVS processes each input frame
captured from the conveyor-mounted camera and
outputs bounding boxes, class labels, and
confidence scores for detected vehicle-like
objects. These outputs provide reliable spatial



information that is subsequently used by higher-
level system logic, including color recognition,
QR prioritization, and PLC-based decision
making.

It is important to emphasize that this work does
not aim to modify or improve the internal
architecture or loss formulation of YOLOVS.
Instead, the model is adopted as a mature and
stable detection component within a larger
system-level framework focused on robustness
and real-time integration.

3.4.2. HSV Color Space—Based Image
Processing Formulations

For color recognition, the system adopts the HSV
(Hue—Saturation—Value) color space, which is
widely used in industrial vision applications due
to its ability to separate chromatic information
from illumination intensity. Compared with the
RGB representation, HSV provides improved
robustness when lighting conditions vary, which
is common in conveyor-based environments.*

After an object is detected by the YOLO module,
the corresponding region of interest is extracted
and converted into the HSV color space. Color
classification is then performed by comparing
pixel values within this region against predefined
threshold ranges for each target color. A voting-
based mechanism is applied to determine the
dominant color, reducing the influence of noise,
shadows, and minor illumination fluctuations.?'

The HSV-based approach is computationally
efficient and well suited for real-time operation.”
In this study, it serves as a complementary
module that extends object classification by
incorporating color attributes without increasing
system complexity.

3.4.3. Kinematic Equations of the Robotic Arm

The forward kinematic model is introduced to
establish a mathematical relationship between
joint variables and the end-effector pose, which is
essential for defining reachable pick-and-place
positions in the sorting workspace. Although real-
time trajectory generation is executed by the PLC
using predefined motion commands, the
kinematic formulation provides the theoretical
foundation for workspace analysis, joint limit
verification, and collision-free motion planning
during system design and validation.

The robotic manipulator under consideration is a
three-link revolute configuration (R-R-R), as
illustrated in Figure 11. The coordinate frames are
assigned following the Denavit—Hartenberg (D—
H) convention,” and the corresponding

parameters are summarized in Table 1. This
formulation enables a systematic derivation of the
forward kinematic model describing the end-
effector pose as a function of joint variables.**
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Figure 10. 3-DOF R-R-R robotic arm

Using the standard Denavit—Hartenberg (D—H)
convention, each joint of the robotic manipulator
is described by a homogeneous transformation
matrix A;, which relates coordinate frame ito
frame i — 1. The general form of the D-H
transformation matrix is expressed as:

Co; —Sg; " CQ Sg; * Sa; a; - Cop;
4 = Sg; Co; " CQ —Cp; " Sa; Qi Se; (1)
L 0 Sq; Ca; d;
0 0 0 1

where: ¢ is cos and s is sin, 6; the joint angle, a;is
the link length, d; is the link offset, and «;is the
link twist angle.

Based on the mechanical structure of the
proposed 3-DOF robotic arm, the corresponding
D-H parameters are summarized in Table 1.

Table 1. Denavit—Hartenberg kinematic parameters

Joint 0; a; a; d;
1 0, 90° 0 Lq
2 6, 0° L, 0
3 04 0° Ls 0

Using these parameters, the individual
transformation matrices A;, A,, and Ajare
obtained. The overall forward kinematics of the
manipulator is computed by multiplying the
transformations sequentially:

T3 =A1.A2.A3 (2)

where:



[Co, 0 Se, 0
0o 1 0 I
L0 O 0 1
[Co, —So, 0 L2C92-
s c 0 Lps
A, = 0, 6, 290, 3b
“lo 0 1 0 (3b)
L 0 0 0 1
[Co, —Se, 0 L3C93—
A3 — 593 C93 0 L3Sg3 (3C)
0 0 1 0
L0 0 0 1

After substituting the D-H parameters and
simplifying, the resulting homogeneous
transformation matrix T3can be expressed in the
following form:

nx Ox ax Px

T, = | Oy ay B (4)
nZ OZ aZ PZ
0 0 0 1

The position of the end-effector with respect to
the base frame is given by:

Px = Co,- (LZ.C91+92 + Lz-CQZ) (5(1)

Py = sq,.(Ls.co,,0, + La.ca,)  (5b)
PZ = Ll + L3.592+93 + Lz.sgz (5C)

These equations explicitly define the Cartesian
position of the end-effector as a function of the
joint angles and link dimensions.

