M6 hinh LSTM dwa trén t6i wu héa Bayes diing cho dw bao
ngan han céng suat dién gié

TOM TAT

Phan 16n cac phuong phap du bao cong suét dién gié hién nay chii yéu dua trén dir liéu chudi thoi gian lich
sir cila cong sudt phat tua-bin gid. Tuy nhién, qua trinh phat dién gié chiu anh hudéng dang ké boi cac thong sd van
hanh tua-bin, nhitng yéu té thudng bi bé qua va c6 thé 1am giam do chinh xac du bao. Trong nghién ctru nay, di liéu
vén hanh thu thap tir hé théng SCADA cua mot tua-bin gié thuc té duoc st dung nham néng cao hiéu qua dy bao
cOng suat dién gio. Phuong phap hdi quy ting bude duge ap dung dé xé4c dinh cac thong sd van hanh c6 anh huéng
quan trong dén cong suat phat, qua d6 giam s0 chiéu dir liu dau vao va nang cao kha nang dién giai ctia mo hinh.
M5 hinh thong ké truyén théng ARIMAX dugc xdy dung 1am mo hinh tham chiéu cho bai toan du bao. Pong thoi,
mé hinh hoc siu LSTM duoc trién khai nhdm mé ta dic tinh phi tuyén va su bién thién theo thoi gian cua dir li€u
cong suit gio, trong do6 cac siéu tham sb duogc tdi vu bang phwong phap t6i wu hoa Bayes. Hiéu qua du bao cuia mod
hinh LSTM sau t&i vu hoa duge so sanh véi md hinh ARIMAX. Két qua thuc nghiém cho théy mo hinh LSTM dua
trén toi wu hoa Bayes c6 két qua du bao t6t hon so voi mo hinh ARIMAX theo cac tiéu chi MAE va WAPE. Két qua
nay khang dinh hiéu qua ctia viéc két hop cac thong sd van hanh quan trong va tdi wu héa Bayes trong viéc nang cao
do6 chinh xac du bao cong suét dién gio.

Tir khéa: D béo dién gié, ARIMAX, Toi uu héa Bayes, LSTM.



Bayesian optimization-based LSTM model for short-term
wind power forecasting

ABSTRACT

Most existing wind power forecasting methods rely primarily on historical time-series data of wind turbine
output. However, wind power generation is strongly influenced by turbine operating parameters, which are often
neglected and may degrade forecasting accuracy. In this study, operational data collected from a practical wind
turbine SCADA system are utilized to enhance wind power forecasting performance. First, stepwise regression is
employed to identify the most significant operating parameters affecting wind turbine power output, thereby
reducing input dimensionality and improving model interpretability. Next, a traditional statistical autoregressive
integrated moving average with exogenous variables (ARIMAX) model is developed as a benchmark forecasting
approach. In addition, a deep learning model, namely a long short-term memory (LSTM) network, is implemented
to capture the nonlinear and temporal characteristics of wind power data. To further improve forecasting accuracy,
the hyperparameters of the LSTM model are optimized using Bayesian optimization. The Bayesian optimization—
based LSTM model is then proposed as an alternative approach for wind power forecasting. The forecasting
performance of the optimized LSTM model is systematically compared with that of the ARIMAX model.
Experimental results demonstrate that the optimized LSTM model significantly outperforms the traditional
ARIMAX approach in terms of mean absolute error (MAE) and weighted absolute percentage error (WAPE). These
findings confirm the effectiveness of incorporating significant operating parameters and Bayesian hyperparameter
optimization in improving wind power forecasting accuracy.

Keywords: Wind power forecasting, ARIMAX, Bayesian optimization, LSTM.

1. INTRODUCTION

In recent decades, there has been a rapid
expansion of renewable energy sources, among
which wind power has emerged as one of the
most prominent contributors to the global energy
transition. Compared with solar power, wind
energy offers several distinct advantages within
modern power systems. Wind power generally
exhibits a higher capacity factor, enabling more

demonstrates strong potential for large-scale
deployment, especially in offshore
environments, where higher and more consistent
wind speeds enable substantial generation
capacity. As a result, wind power plays a crucial
role in reducing greenhouse gas emissions,
mitigating climate change, and promoting
sustainable development. Owing to these
advantages, wind power has been widely

efficient utilization of installed generation
capacity over long operating periods.
Furthermore, wind turbines are capable of
producing electricity continuously throughout
both daytime and nighttime, whereas solar
power generation is strictly constrained by solar
irradiance availability.

