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Mô hình LSTM dựa trên tối ưu hóa Bayes dùng cho dự báo 
ngắn hạn công suất điện gió 

 
 

 

TÓM TẮT 

Phần lớn các phương pháp dự báo công suất điện gió hiện nay chủ yếu dựa trên dữ liệu chuỗi thời gian lịch 

sử của công suất phát tua-bin gió. Tuy nhiên, quá trình phát điện gió chịu ảnh hưởng đáng kể bởi các thông số vận 
hành tua-bin, những yếu tố thường bị bỏ qua và có thể làm giảm độ chính xác dự báo. Trong nghiên cứu này, dữ liệu 

vận hành thu thập từ hệ thống SCADA của một tua-bin gió thực tế được sử dụng nhằm nâng cao hiệu quả dự báo 

công suất điện gió. Phương pháp hồi quy từng bước được áp dụng để xác định các thông số vận hành có ảnh hưởng 

quan trọng đến công suất phát, qua đó giảm số chiều dữ liệu đầu vào và nâng cao khả năng diễn giải của mô hình. 

Mô hình thống kê truyền thống ARIMAX được xây dựng làm mô hình tham chiếu cho bài toán dự báo. Đồng thời, 

mô hình học sâu LSTM được triển khai nhằm mô tả đặc tính phi tuyến và sự biến thiên theo thời gian của dữ liệu 

công suất gió, trong đó các siêu tham số được tối ưu bằng phương pháp tối ưu hóa Bayes. Hiệu quả dự báo của mô 

hình LSTM sau tối ưu hóa được so sánh với mô hình ARIMAX. Kết quả thực nghiệm cho thấy mô hình LSTM dựa 

trên tối ưu hóa Bayes có kết quả dự báo tốt hơn so với mô hình ARIMAX theo các tiêu chí MAE và WAPE. Kết quả 

này khẳng định hiệu quả của việc kết hợp các thông số vận hành quan trọng và tối ưu hóa Bayes trong việc nâng cao 

độ chính xác dự báo công suất điện gió. 

Từ khóa: Dự báo điện gió, ARIMAX, Tối ưu hóa Bayes, LSTM. 

 



 

2 

 

  

 

Bayesian optimization-based LSTM model for short-term 
wind power forecasting 

 
 

  

ABSTRACT 

Most existing wind power forecasting methods rely primarily on historical time-series data of wind turbine 

output. However, wind power generation is strongly influenced by turbine operating parameters, which are often 

neglected and may degrade forecasting accuracy. In this study, operational data collected from a practical wind 

turbine SCADA system are utilized to enhance wind power forecasting performance. First, stepwise regression is 

employed to identify the most significant operating parameters affecting wind turbine power output, thereby 

reducing input dimensionality and improving model interpretability. Next, a traditional statistical autoregressive 

integrated moving average with exogenous variables (ARIMAX) model is developed as a benchmark forecasting 

approach. In addition, a deep learning model, namely a long short-term memory (LSTM) network, is implemented 

to capture the nonlinear and temporal characteristics of wind power data. To further improve forecasting accuracy, 

the hyperparameters of the LSTM model are optimized using Bayesian optimization. The Bayesian optimization–

based LSTM model is then proposed as an alternative approach for wind power forecasting. The forecasting 
performance of the optimized LSTM model is systematically compared with that of the ARIMAX model. 

Experimental results demonstrate that the optimized LSTM model significantly outperforms the traditional 

ARIMAX approach in terms of mean absolute error (MAE) and weighted absolute percentage error (WAPE). These 

findings confirm the effectiveness of incorporating significant operating parameters and Bayesian hyperparameter 

optimization in improving wind power forecasting accuracy.   

Keywords: Wind power forecasting, ARIMAX, Bayesian optimization, LSTM. 

1. INTRODUCTION  

In recent decades, there has been a rapid 

expansion of renewable energy sources, among 

which wind power has emerged as one of the 

most prominent contributors to the global energy 
transition. Compared with solar power, wind 

energy offers several distinct advantages within 

modern power systems. Wind power generally 
exhibits a higher capacity factor, enabling more 

efficient utilization of installed generation 

capacity over long operating periods. 
Furthermore, wind turbines are capable of 

producing electricity continuously throughout 

both daytime and nighttime, whereas solar 

power generation is strictly constrained by solar 

irradiance availability. 