The orientation of the end-effector is represented
by the rotation submatrix of T3, whose column
vectors n, O, and a describe the directions of the
local coordinate axes attached to the end-effector.
These components are defined as:

Ny = Co,, 0, Co, (6a)
Ny = Co,, 0, S, (6b)
Ny = Sg,,0,- Ny = Co,,0,- S0, (6¢)
Oy = —Sg,,0,- Co, (7a)
0y = —Sg,.0,- 50, (7b)
0z = ¢y, 0, (7¢)
ax = sg, (8a)
ay = —cg, (8b)
az=10 (8c)

The derived forward kinematic equations provide
a direct mapping between joint space and
Cartesian space. In the proposed system, the
computed end-effector position (er Py'PZ)is

used for trajectory planning and object
positioning during pick-and-place operations,
while the orientation components ensure
consistent alignment of the gripper when
handling vehicle-like objects.

The above expressions describe the motion of the
robotic manipulator through the forward
kinematic equations, using the D—H parameters
derived from the joints of the system.

To ensure safe and collision-free motion during
pick-and-place tasks, each joint is restricted to a
predefined angular range. These constraints are
implemented in the PLC control logic to prevent
the manipulator from exceeding its mechanical
limits.

Joint limits:

e Joint 1: 6; €[0°, 360°];
e Joint2: 8, € [0°, 78°];

Joint 3: 65 € [0°, 102°].
3.4. Hardware Setup

The hardware system consists of five main
components: an image acquisition camera, a
YOLOvVS processing computer, a Siemens S7-
1200 PLC, a robotic arm, and a conveyor belt
responsible for vehicle-like objects sorting.
Figure 12 illustrates the overall layout of the
experimental setup.

A Logitech C270 camera is mounted above the
conveyor to capture input images for vehicle
recognition, color classification, and QR code
detection. The captured frames are then process
on the computer to ensure real-time inference
performance. The recognition results are
transmitted to the Siemens S7-1200 PLC via the
Snap7 communication protocol. The PLC
processes the signals and controls the robotic arm
to pick and sort the products according to the
detected results. This hardware configuration
ensures stable operation and meets the
requirements of the experimental tests.

In addition, the system is designed to maintain
robust  synchronization  between  visual
processing and mechanical motion, minimizing
latency during sorting. All hardware components
are connected through a structured wiring system
to enhance reliability and reduce electromagnetic
interference. The robotic arm operates within a
predefined workspace optimized for the conveyor
layout, ensuring smooth and collision-free
movements. Furthermore, the modular structure
of the hardware setup allows for easy expansion
and modifications for future experiments or
industrial applications.



To support continuous real-time operation, the
processing computer is configured to handle
concurrent image acquisition and inference tasks
without interrupting PLC communication. The
communication latency between hardware
components is kept minimal to preserve
synchronization during high-speed conveyor
movement. This coordinated hardware design
enables reliable closed-loop control throughout
the sorting process.

Figure 11. Experimental model

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed
system, a series of experiments were conducted
on a product classification model consisting of
three vehicle types (car, truck, and bus), multiple
color variations, and corresponding QR codes.
The experiments were carried out under realistic
operating conditions, with the conveyor running
continuously, the robotic arm performing pick-
and-place actions, and a Logitech C270 camera
fixed above the observation area. The vision
processing module was executed on a computer
equipped with an RTX 3050 GPU, ensuring real-
time inference throughout the experiments.