In addition, the variability of wind power output
is often more gradual and less sensitive to short-
term atmospheric disturbances, such as passing
cloud cover, than solar photovoltaic generation.
This characteristic contributes to smoother
power profiles and enhances short-term
operational stability at the system level. Wind
power also allows for flexible land use,
particularly in onshore installations where
agricultural or industrial activities can coexist
with wind farms. Moreover, wind energy

integrated into power systems worldwide and
continues to experience rapid growth.

Despite its considerable benefits, wind power
also presents significant challenges due to its
inherent  dependence on  meteorological
conditions. The electrical output of wind
turbines varies nonlinearly with wind speed and
is further influenced by wind direction, air
density, and turbine operating states, leading to
pronounced intermittency and uncertainty.
These  fluctuations  introduce  substantial
difficulties for power system operators,
including increased requirements for spinning
reserves, frequency and voltage regulation, and
real-time balancing actions. As the penetration
level of wind power continues to rise,
forecasting inaccuracies may exacerbate supply—
demand imbalances, trigger local network
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congestion, compromise system reliability, and
negatively affect electricity market operations.
Consequently, the development of accurate and
reliable wind power forecasting techniques is of
critical importance for generation planning,
economic dispatch, reserve allocation, and the
secure and efficient operation of modern power
systems.

Fundamentally, wind power forecasting can be
classified into several categories, including very
short-term, short-term, medium-term, and long-
term forecasting, corresponding to different
objectives and requirements in power system
operation and planning. Very short-term
forecasting, typically ranging from several
minutes to a few hours, mainly supports real-
time control, frequency and voltage stability,
and the integration of renewable energy sources
into the grid. Short-term forecasting, covering
time horizons from several hours to several
days, plays an important role in unit
commitment, generation dispatch, reserve
management, and participation in electricity
markets. Medium-term forecasting, usually
extending from several days to several weeks, is
used for maintenance  planning,  fuel
management, and reliability assessment of
power system operation. Meanwhile, long-term
forecasting, with horizons ranging from several
months to several years, primarily serves
generation  and  transmission  planning,
investment evaluation, and the formulation of
long-term energy policies *.

To address the wind power forecasting problem,
numerous forecasting methods have been
proposed in the literature. These models can be
broadly categorized into statistical models,
artificial intelligence (Al)-based models, and
hybrid models. Statistical models applied to
wind power forecasting include exponential
smoothing approaches *, autoregressive (AR)
models *, autoregressive moving average
(ARMA) models % and autoregressive
integrated moving average (ARIMA) models "%,
Statistical models are among the earliest and
most widely used approaches for wind power
forecasting due to their simple structure, clear
interpretability, and low computational cost.
Traditional time-series models such as AR, MA,
and ARIMA exploit linear relationships between
wind power output and past values of the data
series, often yielding satisfactory results for
relatively stable time series with smooth
variations °. However, the performance of
statistical models strongly depends on
assumptions of linearity and stationarity, as well

as appropriate selection of input variables.
Consequently, when applied to wind power
systems with high variability and pronounced
nonlinear characteristics, statistical models are
typically used as benchmark references for
comparison with more advanced machine
learning and deep learning approaches °.

In the field of wind power forecasting, numerous
Al-based models have been proposed to capture
nonlinear relationships and complex dynamics
in  time-series data. Feedforward neural
networks, such as the multilayer perceptron ',
commonly trained using the back-propagation
neural network (BP NN) algorithm 2, were
among the earliest models applied and
demonstrated improved performance over
traditional statistical methods. To better exploit
temporal  dependencies, recurrent  neural
networks (RNNs) were developed, with variants
such as the Elman neural network and layered
RNNs used to retain past state information of
time-series data . In recent years, deep
recurrent learning models such as long short-
term memory (LSTM) ** and gated recurrent
unit  networks '° have become dominant
approaches in wind power forecasting due to
their ability to effectively capture long-term
dependencies and mitigate the vanishing
gradient problem. Variants such as bidirectional
LSTM (BiLSTM) further exploit information in
both temporal directions to improve forecasting
accuracy *°. In addition, the echo state network,
a type of recurrent network with randomly
generated reservoirs, has also been investigated
as a computationally efficient solution for wind
power time-series forecasting '’. Beyond neural
networks, machine learning methods such as
support vector machines (SVM) *® and gradient
boosting regression trees '° have been widely
applied to wind power forecasting owing to their
robustness in handling nonlinear and noisy data.
Finally, ensemble models that combine multiple
forecasting methods have been proposed to
enhance both accuracy and robustness of
forecasting results .