In addition, the variability of wind power output 

is often more gradual and less sensitive to short-
term atmospheric disturbances, such as passing 

cloud cover, than solar photovoltaic generation. 

This characteristic contributes to smoother 
power profiles and enhances short-term 

operational stability at the system level. Wind 

power also allows for flexible land use, 

particularly in onshore installations where 
agricultural or industrial activities can coexist 

with wind farms. Moreover, wind energy 

demonstrates strong potential for large-scale 
deployment, especially in offshore 

environments, where higher and more consistent 

wind speeds enable substantial generation 

capacity. As a result, wind power plays a crucial 
role in reducing greenhouse gas emissions, 

mitigating climate change, and promoting 

sustainable development. Owing to these 
advantages, wind power has been widely 

integrated into power systems worldwide and 

continues to experience rapid growth. 

Despite its considerable benefits, wind power 

also presents significant challenges due to its 

inherent dependence on meteorological 

conditions. The electrical output of wind 
turbines varies nonlinearly with wind speed and 

is further influenced by wind direction, air 

density, and turbine operating states, leading to 
pronounced intermittency and uncertainty. 

These fluctuations introduce substantial 

difficulties for power system operators, 
including increased requirements for spinning 

reserves, frequency and voltage regulation, and 

real-time balancing actions. As the penetration 

level of wind power continues to rise, 
forecasting inaccuracies may exacerbate supply–

demand imbalances, trigger local network 
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congestion, compromise system reliability, and 

negatively affect electricity market operations. 
Consequently, the development of accurate and 

reliable wind power forecasting techniques is of 

critical importance for generation planning, 
economic dispatch, reserve allocation, and the 

secure and efficient operation of modern power 

systems. 

Fundamentally, wind power forecasting can be 
classified into several categories, including very 

short-term, short-term, medium-term, and long-

term forecasting, corresponding to different 
objectives and requirements in power system 

operation and planning. Very short-term 

forecasting, typically ranging from several 

minutes to a few hours, mainly supports real-
time control, frequency and voltage stability, 

and the integration of renewable energy sources 

into the grid. Short-term forecasting, covering 
time horizons from several hours to several 

days, plays an important role in unit 

commitment, generation dispatch, reserve 
management, and participation in electricity 

markets. Medium-term forecasting, usually 

extending from several days to several weeks, is 

used for maintenance planning, fuel 
management, and reliability assessment of 

power system operation. Meanwhile, long-term 

forecasting, with horizons ranging from several 
months to several years, primarily serves 

generation and transmission planning, 

investment evaluation, and the formulation of 

long-term energy policies 1. 

To address the wind power forecasting problem, 

numerous forecasting methods have been 

proposed in the literature. These models can be 
broadly categorized into statistical models, 

artificial intelligence (AI)-based models, and 

hybrid models. Statistical models applied to 
wind power forecasting include exponential 

smoothing approaches 2,3, autoregressive (AR) 

models 4, autoregressive moving average 

(ARMA) models 5,6, and autoregressive 
integrated moving average (ARIMA) models 7,8. 

Statistical models are among the earliest and 

most widely used approaches for wind power 
forecasting due to their simple structure, clear 

interpretability, and low computational cost. 

Traditional time-series models such as AR, MA, 
and ARIMA exploit linear relationships between 

wind power output and past values of the data 

series, often yielding satisfactory results for 

relatively stable time series with smooth 
variations 9. However, the performance of 

statistical models strongly depends on 

assumptions of linearity and stationarity, as well 

as appropriate selection of input variables. 

Consequently, when applied to wind power 
systems with high variability and pronounced 

nonlinear characteristics, statistical models are 

typically used as benchmark references for 
comparison with more advanced machine 

learning and deep learning approaches 10. 