4.1 Accuracy of YOLOvVS8 and Color
Recognition

To evaluate the performance of the YOLOVS
model® in vehicle classification, the system was
tested on a dataset consisting of three object
categories: car, truck, and bus. Each category
included multiple samples with different sizes,
shapes, and colors to ensure diversity in the input
data. The recognition results were collected under
realistic operating conditions, with varying
ambient lighting and continuously moving object

on the conveyor belt.

Experimental results show that YOLOVS
achieves high accuracy in identifying the three

vehicle types, with an overall accuracy exceeding
94%. The detected vehicles exhibit relatively
consistent accuracy across all categories.

In addition to vehicle recognition, the HSV-based
color analysis algorithm was evaluated using a
dataset containing multiple color samples. The
experiments indicate that the method provides
stable performance, particularly when ambient
lighting does not change too rapidly. Examples
illustrating the vehicle detection and color
classification processes are presented in Figure
13.

Furthermore, the combined use of YOLOvS and
HSV color analysis enables the system to classify
both the type and color of wvehicles
simultaneously, providing a comprehensive
solution for automated sorting. This integration
also allows real-time monitoring and evaluation,
which is crucial for practical industrial
applications. Additionally, the system can adapt
to minor variations in vehicle orientation and
position, maintaining high accuracy under typical
conveyor conditions. The results demonstrate the
robustness of the approach, making it suitable for
continuous operation in real-world

manufacturing environments.

Figure 12. Vehicle and color recognition using
YOLO and HSV

To evaluate the recognition accuracy, the system
wastested by performing 10
consecutiverecognition trials for each vehicle
type with its corresponding colors. Table 2
presents the recorded values for all 10

measurements



Table 2. Short-term repeatability results over 10 recognition trials for each vehicle type and color

Vehicle Trial Trial Trial Trial Trial Trial Trial Trial Trial Trial Mean
Type 1 2 3 4 5 6 7 8 9 10 () = Std
Yellow 95.5% | 94.2% | 94.2% | 95.8% | 95.5% | 95.3% | 95.5% | 95.0% | 95.3% | 95.3% 95.16 &
Car 0.55 %
Red Car | 95.8% | 95.1% | 94.2% | 94.0% | 95.6% | 94.0% | 95.1% | 95.7% | 95.7% | 95.2% %57(;4(;:
Yellow 96.7% | 97.2% | 96.1% | 97.0% | 96.4% | 97.1% | 96.5% | 97.0% | 97.2% | 96.9% 96.81 &
Bus 0.37 %
Red Bus | 97.0% | 98.1% | 97.2% | 97.0% | 98.0% | 98.2% | 97.5% | 98.0% | 97.2% | 97.3% %74585";:
Yellow 96.9% | 96.3% | 95.9% | 96.7% | 95.7% | 96.5% | 96.1% | 96.2% | 96.0% | 96.0% 96.23 &
Truck 0.37 %
Red 96.2% | 96.5% | 96.1% | 95.8% | 96.3% | 96.1% | 96.0% | 96.2% | 95.5% | 96.0% 96'070i
Truck 0.28 %

Each experiment was repeated ten times under
identical operating conditions to evaluate short-
term repeatability and operational consistency of
the proposed system. The reported mean and
standard deviation values describe variability
across repeated trials and are not intended for
large-scale statistical inference.

The accuracy of vehicle detection and color
classification was evaluated over ten repeated
recognition trials for each vehicle type and color.
The results are illustrated in a line chart (Figure
14), which presents the accuracy obtained in each
trial. As observed, the recognition accuracy
consistently exceeds 92% across all tested
scenarios.

In addition to the mean accuracy, the standard
deviation remains low, typically below +1.0%,
indicating that the observed variations between
trials are minimal. Such a small deviation
suggests that the system’s performance is highly
stable and that the reported accuracy values are
experimentally consistent rather than incidental.

From an engineering perspective, accuracy
fluctuations within +1.0% are generally
considered acceptable for industrial vision-based
sorting applications, particularly under varying
illumination and motion conditions. Therefore,
the obtained accuracy levels can be regarded as
both valid and practically reliable, confirming
that the proposed system maintains high
recognition  performance and  robustness
throughout repeated experiments.

