
 

 

Mô hình AI trên FPGA: Mô hình CNN gọn nhẹ thông lượng 
cao và công suất thấp cho bài toán nhận dạng chữ số 

 

 

 

TÓM TẮT 

Nghiên cứu này trình bày việc thiết kế và triển khai một mạng nơ-ron tích chập trên nền tảng SoC–FPGA để 

phân loại chữ số viết tay sử dụng bộ dữ liệu MNIST. Mục tiêu là xây dựng một bộ gia tốc CNN gọn nhẹ và hiệu quả, 

có dưới 1,000 tham số, hoạt động tương thích với bộ xử lý ARM trên bo mạch PYNQ-Z2 thông qua các giao tiếp 

DMA và AXI. Bộ gia tốc được hiện thực ở mức RTL, với các giai đoạn mô phỏng, tổng hợp và tối ưu hóa tài nguyên, 

đồng thời vẫn duy trì được độ chính xác của quá trình suy luận. Trên 10,000 ảnh kiểm thử MNIST, hệ thống đạt độ 

chính xác 91.28%—thấp hơn khoảng 5% so với mô hình chạy trên CPU hai nhân ARM Cortex-A9 (96.26%)—nhưng 

lại mang lại tốc độ xử lý nhanh hơn 7 lần và giảm 36% mức tiêu thụ điện năng. Thiết kế cho thấy hiệu quả của việc 

song song hóa và pipeline hóa các phép tích chập trực tiếp trên FPGA, giúp giảm đáng kể mức sử dụng tài nguyên và 

công suất tiêu thụ. Những kết quả này cung cấp một nền tảng thực tiễn cho các ứng dụng AI nhúng thời gian thực—

chẳng hạn như nhận dạng ký tự, giám sát hình ảnh, hệ thống IoT thông minh và tính toán biên—trên các nền tảng 

SoC–FPGA. 

Từ khóa: Bộ tăng tốc Mạng Nơ-ron Tích chập (Convolutional Neural Networks Accelerator), FPGA, Hệ thống trên 

Chip (System on Chip), MNIST, Phân loại ảnh.
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ABSTRACT 

This work presents the design and deployment of a Convolutional Neural Network on an SoC–FPGA platform 

for handwritten digit classification using the MNIST dataset. The goal is a compact, efficient FPGA-based CNN 

accelerator with fewer than 1,000 parameters that integrates seamlessly with the ARM processor on the PYNQ-Z2 

board via DMA and AXI interfaces. The accelerator is realized at the register-transfer level and undergoes simulation, 

synthesis, and resource-focused optimization while preserving inference accuracy. On 10,000 MNIST test images, the 

system attains 91.28% accuracy—about 5 percentage points below a CPU implementation on dual ARM Cortex-A9 

cores (96.26%)—but delivers a 7–8× speedup and a 36% reduction in power consumption. The design highlights 

effective parallelization and pipelining of convolution operations directly on the FPGA, achieving low resource usage 

and power draw. These results provide a practical foundation for real-time embedded AI applications—such as 

character recognition, image monitoring, intelligent IoT systems, and edge computing—on SoC–FPGA platforms. 

Keywords: Convolutional Neural Networks Accelerator, FPGA, System on Chip, MNIST, Image Classification.

1. INTRODUCTION 

In recent years, Convolutional Neural Networks 

(CNNs) have become the dominant approach for 

image recognition and classification owing to 

their efficient spatial feature extraction and high 

accuracy.1 However, CNN models typically 

require substantial computation and memory, 

which makes deployment challenging on 

embedded systems with limited hardware 

resources.2 Field-Programmable Gate Arrays 

(FPGAs)—with their flexibility, massive 

parallelism, and low power consumption—have 

proven to be effective platforms for accelerating 

CNNs in embedded applications.1,3 

Implementing CNNs on FPGAs can reduce 

inference latency relative to CPU- or GPU-based 

software while efficiently utilizing hardware 

resources such as DSP slices, Lookup Tables 

(LUTs), and block RAM (BRAM). To achieve 

high performance on FPGAs, many studies 

quantize weights and activations to replace 

floating-point operations with integer arithmetic, 

thereby reducing hardware complexity while 

maintaining accuracy.2 In addition, techniques 

such as parallelization, pipelining, and data reuse 

are commonly applied to increase throughput and 

optimize memory bandwidth.3 In SoC–FPGA 

architectures, the integration of FPGA 

Programmable Logic (PL) and the embedded 

ARM Processing System (PS) provides a balance 

between performance and flexibility.4 The PL 

handles computationally intensive kernels, while 

the PS manages control and data movement via 

direct memory access (DMA) over the Advanced 

eXtensible Interface (AXI) interconnect.5,6 On 

the PYNQ-Z2 platform, the Python Productivity 

for Zynq (PYNQ) framework enables direct 

control and testing of the CNN accelerator from 

Python, facilitating data transfer between Double 

Data Rate (DDR) memory and the FPGA and 

thereby simplifying system development and 

evaluation.6,7This work presents the design and 

implementation of a lightweight CNN accelerator 

on an SoC–FPGA platform for handwritten-digit 

classification using the Modified National 

Institute of Standards and Technology (MNIST) 