In the field of wind power forecasting, numerous 

AI–based models have been proposed to capture 
nonlinear relationships and complex dynamics 

in time-series data. Feedforward neural 

networks, such as the multilayer perceptron 11, 
commonly trained using the back-propagation 

neural network (BP NN) algorithm 12, were 

among the earliest models applied and 

demonstrated improved performance over 
traditional statistical methods. To better exploit 

temporal dependencies, recurrent neural 

networks (RNNs) were developed, with variants 
such as the Elman neural network and layered 

RNNs used to retain past state information of 

time-series data 13. In recent years, deep 
recurrent learning models such as long short-

term memory (LSTM) 14 and gated recurrent 

unit  networks 15 have become dominant 

approaches in wind power forecasting due to 
their ability to effectively capture long-term 

dependencies and mitigate the vanishing 

gradient problem. Variants such as bidirectional 
LSTM (BiLSTM) further exploit information in 

both temporal directions to improve forecasting 

accuracy 16. In addition, the echo state network, 
a type of recurrent network with randomly 

generated reservoirs, has also been investigated 

as a computationally efficient solution for wind 

power time-series forecasting 17. Beyond neural 
networks, machine learning methods such as 

support vector machines (SVM) 18 and gradient 

boosting regression trees 19 have been widely 
applied to wind power forecasting owing to their 

robustness in handling nonlinear and noisy data. 

Finally, ensemble models that combine multiple 

forecasting methods have been proposed to 
enhance both accuracy and robustness of 

forecasting results 20. 

In recent years, combined models have been 
extensively studied in wind power forecasting to 

leverage the strengths of different methods while 

mitigating the limitations of individual models. 
These hybrid approaches often integrate signal 

processing techniques—such as empirical mode 

decomposition (EMD), variational mode 

decomposition (VMD), or wavelet transform—
with forecasting models including neural 

networks, deep learning models, or machine 

learning algorithms, in order to decompose wind 
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power series into different oscillatory 

components and improve the learning capability 
of forecasting models 21,22. Other hybrid 

approaches, including autoregressive 

fractionally integrated moving average 
combined with least squares support vector 

machines 23, boosting algorithms combined with 

ARMA models 24, hybrid CEEMDAN–EWT 

deep learning methods 25, as well as neuro-
wavelet and LSTM models, have demonstrated 

improved forecasting accuracy and robustness 

under highly variable wind conditions. 
Empirical studies indicate that hybrid models 

generally outperform single models, particularly 

in short-term and very short-term wind power 

forecasting 26.  

Nevertheless, most existing models still 

primarily rely on wind power time-series data, 

while the in-depth exploitation of detailed wind 
turbine operational parameters obtained from 

SCADA systems remains limited and has not 

been comprehensively investigated. Recent 
studies have begun to incorporate wind turbine 

operational parameters, for example by applying 

response surface methodology, in which 

variables such as wind speed, nacelle position, 
pitch angle, and ambient temperature are used to 

forecast turbine power output 27. Recurrent 

neural network–based models, including 
nonlinear autoregressive neural networks with 

external inputs, layer recurrent neural network 

models, distributed delay neural network 
models, and time delay neural network models, 

have also utilized operational parameters such as 

wind speed, pitch angle, ambient temperature, 

nacelle position, and wind direction, in addition 
to turbine power output, to improve forecasting 

performance 28. 

Despite the extensive body of research on wind 
power forecasting, several fundamental 

limitations remain insufficiently addressed. 

Most existing studies primarily exploit historical 

wind power time-series data, often 
supplemented by a limited number of 

meteorological variables, while the rich and 

high-resolution operational information 
available from wind turbine SCADA systems is 

largely underutilized. Moreover, input variable 

selection in many previous works is commonly 
based on empirical assumptions or prior 

experience, lacking a systematic and statistically 

grounded procedure to identify the most 

influential operational parameters, which may 
introduce input redundancy, obscure physical 

interpretability, and degrade model 

generalization. Furthermore, although deep 

learning models—particularly LSTM 

networks—have demonstrated strong potential 
in capturing nonlinear temporal dependencies, 

their forecasting performance is highly sensitive 

to hyperparameter selection. However, 
hyperparameter tuning is often conducted using 

trial-and-error or grid search strategies, which 

are computationally inefficient and prone to 

suboptimal solutions. 