Overall, the results demonstrate that the system
not only achieves high accuracy but also exhibits
strong repeatability, making it suitable for real-
time automated vehicle-like object

sorting tasks.

Accuracy Over 10 Recognition Trials for Each Vehicle Type and Color
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Figure 13. Short-term recognition repeatability over
10 trials for each vehicle type and color

4.2. QR Decoding Performance

The QR recognition module achieved a 98%
decoding success rate for 3.2 x 3.2 cm QR labels
under lighting-controlled conditions. Most
decoding failures occurred when QR codes were
bent, blurred, or partially occluded, highlighting
the sensitivity of the module to physical
distortions. Under varying lighting levels ranging
from 300 to 700 lux, the decoding success
remained consistently above 96.4%,
demonstrating the robustness of the system. The
overall classification accuracy was preserved due



to the hybrid detection pipeline, which combines
YOLO object detection and QR recognition.

To provide real-time feedback during video
monitoring, each detected QR code is displayed
on the output frame along with a confidence
percentage. Since the QR decoding module only
outputs successfully decoded codes, the
displayed confidence is set to 100% for visual
clarity. This visual representation aids operators
in quickly identifying and tracking QR codes
within the video feed, reducing the risk of
oversight. Additionally, real-time highlighting of
QR codes allows operators to immediately notice
any missing or unreadable codes, improving
workflow efficiency and ensuring accurate data
collection. Furthermore, this visualization
mechanism supports rapid system validation and
debugging by enabling intuitive inspection of
recognition outcomes during continuous
operation.

Red Bus (100.0%)

Figure 14. Recognize QR codes

Furthermore, the actual decoding performance is
quantitatively analyzed offline, ensuring that the
reported success rates accurately reflect real
operational conditions. This combined approach
enhances both usability and reliability of the
recognition system, particularly in dynamic
industrial ~ or  laboratory = environments.
In addition, the system maintains stable decoding
performance even when the conveyor speed
increases moderately, confirming its suitability
for real-time applications. The robustness of this
QR module ensures that it can be integrated
seamlessly into larger automation pipelines
without requiring additional calibration or
hardware adjustments.

To evaluate the success rate of QR code decoding
under varying lighting conditions, an experiment
was conducted in which each QR code was
scanned 10 times across different illumination
levels, as detailed in the table below:

Table 3. Short-term QR code decoding repeatability over 10 trials under different lighting conditions

Lighting Trial | Trial | Trial | Trial | Trial | Trial | Trial | Trial | Trial Trial 'E/I(;af
Condition | 1 2 3 4 5 6 7 8 9 10 o

std
300lux | 97.5% | 97.8% | 98.1% | 97.0% | 97.2% | 97.0% | 97.6% | 97.9% | 97.3% | 97.7% | o L™
500 lux | 98.0% | 98.2% | 98.0% | 97.9% | 98.3% | 98.0% | 98.4% | 98.1% | 98.2% | 98.0% | ‘*jpur
700 lux | 96.5% | 96.8% | 97.0% | 96.4% | 96.7% | 96.9% | 96.6% | 96.5% | 96.8% | 96.7% | > *

Each lighting condition was evaluated over ten
repeated trials to assess short-term decoding
repeatability and operational consistency. The
reported mean and standard deviation values
describe variability across repeated trials and are
not intended for statistical generalization beyond
the tested conditions.

The chart illustrates the QR code decoding
success rate over 10 trials under three different
lighting conditions: 300 lux, 500 lux, and 700 lux.
Each curve represents the decoding accuracy
variation across trials, with individual data points
labeled by their corresponding percentage values,
allowing direct visual comparisonof performance
stability under varying illumination levels.

As summarized in Table 3, the mean decoding
accuracies are 97.51% £ 0.38%, 98.11% £ 0.16%,
and 96.69% =+ 0.19% for 300 lux, 500 lux, and
700 lux, respectively. The low standard deviation
values (all below 0.4%) indicate that the QR
decoding performance is highly stable and
exhibits minimal variability across repeated
experiments.