In recent years, combined models have been
extensively studied in wind power forecasting to
leverage the strengths of different methods while
mitigating the limitations of individual models.
These hybrid approaches often integrate signal
processing techniques—such as empirical mode
decomposition (EMD), variational mode
decomposition (VMD), or wavelet transform—
with  forecasting models including neural
networks, deep learning models, or machine
learning algorithms, in order to decompose wind

3



power series into different oscillatory
components and improve the learning capability
of forecasting models %%, Other hybrid
approaches, including autoregressive
fractionally  integrated  moving  average
combined with least squares support vector
machines %3, boosting algorithms combined with
ARMA models ?, hybrid CEEMDAN-EWT
deep learning methods %, as well as neuro-
wavelet and LSTM models, have demonstrated
improved forecasting accuracy and robustness
under highly variable wind conditions.
Empirical studies indicate that hybrid models
generally outperform single models, particularly
in short-term and very short-term wind power
forecasting .

Nevertheless, most existing models still
primarily rely on wind power time-series data,
while the in-depth exploitation of detailed wind
turbine operational parameters obtained from
SCADA systems remains limited and has not
been comprehensively investigated. Recent
studies have begun to incorporate wind turbine
operational parameters, for example by applying
response surface methodology, in which
variables such as wind speed, nacelle position,
pitch angle, and ambient temperature are used to
forecast turbine power output ?’. Recurrent
neural  network-based models, including
nonlinear autoregressive neural networks with
external inputs, layer recurrent neural network
models, distributed delay neural network
models, and time delay neural network models,
have also utilized operational parameters such as
wind speed, pitch angle, ambient temperature,
nacelle position, and wind direction, in addition
to turbine power output, to improve forecasting
performance 8.

Despite the extensive body of research on wind
power  forecasting, several fundamental
limitations remain insufficiently addressed.
Most existing studies primarily exploit historical
wind power  time-series data, often
supplemented by a limited number of
meteorological variables, while the rich and
high-resolution operational information
available from wind turbine SCADA systems is
largely underutilized. Moreover, input variable
selection in many previous works is commonly
based on empirical assumptions or prior
experience, lacking a systematic and statistically
grounded procedure to identify the most
influential operational parameters, which may
introduce input redundancy, obscure physical
interpretability, and degrade model
generalization. Furthermore, although deep

learning models—particularly LSTM
networks—have demonstrated strong potential
in capturing nonlinear temporal dependencies,
their forecasting performance is highly sensitive
to  hyperparameter  selection.  However,
hyperparameter tuning is often conducted using
trial-and-error or grid search strategies, which
are computationally inefficient and prone to
suboptimal solutions.

To overcome these limitations, this study
leverages high-resolution SCADA data from a
real operating wind turbine, incorporating a
comprehensive set of operational parameters. A
stepwise regression method is first employed to
rigorously identify the statistically significant
variables that most strongly influence wind
turbine power output, thereby enhancing model
interpretability and reducing input
dimensionality. An LSTM-based forecasting
model is then developed to effectively capture
the nonlinear and dynamic characteristics of
wind power generation. A key contribution of
this work is the integration of Bayesian
optimization for the systematic and efficient
tuning of LSTM hyperparameters, enabling the
model to achieve improved predictive
performance  while  avoiding  excessive
computational cost. The proposed approach is
benchmarked against a conventional ARIMAX
model, and comparative results demonstrate that
the proposed method consistently delivers
superior forecasting accuracy, as evidenced by
lower mean absolute error (MAE) and weighted
absolute percentage error (WAPE). An overview
of the proposed wind power forecasting
approach is demonstrated in Figure 1.
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Figure 1. Overview of the proposed wind power
forecasting approach.

2. METHODOLOGY

2.1. Stepwise regression

Stepwise regression is a statistical feature
selection approach built upon the multiple linear
regression framework, aiming to identify a
parsimonious subset of explanatory variables
that significantly affect the response variable.
The relationship between the dependent variable
and candidate predictors is expressed as

V=fot D%+ &

where y denotes the response variable (e.g.,
wind turbine power output), x. (i =1, ..., m)
represent candidate explanatory variables (e.g.,
operating parameters obtained from the SCADA
system), £, is the intercept, S are regression

coefficients, and ¢ is a random error term.