To overcome these limitations, this study 

leverages high-resolution SCADA data from a 

real operating wind turbine, incorporating a 
comprehensive set of operational parameters. A 

stepwise regression method is first employed to 

rigorously identify the statistically significant 

variables that most strongly influence wind 
turbine power output, thereby enhancing model 

interpretability and reducing input 

dimensionality. An LSTM-based forecasting 
model is then developed to effectively capture 

the nonlinear and dynamic characteristics of 

wind power generation. A key contribution of 
this work is the integration of Bayesian 

optimization for the systematic and efficient 

tuning of LSTM hyperparameters, enabling the 

model to achieve improved predictive 
performance while avoiding excessive 

computational cost. The proposed approach is 

benchmarked against a conventional ARIMAX 
model, and comparative results demonstrate that 

the proposed method consistently delivers 

superior forecasting accuracy, as evidenced by 
lower mean absolute error (MAE) and weighted 

absolute percentage error (WAPE). An overview 

of the proposed wind power forecasting 

approach is demonstrated in Figure 1. 

Operating parameters 

from SCADA

Data preprocessing 

(missing values)

MAE WAPE

Better forecasting model

Stepwise regression

Significant inputs

Normalization

ARIMAX LSTM
Bayesian 

optimization
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Figure 1. Overview of the proposed wind power 

forecasting approach. 

2. METHODOLOGY 

2.1. Stepwise regression 

Stepwise regression is a statistical feature 

selection approach built upon the multiple linear 

regression framework, aiming to identify a 
parsimonious subset of explanatory variables 

that significantly affect the response variable. 

The relationship between the dependent variable 

and candidate predictors is expressed as 

 0

1

m

i i

i

y x  
=

= + +   (1) 

where y  denotes the response variable (e.g., 

wind turbine power output), ix  (i = 1, …, m) 

represent candidate explanatory variables (e.g., 
operating parameters obtained from the SCADA 

system), 0  is the intercept, i  are regression 

coefficients, and   is a random error term. 

The stepwise procedure iteratively updates the 

regression model by adding or removing 
variables based on their statistical significance. 

A commonly used criterion is the p-value, which 

represents the probability of observing a 
regression coefficient at least as extreme as the 

estimated one under the null hypothesis that the 

coefficient equals zero. Variables with p-values 

below a predefined significance level (e.g., 0.05) 
are retained, while statistically insignificant 

variables are removed. In addition, model 

selection can be guided by information-theoretic 
criteria such as the Akaike information criterion 

(AIC), defined as 

 ln 2
RSS

AIC n m
n

 
= + 

 
  (2) 

where RSS  is the residual sum of squares of the 

regression model, n is the number of 

observations, and m denotes the number of 

explanatory variables included in the model. 
Lower values of AIC indicate a better trade-off 

between model goodness-of-fit and complexity. 

This iterative process continues until no further 
improvement can be achieved according to the 

selected criteria. In wind power forecasting 

applications, stepwise regression provides a 

statistically grounded and interpretable method 
for identifying influential operating parameters 

from high-dimensional SCADA data, thereby 

reducing input redundancy and enhancing the 

robustness and generalization capability of 

subsequent forecasting models. 

2.2. ARIMAX model 

The autoregressive integrated moving average 

with exogenous variables (ARIMAX) model is a 
classical statistical method for time-series 

forecasting that extends the ARIMA framework 

by incorporating external explanatory variables. 

In wind power forecasting, ARIMAX enables 
the inclusion of selected operating or 

environmental parameters while modeling the 

linear temporal dependence inherent in wind 

power time-series data. 

Let ty  denote the wind power output at time t, 

and let ,k tx  (k = 1, …, K) represent the 

exogenous variables. The ARIMAX (p, d, q) 
model in explicit time-domain form is expressed 

as: 
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where d  is the differencing operator of order d, 

c is a constant term, i  and j  are the 

autoregressive and moving average coefficients, 

respectively, k  denotes the regression 

coefficient associated with the kth exogenous 

variable, and t  represents a zero-mean white 

noise process. 

The selection of the ARIMAX model order (p, 

d, q) is commonly performed using the Bayesian 
information criterion (BIC), which provides a 

trade-off between model accuracy and 

complexity. The BIC is defined as 

 
2

ln( ) ln( )BIC n r n= +  (4) 

where n is the number of observations, 
2

  is the 

estimated variance of the residuals, and r 

denotes the total number of estimated 
parameters in the model. A lower BIC value 

indicates a more parsimonious and statistically 

preferable model. Owing to its interpretability 

and well-established theoretical foundation, the 
ARIMAX model is frequently employed as a 

benchmark for evaluating advanced machine 

learning and deep learning–based wind power 

forecasting methods. 