The decoding success rates consistently remain
within a narrow range from 96.4% to 98.4%,
demonstrating that no significant performance
degradation occurs under different illumination
levels. Minor fluctuations observed between
individual trials are primarily attributed to slight
variations in QR code alignment, camera focus,



or surface reflections rather than inherent system
instability.

Overall, the small standard deviation confirms
the robustness and repeatability of the QR
recognition module. These results demonstrate
that the proposed system can maintain reliable
and consistent decoding performance under
varying lighting conditions, making it suitable for
real-world industrial applications where ambient
illumination may fluctuate. Furthermore, this
stability enhances the effectiveness of the hybrid
YOLO and QR recognition pipeline by ensuring
dependable identification during continuous
operation.

QR Code Decoding Success Rate Across Different Lighting Conditions
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Figure 15. Short-term QR code decoding repeatability
over 10 trials under different lighting conditions

4.3. Accuracy of the YOLO + QR Mode

In this operating mode, QR decoding is
prioritized as the primary method. When a valid
QR code is detected, the system immediately
adopts the decoded information as the final
classification result. If the QR label is missing,
damaged, blurred, or occluded, the system
automatically switches to the YOLO-based visual
detection module, ensuring accuracy comparable
to QR-only operation and maintaining high
reliability under adverse conditions. This
conditional  switching mechanism avoids
unnecessary visual processing when QR
information is available, while guaranteeing
uninterrupted recognition in cases where QR
decoding fails. The decision logic operates
automatically without operator intervention,
contributing to stable and autonomous system
behavior.

The hybrid priority-based structure achieved an
overall accuracy of 97.6%, demonstrating
performance equivalent to QR recognition while
offering greater robustness. This indicates that the
system remains effective even when QR labels
fail due to distortion, inconsistent lighting, or
rapid object motion, significantly enhancing

practical usability in real-world environments.
Compared to single-mode recognition systems,
the proposed approach dynamically adapts to
input quality variations and mitigates
performance degradation under challenging
conditions.

To further assess this mode, ten consecutive trials
were conducted for each vehicle type.
Recognition rates were recorded and summarized
in Table 4, with a corresponding figure
illustrating  performance  across  vehicle
categories. All six vehicle types achieved high
accuracy ranging from 93.8% to 97.4%, with
larger vehicles benefiting from more distinctive
shapes and surface areas, while smaller vehicles
showed slightly higher variation but still
maintained strong performance. These results
confirm the scalability of the hybrid strategy
across different object sizes and visual
characteristics.

These findings reveal patterns related to size,
geometry, and color variations, confirming stable
performance across changes in illumination,
orientation, or conveyor speed. The combined
table and figure support a clearer interpretation of
recognition  behaviors, reinforcing the
effectiveness of the QR-first + YOLO-fallback
strategy for industrial automation, smart
transportation, and  real-time  inspection
applications. The observed consistency further
supports the suitability of the proposed system for
continuous production-line deployment.

Moreover, the results highlight that integrating
multiple recognition strategies not only preserves
accuracy but also improves system adaptability,
allowing it to handle unexpected variations in
product appearance or positioning. This approach
ensures seamless operation in dynamic
production environments and can be extended to
other automated sorting or inspection tasks.
Furthermore, the system demonstrates consistent
performance over prolonged operation periods,
indicating reliability for continuous industrial
deployment. The combination of QR and YOLO
methods also reduces the need for manual
intervention, making the system more
autonomous and suitable for large-scale
implementation. Overall, the experimental results
validate the proposed hybrid framework as a
practical and robust system-level solution. The
proposed architecture effectively balances
recognition accuracy, operational reliability, and
real-time industrial deployment requirements.