The stepwise procedure iteratively updates the
regression model by adding or removing
variables based on their statistical significance.
A commonly used criterion is the p-value, which
represents the probability of observing a
regression coefficient at least as extreme as the
estimated one under the null hypothesis that the
coefficient equals zero. Variables with p-values
below a predefined significance level (e.g., 0.05)
are retained, while statistically insignificant
variables are removed. In addition, model
selection can be guided by information-theoretic
criteria such as the Akaike information criterion
(AIC), defined as

AIC =n|n(@j+2m 2
n

where RSS s the residual sum of squares of the
regression model, n is the number of
observations, and m denotes the number of
explanatory variables included in the model.
Lower values of AIC indicate a better trade-off
between model goodness-of-fit and complexity.

This iterative process continues until no further
improvement can be achieved according to the
selected criteria. In wind power forecasting
applications, stepwise regression provides a
statistically grounded and interpretable method
for identifying influential operating parameters
from high-dimensional SCADA data, thereby
reducing input redundancy and enhancing the

robustness and generalization capability of
subsequent forecasting models.

2.2. ARIMAX model

The autoregressive integrated moving average
with exogenous variables (ARIMAX) model is a
classical statistical method for time-series
forecasting that extends the ARIMA framework
by incorporating external explanatory variables.
In wind power forecasting, ARIMAX enables
the inclusion of selected operating or
environmental parameters while modeling the
linear temporal dependence inherent in wind
power time-series data.

Let y, denote the wind power output at time t,
and let x., (k = 1, ..., K) represent the

exogenous variables. The ARIMAX (p, d, Q)
model in explicit time-domain form is expressed
as:

p
Ad Y :C+Z¢iAd Yisi
L (3)
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j=1 k=1

where A? is the differencing operator of order d,
c is a constant term, ¢ and 6, are the

autoregressive and moving average coefficients,
respectively, y,  denotes the regression

coefficient associated with the k™ exogenous
variable, and ¢, represents a zero-mean white

noise process.

The selection of the ARIMAX model order (p,
d, g) is commonly performed using the Bayesian
information criterion (BIC), which provides a
trade-off between model accuracy and
complexity. The BIC is defined as

BIC =nln(c- ) +rIn(n) 4)

where n is the number of observations, 02 is the
estimated variance of the residuals, and r
denotes the total number of estimated
parameters in the model. A lower BIC value
indicates a more parsimonious and statistically
preferable model. Owing to its interpretability
and well-established theoretical foundation, the
ARIMAX model is frequently employed as a
benchmark for evaluating advanced machine
learning and deep learning—based wind power
forecasting methods.

2.3. LSTM network



LSTM networks are a special class of RNNs
designed to effectively model long-term
temporal dependencies in sequential data.
Unlike conventional RNNs, which often suffer
from vanishing or exploding gradient problems,
LSTM introduces a memory cell and gating
mechanisms that regulate information flow over
time. Owing to these characteristics, LSTM has
been widely applied in wind power forecasting
to capture nonlinear and time-dependent patterns
in wind power time-series data.

An LSTM unit consists of a cell state and three
main gates: the forget gate, input gate, and
output gate. Given an input vector x, at time

step t, the hidden state h._,, and the cell state

t-11

C_,, the LSTM operations are defined as
follows:
Forget gate
f=c(Wx +Uh_ +b,) (5)
Input gate
i, =0 (Wx +Uh_ +b,) (6)
Candidate cell state
¢ =tanh(W,x, +Uh, , +b,) @)
Cell state update
¢, =f Oc_, +i, Oc (8)
Output gate
0, =o(W,x,+Uh,_, +b,) 9)

Hidden state
h, =0, ©tanh(c,) (10)

where o denotes the sigmoid activation
function, tanh(s) is the hyperbolic tangent

function, ©) represents element-wise

multiplication, W and U are weight matrices,
and b are bias vectors.

In wind power forecasting applications, the
LSTM network learns a nonlinear mapping
between historical wind power observations
(and optionally additional input variables) and
future power output. By maintaining a memory
of relevant past information, LSTM is capable of
modeling complex temporal dependencies and
sudden power fluctuations caused by changing
wind conditions.

2.4. Bayesian Optimization for LSTM
Hyperparameter Tuning

The forecasting performance of LSTM networks
is highly sensitive to hyperparameter selection.
Conventional tuning strategies, such as manual
adjustment or grid search, are computationally
inefficient and often fail to identify globally
optimal configurations, especially when model
training is costly. To overcome these limitations,
Bayesian  optimization is adopted to
systematically determine the optimal
hyperparameters for the proposed LSTM-based
wind power forecasting model.