dataset. The model is optimized to fewer than 

1,000 parameters to balance accuracy, memory 

footprint, and hardware feasibility on the PYNQ-

Z2. The system employs DMA/AXI for data 

exchange between the CPU and FPGA and 

integrates the PYNQ framework for control and 

real-time inference. Experimental results 

demonstrate that the proposed design delivers 

high performance, efficient resource utilization, 

and low power consumption, confirming the 

feasibility of FPGA-based real-time embedded 

AI systems. 

2. RELATED WORKS 

MNIST inference on FPGA/SoC platforms has 

been extensively explored along two main 

directions: (i) extreme-quantization approaches 

(binary/ternary) that push hardware efficiency 



and throughput, and (ii) fixed-/integer-point 

CNN deployments (LeNet-5-based CNN) that 

target higher accuracy with moderate resource 

cost. In the first direction, FINN provides a 

representative toolflow for binarized neural 

networks on FPGAs and reports multi-million 

classifications per second on MNIST with sub-

microsecond latency on a Zynq ZC706 platform, 

together with explicit performance and power 

reporting8. In the fixed-/integer-point CNN 

category, González et al. implement a LeNet-5 

inference accelerator using an SW/HW co-

processing scheme on a Zynq-7000 Arty Z7-20, 

reporting 97.59% MNIST accuracy with 12-bit 

fixed-point arithmetic and approximately 441 

images/s at 100 MHz9. More recent full-network 

deployments using HLS on Zynq devices provide 

more complete reporting of model scale and 

system metrics; for example, Liang et al. detail 

LeNet-5 weight counts and report end-to-end 

inference time, power, and error rate (e.g., 1.07 

ms, 2.193 W, and 0.99% error for their 

PIPELINE design)10. Complementary to binary 

networks, ternary models have also been 

proposed to improve efficiency while retaining 

more representational capacity than binarization; 

Alemdar et al. present ternary neural networks 

and discuss FPGA/ASIC realizations that 

leverage low-precision arithmetic and sparsity 

effects for energy-efficient inference11. Beyond 

CNNs, compact fixed-point DNN 

implementations that keep weights entirely in on-

chip memory have also been demonstrated to 

reduce external memory traffic; Park and Sung 

describe an FPGA-based DNN design using 3-bit 

weights with on-chip storage (no external DRAM 

access) and report <5 W full-speed power in their 

MNIST evaluation12. 

 

3. DESIGN METHODOLOGY 

As shown in Figure 1, the design process 

comprises four stages: first, we specify the 

MNIST classification task, target performance 

and accuracy, hardware resource constraints, and 

the PS–PL communication scheme within the 

Zynq SoC to guide subsequent decisions. Next, 

we design, train, and quantize the CNN in 

PyTorch, convert the quantized weights to 8-bit 

integers (int8), and export them as HEX files for 

the hardware stage. We then implement the CNN 

functional blocks at the Register-Transfer Level 

(RTL), perform simulation and synthesis to 

evaluate resource usage (LUTs, DSPs, BRAM), 

and integrate the accelerator into the Zynq SoC 

via the AXI4-Stream interface to enable high-

throughput PS–PL data movement. Finally, we 

deploy the generated bitstream on the PYNQ-Z2, 

control execution through the PYNQ framework 

on the ARM Cortex-A9, and evaluate the system 

using 10,000 MNIST test images to measure 

performance, accuracy, and hardware resource 

utilization. 

 

3.1 CNNs for Hand-written digit classification 

Selecting an appropriate CNN model is pivotal to 

the overall system design because it directly 

influences accuracy, processing latency, and 

hardware resource utilization on the FPGA. On 

an SoC–FPGA platform constrained by DSP 

slices, LUTs, and BRAM, the model must 

balance computational complexity with hardware 

feasibility: an excessive parameter count can 

exceed on-chip storage, increase DDR access 

latency, and impede pipelining, whereas an 

overly simplified network may weaken feature 

extraction and reduce accuracy. Accordingly, the 

research team aims to develop a compact, 

efficient CNN architecture that enables high-

throughput inference in a RTL implementation. 