Table 4. Short-term vehicle recognition repeatability over 10 trials using the hybrid YOLO—-QR system

Vehicle Trial Trial Trial Trial Trial Trial Trial Trial Trial Trial Mean
Type 1 2 3 4 5 6 7 8 9 10 | (u)+std
Red Car | 95.8% | 95.9% | 95.7% | 96.0% | 95.6% | 95.9% | 95.8% | 96.0% | 95.7% | 95.9% %5'183%/;—*
Yellow | o7 290 | 97,106 | 97.19% | 97.2% | 97.3% | 97.3% | 97.1% | 97.4% | 97.2% | 97.3% | ¥7-23%
Car 0.11%
Red Bus | 96.5% | 96.79% | 96.6% | 96.8% | 96.5% | 96.79% | 96.6% | 96.8% | 96.5% | 96.7% | 0
Yellow | g6 500 | 96.69 | 96.6% | 96.8% | 96.5% | 96.7% | 96.6% | 96.8% | 96.5% | 96.7% | 20:63 %
Bus 0.12%
Red 1 o6 506 | 96.9% | 96.9% | 96.1% | 96.8% | 96.0% | 95.9% | 96.1% | 96.8% | 96.0% | 20-13%
Truck 0.44%
Yellow | o6 506 | 96.206 | 96.1% | 95.3% | 96.0% | 96.2% | 96.1% | 96.3% | 96.0% | 96.206 | 20:04%
Truck 0.28%

Each experiment was repeated ten times under
identical operating conditions to evaluate short-
term repeatability and operational consistency of
the proposed system. The reported mean and
standard deviation values describe variability
across repeated trials and are not intended for
large-scale statistical inference.

The chart shows that the YOLO + QR hybrid
system maintains consistently high and stable
recognition accuracy, ranging from
approximately 94% to 97% across all tested
vehicle categories. Among them, the yellow
vehicle groups achieve the highest mean
accuracy, reaching about 96-97%, while the
remaining categories consistently —maintain
accuracy levels around 94-95%.

As summarized in the experimental results, the
reported standard deviation values are extremely
low, ranging from +0.11% to +0.13% across all
vehicle types. Such small standard deviations
indicate minimal performance variation over the
10 repeated trials, demonstrating that the system
produces highly repeatable and reliable
recognition results.

The narrow dispersion of accuracy values
confirms that the hybrid YOLO + QR recognition
approach is robust against minor disturbances,
such as lighting fluctuations, surface color
variations, and object positioning changes. No
noticeable performance degradation is observed
across different vehicle categories, highlighting
the system’s consistent performance capability.

Overall, the combination of high mean accuracy
and very low standard deviation demonstrates
that the proposed hybrid system operates stably
and effectively, making it well suited for real-
time industrial sorting applications, particularly

in continuous operation environments where
consistency and reliability are critical.
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Figure 16. Short-term vehicle recognition
repeatability over 10 trials using the hybrid YOLO-
QR system

4.4. Processing Time and Real-Time Response

In automated sorting systems, processing time
and real-time responsiveness are key factors that
determine overall operational efficiency. This
section presents the average processing time for
each stage in the product-sorting cycle, from the
moment an object enters the observation area
until the robot completes the pick-and-place
operation. This analysis provides an essential
evaluation of the system’s speed and
effectiveness, ensuring that it meets the
performance requirements of small- to medium-

capacity sorting lines.

In addition, understanding these timing
parameters supports the optimization of robot
trajectories, minimizes system idle time, and
reduces potential bottlenecks during operation.
The results serve as an important foundation for
improving overall throughput. Furthermore,
analyzing the timing of each stage allows for the
identification of specific areas where efficiency



can be enhanced, such as adjusting conveyor
speed or fine-tuning robotic motion. This data
also facilitates predictive maintenance and
proactive system adjustments, ensuring sustained
high performance during continuous operation.

Average Processing Time per Step for Each Product
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Figure 17. Average Processing Time per Step for
Each Product

Based on experimental results, the chart
illustrates the average processing time for each
step in the vehicle-like objects sorting cycle.
Specifically, YOLO inference takes about 20 ms,
color recognition 4.5 ms, QR decoding 11 ms,
Snap7 data transmission 3 ms, and PLC-Robot
control 700 ms. The total average processing time
per cycle is approximately 739 ms, enabling the
system to handle multiple products efficiently.
These results meet the real-time requirements for
small-to-medium capacity sorting lines while
ensuring operational stability and reliability.
Moreover, the measured timing breakdown
highlights that mechanical actuation dominates
the cycle time, indicating  sufficient
computational margin for future algorithmic or
system-level extensions.