2.3. LSTM network 
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LSTM networks are a special class of RNNs 

designed to effectively model long-term 
temporal dependencies in sequential data. 

Unlike conventional RNNs, which often suffer 

from vanishing or exploding gradient problems, 
LSTM introduces a memory cell and gating 

mechanisms that regulate information flow over 

time. Owing to these characteristics, LSTM has 

been widely applied in wind power forecasting 
to capture nonlinear and time-dependent patterns 

in wind power time-series data. 

An LSTM unit consists of a cell state and three 
main gates: the forget gate, input gate, and 

output gate. Given an input vector tx  at time 

step t, the hidden state 1t−h , and the cell state 

1t−c , the LSTM operations are defined as 

follows: 

Forget gate 

 ( )1t f t f t f −= + +f W x U h b  (5) 

Input gate 

 ( )1t t t i t i −= + +i W x U h b  (6) 

Candidate cell state 

 ( )1tanht c t c t c−= + +c W x U h b  (7) 

Cell state update 

 1 tt t t t−= +c f c i c  (8) 

Output gate 

 ( )1t o t o t o −= + +o W x U h b  (9) 

Hidden state 

 tanh( )t t t=h o c  (10) 

where   denotes the sigmoid activation 

function, tanh( )  is the hyperbolic tangent 

function,  represents element-wise 

multiplication, W  and U  are weight matrices, 

and b  are bias vectors. 

In wind power forecasting applications, the 

LSTM network learns a nonlinear mapping 

between historical wind power observations 
(and optionally additional input variables) and 

future power output. By maintaining a memory 

of relevant past information, LSTM is capable of 

modeling complex temporal dependencies and 
sudden power fluctuations caused by changing 

wind conditions. 

2.4. Bayesian Optimization for LSTM 

Hyperparameter Tuning 

The forecasting performance of LSTM networks 

is highly sensitive to hyperparameter selection. 
Conventional tuning strategies, such as manual 

adjustment or grid search, are computationally 

inefficient and often fail to identify globally 
optimal configurations, especially when model 

training is costly. To overcome these limitations, 

Bayesian optimization is adopted to 

systematically determine the optimal 
hyperparameters for the proposed LSTM-based 

wind power forecasting model. 

2.4.1. Mathematic formulas 

Let ty  and 
t

y  denote the actual and predicted 

wind power output at time step t, espectively. 
The forecasting performance is evaluated using 

the mean absolute error (MAE) and weighted 

absolute percentage error (WAPE), defined as: 

 
1

1 n

t t

t

MAE y y
n =

= −  (11) 

 1

1

100%

N

t t

t

N

t

t

y y

WAPE

y

=

=

−

= 



 (12) 

where N represents the total number of 

validation samples.  

To jointly account for absolute and relative 

forecasting errors, a composite objective 

function is constructed as 

 (1 )J MAE WAPE = + −  (13) 

where [0,1]   is a weighting coefficient. 

The hyperparameter optimization problem is 

formulated as 

 * arg min ( )f


=
θ

θ θ  (14) 

where ( )f θ  corresponds to MAE or WAPE, 

and   denotes the feasible hyperparameter 

search space. 

2.4.2. Hyperparameter search space 

The vector of LSTM hyperparameters to be 

optimized is defined as 

 [ , , , , ]h eN N d L=θ  (15) 

where hN  is the number of hidden units in the 

LSTM layer,   is the learning rate, eN  is the 

number of training epochs, d  is the dropout rate 

applied to mitigate overfitting, L  is the look-
back window length representing the number of 

historical time steps used as input. 
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These hyperparameters are selected due to their 

significant influence on the model’s learning 
capacity, convergence behavior, and 

generalization performance. 