As shown in Figure 2, the designed CNN model 

comprises two convolutional layers, two pooling 

layers with Rectified Linear Unit (ReLU) 

activation, and a single fully connected layer. The 

architecture follows the LeNet-5 paradigm but is 

 

Figure 1. Design Implementation Flow 

 



simplified for FPGA deployment. A 5×5 kernel is 

employed to balance feature extraction quality 

with streamlined, pipelined Multiply–

Accumulate (MAC) operations on DSP units. 

After the two convolution–pooling stages, the 

output is flattened into a 48×1 feature vector and 

passed to a fully connected layer that produces 

class scores over ten outputs corresponding to 

digits 0–9. 

As shown in Figure 2, the proposed CNN 

contains a small number of parameters across all 

layers, reflecting its lightweight design for FPGA 

deployment. The CNN adopts a minimalist 

architecture with an optimized dataflow tailored 

to the FPGA’s bandwidth and buffering 

constraints. The pooling layers progressively 

reduce the spatial dimensions of the feature maps, 

which facilitates deep pipelining and lowers the 

computational load of subsequent layers. With a 

total of 796 parameters, the model attains 

approximately 96% accuracy in single-precision 

(float32), providing a robust foundation for 

quantization and hardware implementation.

To reduce hardware cost and accelerate 

computation, we apply quantization-aware 

training (QAT) to convert the model to int8, 

reducing memory usage by approximately 4× 

while preserving accuracy close to the floating-

point baseline. Quantized weights and biases are 

exported per layer to enable direct inference on 

the FPGA. The quantization pipeline consists of 

three steps: (1) normalize weights and biases to 

the range [−1, 1]; (2) scale by 128 to map values 

to the int8 range [−128, 127]; and (3) encode 

negative values in two’s-complement form for 

FPGA storage. The resulting quantized 

parameters are written as .mem files (one per 

layer) and loaded directly into BRAM or register 

files within the RTL design. This workflow yields 

a CNN optimized for both accuracy and hardware 

deployability and is ready for accelerator 

construction and on-FPGA inference. As shown 

in Figure 3, the quantization process follows a 

structured three-step pipeline that ensures 

numerical consistency between software 

simulation and hardware implementation.

3.2 Implementation of CNN Accelerator Core 

on FPGA 

After completing the CNN model, the next step is 

the design of the RTL module. A CNN 

architecture can be implemented using various 

approaches, including Naive Convolution, 

Matrix Multiplication, or Winograd Convolution. 

In this work, the basic Naive Convolution method 

is adopted to construct the CNN hardware 

architecture. 

Figure 4 illustrates the overall system 

architecture, in which the Buffer, Conv Calc, 

 

Figure 2. CNN Model Architecture for MNIST Classification 

 

Figure 3. Quantization Process of the CNN Model 



Maxpooling, ReLU, Fully Connected, and 

Comparator modules are independently designed 

and then integrated into a complete CNN block.

 

Figure 4. Block Diagram of the CNN Accelerator 

The Input Buffer Block stores incoming image 

pixels. The accelerator ingests a 28×28 MNIST 

bitmap (784 pixels), with each pixel represented 

in 8 bits. Pixels arrive as a stream—one pixel per 

clock cycle—in raster-scan order from the top-

left corner, proceeding left-to-right and top-to-

bottom. This serial loading scheme avoids 

allocating on-chip memory for the entire image 

and allows computation to begin immediately, 

without waiting for full-frame capture. The line 

buffer holds 140 entries of 8 bits each 

(corresponding to 5 rows × 28 columns). After a 

row is processed, the buffer is overwritten with 

the next row until the entire image is consumed. 

For convolution, 5×5 pixel windows are extracted 

from the buffer and shifted by one pixel 

horizontally at each cycle, repeating until the end 

of the row. In every clock cycle, one 5×5 window 

is emitted and forwarded to the convolution stage. 

With a 5×5, stride-1, valid convolution on a 

28×28 input, the first layer produces 24×24 = 576 

windows (each containing 25 pixels), matching 

the output feature-map dimensions of the layer. 

 

Figure 5. Pipeline Stages of the Convolution Module 

The Convolution Calculation Module performs 

the convolution between the input data stream 

from the buffer block and the 5×5 kernel weights. 