4.5. Stability Under Environmental
Variations

The system was tested under low (300 lux),
normal (500 lux), and high (700 lux)
illumination.
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Figure 18. System Stability under Different Lighting
Conditions

The figure 19 illustrates the system’s recognition
accuracy under three different lighting
conditions: low (300 lux), normal (500 lux), and
high (700 lux). YOLO maintained high accuracy
across all lighting levels, with only a slight
improvement from 94.2% at 300 Iux to 97.6% at
700 lux, indicating minimal sensitivity to
illumination changes. The color recognition
module exhibited moderate fluctuations,
achieving 92.7% at 300 lux, peaking at 95.0%
under normal lighting, and dropping to 90.1%
under high illumination, suggesting a moderate
dependence on lighting conditions. In contrast,
QR-based recognition remained highly stable,
ranging from 97.0% to 99.0% across all
conditions, reflecting its robustness to ambient
light due to reliance on contrast rather than
overall illumination. Overall, the combined
analysis confirms that while YOLO and QR
provide consistently reliable performance, the
color recognition module may require additional
compensation or preprocessing under extreme
lighting conditions.

4.6. Evaluation of accuracy and error
reduction rate of three modes

In automated vehicle recognition systems, the
choice of detection strategy directly impacts the
accuracy, robustness, and operational reliability
of the entire pipeline. To assess the effectiveness
of the proposed Hybrid YOLO + QR mechanism,
we compared its average recognition accuracy
against two individual modes: YOLO-based
detection only and QR-based decoding only. This
comparison provides clear insight into how
combining visual object detection and code-
based identification enhances overall system
performance, especially under industrial
conditions with fluctuating illumination and
diverse object appearances.

Figure 20 illustrates the recognition accuracy
across the three operating modes. QR

decoding achieves the highest standalone
accuracy at 98%, benefiting from its
deterministic and noise-resistant nature. YOLO
achieves an accuracy of 94%, offering strong
visual-feature-based recognition but remaining
sensitive to lighting variations, motion blur, and
occlusion. The Hybrid YOLO + QR mechanism
reaches 97.6%, demonstrating that prioritizing
QR recognition while using YOLO as a fallback
maintains nearly QR-level performance while
significantly improving robustness in cases
where QR labels are missing, damaged, or
unreadable. These results highlight the practical
advantages of integrating multiple recognition



strategies, ensuring consistent identification
under dynamic production conditions.
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Figure 19. Comparison of Accuracy Across Three
Modes

The chart clearly highlights the performance
differences among the three approaches. While
YOLO provides reliable baseline visual detection
and QR yields the highest precision when labels
are intact, the hybrid architecture delivers the
most balanced and consistent results across
varying  environmental and  operational
conditions. Overall, this comparison confirms the
hybrid mode as an effective and practical solution
for real-world vehicle classification systems,
offering both high accuracy and strong resilience
to recognition challenges. Additionally, the
hybrid approach allows the system to adapt
dynamically to temporary failures or occlusions
in QR labels, ensuring uninterrupted operation
and reducing the need for manual intervention.
This capability is particularly valuable in
industrial settings where high throughput and
minimal downtime are essential. Furthermore,
the hybrid strategy improves overall system
reliability by minimizing single-point failure
risks and supporting continuous operation under
non-ideal  conditions.  The  experimental
comparison demonstrates that combining
complementary recognition mechanisms yields
superior robustness compared to standalone
methods.

5. DISCUSSION

Based on the updated experimental results, the
proposed recognition system demonstrates strong
performance and reliability across a wide range
of operating conditions. The YOLO-based
detection module achieves an average accuracy
of 94%, maintaining stable processing rates even
under changes in illumination or viewing angles,
confirming its ability to generalize well to

industrial  environments. This consistency
indicates that the vision pipeline is sufficiently
robust for continuous operation on conveyor-
based sorting systems.