2.4.3. Bayesian optimization framework 

Bayesian optimization models the objective 

function ( )f θ  as a Gaussian process (GP), 

expressed as 

 ( )( ) ( ), ( , ')f GP kθ θ θ θ  (16) 

where ( ) θ  and ( , ')k θ θ  denote the mean and 

covariance functions, respectively. Based on 

previously evaluated hyperparameter 

configurations, the GP surrogate provides a 
probabilistic estimate of the objective function, 

including both the expected value and associated 

uncertainty. 

To guide the search process, the expected 

improvement (EI) acquisition function is 

employed, defined as 

 *( ) [max( ( ),0)]EI f f=  −θ θ  (17) 

where *f  represents the best observed objective 

value. The next hyperparameter vector is 

determined by maximizing the acquisition 

function: 

 
1 argmax ( )n EI+


=

θ
θ θ . (18) 

This iterative process continues until a 
predefined stopping criterion, such as the 

maximum number of evaluations, is reached. 

3. CASE STUDY 

The study focuses on the turbine no. 1 selected 

from a six-unit wind farm situated along the 

south-central coastline of Vietnam. The turbine 

features a hub height of 114 m and a rotor 
diameter of 132 m. Operational measurements 

and power output data were acquired from the 

SCADA system at 10-minute intervals over the 
period from June 01 to June 30, 2025. The 

dataset consists of a total of 4,320 observations. 

The operational variables acquired from the 
SCADA system include ambient temperature, 

generator speed, nacelle position, pitch angle, 

rotor speed, wind speed, bearing temperature, 

winding temperature, hydraulic group pressure, 
and wind power output. However, the bearing 

and winding temperature variables are excluded 

from further analysis because they primarily 
reflect the thermal condition of mechanical and 

electrical components rather than directly 

influencing the aerodynamic power conversion 

process. Moreover, these temperature 

measurements are strongly correlated with 
operating load and ambient conditions, which 

may introduce redundancy and multicollinearity 

without providing additional predictive 
information for short-term wind power 

forecasting. 

Table 1. Significant inputs using stepwise regression. 

Input Selected by 

stepwise 

p-value 

Ambient 

Temp 
true 5.3482e-05 

generator 

speed 

true 1.8914e-08 

nacelle 

position 
true 0.0036724 

pitch angle true 4.3119e-156 

rotor speed true 2.1991e-06 

wind speed true 0 

Hidraulic 

group 

pressure 

false NaN 

Stepwise regression is applied to the SCADA 

dataset to systematically identify the operating 

parameters that are most relevant to wind power 

output. All candidate variables are initially 
considered as potential predictors, and a 

bidirectional stepwise procedure is employed, in 

which variables are iteratively added to or 
removed from the regression model based on 

their statistical significance. At each iteration, 

the inclusion or exclusion of a variable is 
determined using the corresponding p-value 

obtained from the F-test, with a predefined 

significance threshold. This process continues 

until no additional variables meet the criteria for 
entry or removal, resulting in a parsimonious 

regression model. The results are shown in 

Table 1. The selected parameters are 

demonstrated in Figure 1. 

Based on the results, the selected variables 

including ambient temperature, generator speed, 
nacelle position, pitch angle, rotor speed, wind 

speed, and wind power output are subsequently 

used as inputs for the ARIMAX and LSTM 

forecasting models. 
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Figure 2. Selected parameters using stepwise 

regression. 

The ambient temperature, generator speed, 
nacelle position, pitch angle, rotor speed, and 

wind speed are illustrated in Figures 3, 4, 5, 6, 7, 

and 8, respectively. 

 

Figure 3. Ambient temperature. 

 

Figure 4. Generator speed. 
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Figure 5. Nacelle position. 

 

Figure 6. Pitch angle. 

 

Figure 7. Rotor speed. 
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Figure 8. Wind speed. 

To establish a statistical benchmark for wind 

power forecasting, an ARIMAX model is 
developed using the significant operating 

parameters identified through the stepwise 

regression analysis. The model order is 

determined by evaluating multiple competing 
ARIMAX configurations and comparing them 

using the BIC. Based on this criterion, the 

optimal model structure is identified as 
ARIMAX(0, 0, 3), which yields the minimum 

BIC value of −6167.29, indicating a favorable 

trade-off between model goodness-of-fit and 
model complexity. Using this configuration, the 

forecasting performance of the ARIMAX model 

is subsequently evaluated. 