2.4.1. Mathematic formulas

Let y, and y, denote the actual and predicted

wind power output at time step t, espectively.
The forecasting performance is evaluated using
the mean absolute error (MAE) and weighted
absolute percentage error (WAPE), defined as:

MAEz%Zn:

t=1

yt - yt (11)

N

2y

WAPE == x100% (12)

A
t=1

where N represents the total number of
validation samples.

To jointly account for absolute and relative
forecasting errors, a composite objective
function is constructed as

J =aMAE + (1- a)WAPE (13)
where « €[0,1] is a weighting coefficient.

The hyperparameter optimization problem is
formulated as

0 =arg min f(0) (14)

where f(0) corresponds to MAE or WAPE,
and Q denotes the feasible hyperparameter
search space.

2.4.2. Hyperparameter search space

The vector of LSTM hyperparameters to be
optimized is defined as

0=[N,,7,N,,d,L] (15)

where N, is the number of hidden units in the
LSTM layer, 7 is the learning rate, N, is the
number of training epochs, d is the dropout rate
applied to mitigate overfitting, L is the look-
back window length representing the number of
historical time steps used as input.
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These hyperparameters are selected due to their
significant influence on the model’s learning
capacity, convergence behavior, and
generalization performance.

2.4.3. Bayesian optimization framework

Bayesian optimization models the objective
function (@) as a Gaussian process (GP),

expressed as
f(8) ~ GP(1(0),k(8,0") (16)

where x(0) and k(0,0) denote the mean and

covariance functions, respectively. Based on
previously evaluated hyperparameter
configurations, the GP surrogate provides a
probabilistic estimate of the objective function,
including both the expected value and associated
uncertainty.

To guide the search process, the expected
improvement (El) acquisition function is
employed, defined as

E1(0) = E[max(f " — f (6),0)] 17)

where f" represents the best observed objective

value. The next hyperparameter vector is
determined by maximizing the acquisition
function:

0., =arg max EI(0). (18)

This iterative process continues until a
predefined stopping criterion, such as the
maximum number of evaluations, is reached.

3. CASE STUDY

The study focuses on the turbine no. 1 selected
from a six-unit wind farm situated along the
south-central coastline of Vietnam. The turbine
features a hub height of 114 m and a rotor
diameter of 132 m. Operational measurements
and power output data were acquired from the
SCADA system at 10-minute intervals over the
period from June 01 to June 30, 2025. The
dataset consists of a total of 4,320 observations.
The operational variables acquired from the
SCADA system include ambient temperature,
generator speed, nacelle position, pitch angle,
rotor speed, wind speed, bearing temperature,
winding temperature, hydraulic group pressure,
and wind power output. However, the bearing
and winding temperature variables are excluded
from further analysis because they primarily
reflect the thermal condition of mechanical and
electrical components rather than directly
influencing the aerodynamic power conversion

process. Moreover,  these  temperature
measurements are strongly correlated with
operating load and ambient conditions, which
may introduce redundancy and multicollinearity
without ~ providing  additional  predictive
information  for  short-term  wind  power
forecasting.

Table 1. Significant inputs using stepwise regression.

Input Selected by | p-value
stepwise

Ambient true 5.3482e-05

Temp

generator true 1.8914e-08

speed

nacelle true 0.0036724

position

pitch angle true 4.3119e-156

rotor speed true 2.1991e-06

wind speed true 0

Hidraulic false NaN

group

pressure

Stepwise regression is applied to the SCADA
dataset to systematically identify the operating
parameters that are most relevant to wind power
output. All candidate variables are initially
considered as potential predictors, and a
bidirectional stepwise procedure is employed, in
which variables are iteratively added to or
removed from the regression model based on
their statistical significance. At each iteration,
the inclusion or exclusion of a variable is
determined using the corresponding p-value
obtained from the F-test, with a predefined
significance threshold. This process continues
until no additional variables meet the criteria for
entry or removal, resulting in a parsimonious
regression model. The results are shown in
Table 1. The selected parameters are
demonstrated in Figure 1.

Based on the results, the selected variables
including ambient temperature, generator speed,
nacelle position, pitch angle, rotor speed, wind
speed, and wind power output are subsequently
used as inputs for the ARIMAX and LSTM
forecasting models.




Figure 2. Selected parameters using stepwise
regression.

STEPWISE REGRESSION — SELECTED INPUTS
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The ambient temperature, generator speed,
] nacelle position, pitch angle, rotor speed, and
] wind speed are illustrated in Figures 3, 4,5, 6, 7,
| and 8, respectively.
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Figure 8. Wind speed.