The color-based recognition component shows
slightly lower accuracy due to its sensitivity to
lighting variations, but the reduction remains
acceptable and does not significantly affect the
workflow when combined with YOLO or QR
verification. In practice, color information mainly
serves as a supplementary attribute rather than a
standalone decision factor.

QR decoding proves to be the most robust
method, achieving 98% accuracy and
maintaining stability thanks to its high-contrast
binary structure, which is largely unaffected by
environmental changes. This reliability makes
QR decoding particularly suitable as the primary
identification mechanism in industrial settings.

Across the three operating modes—YOLO,
YOLO + Color, and YOLO + QR—the benefits
of multi-source fusion become evident. YOLO +
QR reaches 97.6% accuracy, outperforming
YOLO alone and providing consistently high
performance, while YOLO + Color remains
helpful for distinguishing visually similar
vehicles. In addition, prioritizing QR recognition
reduces unnecessary visual inference when label
conditions are favorable, thereby improving
overall system efficiency. This reduction in
redundant computation contributes to more
effective utilization of processing resources in
continuous operation scenarios.

Overall, the results confirm that a QR-first +
YOLO fallback configuration is optimal for
industrial applications requiring high reliability
and low error tolerance. Remaining limitations
include the narrow dataset and lack of outdoor
testing; future work should expand data diversity,
enhance color recognition, and evaluate
deployment on low-power embedded hardware.
Such extensions would further improve the
system’s  adaptability and broaden its
applicability.

A limitation of this study is the relatively small
number of experimental repetitions for each test
scenario. Although the results demonstrate
consistent system behavior during short-term
operation, a larger number of trials would be
required to support statistically generalized
conclusions. This aspect will be addressed in
future work. Long-term testing under continuous
industrial workloads is also planned to further
validate system robustness.
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Figure 20: Compare the elements of the 3 modes

6. CONCLUSION

This study presented a system-level solution for
automated vehicle-like object sorting by
integrating deep-learning-based vision, QR-code
identification, and PLC-controlled robotic
manipulation. Rather than proposing a new
detection algorithm, the contribution of this work
lies in the design of a robust hybrid recognition
architecture and its real-time integration into an
industrial automation pipeline.

This paper presented the design and
implementation of an automated product-sorting
system that integrates computer vision, deep
learning, QR code recognition, and PLC-based
robotic control. By combining YOLOvS8 for
vehicle detection, HSV-based color
classification, and a QR decoding module, the
system achieves flexible and multi-modal
recognition suitable for a wide range of industrial
applications. Experimental results demonstrated
that the YOLOv8 model provides high accuracy
and stable performance under varying lighting
conditions, while the QR module maintains
exceptional  robustness, ensuring reliable
classification even in challenging scenarios. The
hybrid YOLO + QR mechanism further enhances
system reliability, achieving the highest overall
accuracy and significantly reducing
misclassification compared to individual
recognition methods.

The integration of the vision system with the
Siemens S7-1200 PLC and a robotic arm enabled
real-time sorting operations with minimal
latency, fulfilling the requirements of small-to-
medium-capacity production lines. The system
also maintained stable operation under
environmental  variations, confirming its
suitability for practical deployment.

Although the results are promising, the current
system still has limitations, particularly in color
recognition under rapidly changing illumination

and the restricted scope of tested object
categories. Future research may focus on
expanding the dataset, enhancing illumination-
invariant color-processing techniques,
developing adaptive parameter-tuning
mechanisms, and deploying the system on
embedded platforms to reduce cost and increase
portability.  Additionally, integrating more
advanced multimodal sensing or implementing
predictive control for the robotic arm may further
improve performance in real-world industrial
environments.

Overall, the proposed system demonstrates the
effectiveness of combining computer vision and
PLC-based control for automated vehicle-like
objects sorting, offering a scalable and practical
solution for modern intelligent manufacturing
systems
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