In this study, a LSTM network is employed to 
model the nonlinear temporal dependencies 

inherent in short-term wind power time-series 

data. The LSTM model is constructed using 
historical wind power observations together with 

the significant operating parameters selected 

through stepwise regression. A sliding window 

approach is adopted to generate input–output 
pairs, where the look-back window determines 

the number of previous time steps used for 

prediction. 

To further enhance forecasting accuracy and 

robustness, Bayesian optimization is applied to 

automatically tune the key hyperparameters of 
the LSTM model. The optimization process 

aims to minimize a composite objective 

function, defined in Equation (13), which jointly 

considers absolute and relative forecasting errors 
through a weighted combination of MAE and 

WAPE. By varying the weighting coefficient  , 

the trade-off between these two error metrics is 

systematically investigated. 

The optimization results indicate that the best 

overall performance is achieved when 0.6 = , 

which provides a balanced emphasis on both 

error criteria. Under this setting, Bayesian 
optimization converges to the following optimal 

LSTM hyperparameter configuration: 

✓ Number of hidden units ( hN ): 193 

✓ Learning rate ( ): 0.00048928 

✓ Number of epochs ( eN ): 467 

✓ Dropout rate ( d ): 0.0094544 

✓ Look-back window length ( L ): 27 

Using this optimized configuration, the 

forecasting performance of the Bayesian 
optimization–based LSTM model is evaluated. 

Compared with other values of  , the results 

obtained at 0.6 =   demonstrate a superior 

balance between absolute and relative error 

minimization, thereby confirming the 

effectiveness of the proposed composite 

objective function. The performance evaluation 
results of all forecasting models considered in 

this case study are summarized in Table 2. 

Table 2. Evaluation criteria. 

Model MAPE WAPE (%) 

ARIMAX 108.8 9.282 

Bayesian 

optimization–

based LSTM 

83.81 7.20 
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As shown in Table 2, the Bayesian 

optimization–based LSTM model significantly 
outperforms the ARIMAX benchmark in terms 

of both MAE and WAPE. Specifically, the 

LSTM model achieves a reduction of 
approximately 22.9% in MAE and 22.4% in 

WAPE compared with the ARIMAX model, 

indicating its superior capability in capturing 

nonlinear temporal patterns and complex 

dependencies in wind power generation data. 

Figures 9 and 10 illustrate comparisons between 

the actual wind power generation and the 

forecasting results produced by the ARIMAX 

and Bayesian optimization–based LSTM 
models, respectively. The actual wind power 

values are represented by solid blue lines, while 

the corresponding predicted values are shown as 
dashed red lines. The visual comparison further 

confirms that the Bayesian optimization–based 

LSTM model more closely tracks the variations 

in wind power output, particularly during rapid 

fluctuations. 

 

Figure 9. The forecasted results of wind power generation using ARIMAX model. 

 

Figure 10. The forecasted results of wind power generation using Bayesian optimization-based LSTM model.
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3. CONCLUSION 

This paper proposed an effective short-term 
wind power forecasting framework that 

leverages high-resolution SCADA data from a 

practical wind turbine. A stepwise regression 
method was first applied to identify the most 

significant operating parameters influencing 

wind power output, thereby reducing input 

dimensionality and improving model 
interpretability. An ARIMAX model 

incorporating the selected parameters was 

developed as a statistical benchmark, while an 
LSTM-based model was employed to capture 

nonlinear and temporal characteristics of wind 

power generation. To further enhance 

forecasting accuracy, Bayesian optimization was 
integrated to systematically tune the LSTM 

hyperparameters using a composite objective 

function combining MAE and WAPE. Results 
from a real-world case study demonstrate that 

the Bayesian optimization–based LSTM model 

significantly outperforms the ARIMAX 
benchmark in terms of both absolute and relative 

error metrics. The proposed approach shows 

superior capability in modeling complex wind 

power dynamics and tracking rapid output 
fluctuations. Overall, the findings confirm the 

effectiveness of combining statistically selected 

SCADA parameters with deep learning and 
Bayesian hyperparameter optimization for 

improving wind power forecasting accuracy. 

Future work will extend the proposed 
framework to wind farm–level forecasting and 

probabilistic modeling to better support power 

system operation under high wind power 

penetration. 
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