To establish a statistical benchmark for wind
power forecasting, an ARIMAX model is
developed using the significant operating
parameters identified through the stepwise
regression analysis. The model order is
determined by evaluating multiple competing
ARIMAX configurations and comparing them
using the BIC. Based on this criterion, the
optimal model structure is identified as
ARIMAX(0, 0, 3), which yields the minimum
BIC value of —6167.29, indicating a favorable
trade-off between model goodness-of-fit and
model complexity. Using this configuration, the
forecasting performance of the ARIMAX model
is subsequently evaluated.

In this study, a LSTM network is employed to
model the nonlinear temporal dependencies
inherent in short-term wind power time-series
data. The LSTM model is constructed using
historical wind power observations together with
the significant operating parameters selected
through stepwise regression. A sliding window
approach is adopted to generate input-output
pairs, where the look-back window determines
the number of previous time steps used for
prediction.

To further enhance forecasting accuracy and
robustness, Bayesian optimization is applied to
automatically tune the key hyperparameters of
the LSTM model. The optimization process
aims to minimize a composite objective
function, defined in Equation (13), which jointly
considers absolute and relative forecasting errors
through a weighted combination of MAE and
WAPE. By varying the weighting coefficient «
the trade-off between these two error metrics is
systematically investigated.

The optimization results indicate that the best
overall performance is achieved when « =0.6,
which provides a balanced emphasis on both
error criteria. Under this setting, Bayesian
optimization converges to the following optimal
LSTM hyperparameter configuration:

v Number of hidden units (N, ): 193
v Learning rate (7 ): 0.00048928
v Number of epochs (N,): 467

v Dropout rate (d ): 0.0094544
v Look-back window length (L): 27

Using this optimized configuration, the
forecasting performance of the Bayesian
optimization—-based LSTM model is evaluated.
Compared with other values of «, the results
obtained at «=0.6 demonstrate a superior
balance between absolute and relative error
minimization, thereby  confirming  the
effectiveness of the proposed composite
objective function. The performance evaluation
results of all forecasting models considered in
this case study are summarized in Table 2.

Table 2. Evaluation criteria.

Model MAPE WAPE (%)
ARIMAX 108.8 9.282
Bayesian 83.81 7.20
optimization—

based LSTM
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As shown in Table 2, the Bayesian
optimization-based LSTM model significantly
outperforms the ARIMAX benchmark in terms
of both MAE and WAPE. Specifically, the
LSTM model achieves a reduction of
approximately 22.9% in MAE and 22.4% in
WAPE compared with the ARIMAX model,
indicating its superior capability in capturing
nonlinear temporal patterns and complex
dependencies in wind power generation data.

Figures 9 and 10 illustrate comparisons between
the actual wind power generation and the

forecasting results produced by the ARIMAX
and Bayesian optimization—based LSTM
models, respectively. The actual wind power
values are represented by solid blue lines, while
the corresponding predicted values are shown as
dashed red lines. The visual comparison further
confirms that the Bayesian optimization—based
LSTM model more closely tracks the variations
in wind power output, particularly during rapid
fluctuations.
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Figure 9. The forecasted results of wind power generation using ARIMAX model.
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Figure 10. The forecasted

results of wind power generation using Bayesian optimization-based LSTM model.
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3. CONCLUSION

This paper proposed an effective short-term
wind power forecasting framework that
leverages high-resolution SCADA data from a
practical wind turbine. A stepwise regression
method was first applied to identify the most
significant operating parameters influencing
wind power output, thereby reducing input
dimensionality and improving model
interpretability. An ARIMAX model
incorporating the selected parameters was
developed as a statistical benchmark, while an
LSTM-based model was employed to capture
nonlinear and temporal characteristics of wind
power generation. To further enhance
forecasting accuracy, Bayesian optimization was
integrated to systematically tune the LSTM
hyperparameters using a composite objective
function combining MAE and WAPE. Results
from a real-world case study demonstrate that
the Bayesian optimization—based LSTM model
significantly  outperforms  the ARIMAX
benchmark in terms of both absolute and relative
error metrics. The proposed approach shows
superior capability in modeling complex wind
power dynamics and tracking rapid output
fluctuations. Overall, the findings confirm the
effectiveness of combining statistically selected
SCADA parameters with deep learning and
Bayesian hyperparameter optimization for
improving wind power forecasting accuracy.
Future work will extend the proposed
framework to wind farm-level forecasting and
probabilistic modeling to better support power
system operation under high wind power
penetration.
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