Its input is a stream of 576 windows, each 

containing 25 parallel pixels, supplied by the 

buffer. At each clock cycle, one 5×5 window is 

consumed to compute a dot product with the 5×5 

kernel, followed by addition of the bias term. 

Because arithmetic operations on the FPGA incur 

propagation delay, the datapath is pipelined to 

sustain high throughput. Figure 5 illustrates the 

pipelined structure, realized by inserting registers 

to partition the computation into multiple stages, 

thereby shortening the critical path and increasing 

the achievable clock frequency. With a four-stage 

pipeline, the first valid output appears four cycles 

after the corresponding input window is received; 

thereafter, the module produces one output per 

cycle. 

For Max-Pooling and ReLU Modules, the first 

convolution layer yields a 24×24 feature map, 

emitted as 576 sequential values in a continuous 



stream, which serves as the input to the 

MaxPooling and ReLU modules. The 2×2 

MaxPooling unit processes pixels in pairs of rows 

(two from the first row and two from the second 

row), outputs the maximum among the four, and 

advances by one pooling stride. The result is then 

passed to the ReLU activation, which preserves 

non-negative values and sets negative values to 

zero. A line buffer stores 12 elements—one 

output row of the resulting 12×12 feature map 

from the MaxPooling–ReLU stage. For each 2×2 

cell, the running maximum is updated in the 

buffer when the current value exceeds the stored 

value; otherwise, the stored value is retained. The 

buffered value is then compared with zero to 

apply ReLU. Pointers and control flags step 

through the buffer in sync with the 576-pixel 

input stream, producing a 12×12 feature map with 

144 outputs. 

The Fully Connected and Comparator Module 

Block receives input from the second convolution 

and MaxPooling layers. The 4×4 feature maps 

with three channels are flattened into a 48×1 

vector, multiplied by the corresponding weights, 

and summed with bias terms to produce ten 

output neurons. Arithmetic operations in the 

Fully Connected module are pipelined similarly 

to the convolution module to optimize 

performance. After computing the ten neuron 

outputs, the Comparator identifies the neuron 

with the highest value (argmax). A ten-element 

line buffer temporarily stores the neuron values 

from the Fully Connected module, and the index 

of the maximum value is emitted as the predicted 

class (digits 0–9). 

3.3 Integration of CNN Accelerator Core into 

Zynq SoC 

After completing the CNN accelerator hardware 

core, we integrated it into the Zynq SoC so that 

the ARM processing system (PS) can drive the 

programmable-logic (PL) inference engine 

through a standard memory-to-stream pipeline. 

Input images are stored in off-chip DDR, and a 

Xilinx IP block (AXI DMA) bridges the DDR-

based memory subsystem and the streaming 

accelerator, as depicted in Figure 6. To make the 

accelerator compatible with the SoC 

interconnect, we wrapped the RTL core with a 

lightweight top-level module that presents a 

compliant AXI4-Stream slave interface for input 

pixels and an AXI4-Stream master interface for 

output results. Since the CNN core natively 

consumes data as a stream, the AXI-Stream 

handshake signals (e.g., TVALID/TREADY and 

frame delimiting) map naturally onto the existing 

streaming datapath and ensure reliable 

backpressure handling. The end-to-end dataflow 

proceeds as follows. (1) The PS configures the 

AXI DMA through the S_AXI_LITE control 

port, programming the base DDR addresses and 

transfer lengths for the input image buffer and the 

output result buffer. (2) For the MM2S (memory-

mapped-to-stream) direction, the DMA fetches 

pixel data from DDR via M_AXI_MM2S and 

packetizes it into an AXI4-Stream on 

M_AXIS_MM2S. (3) The outgoing stream is 

optionally decoupled using axis_data_fifo_0, 

which absorbs burstiness from DDR reads and 

provides elastic buffering so the accelerator can 

run smoothly even if memory traffic momentarily 

stalls. (4) The buffered stream is then consumed 

by the CNN accelerator (axis_cnn_mnist_0), 

which performs inference in the PL and emits 

classification outputs as an AXI4-Stream. (5) On 

the output side, axis_data_fifo_1 buffers the 

accelerator’s result stream and handles any 

backpressure from the downstream DMA. (6) For 

the S2MM (stream-to-memory-mapped) 

direction, the DMA receives the output stream on 

S_AXIS_S2MM and writes the results back to 

DDR via M_AXI_S2MM. (7) Finally, the PS 

reads the result buffer from DDR and uses it for 

reporting (e.g., predicted digit) or for subsequent 

software-side processing. Overall, this PS–PL 

integration turns DDR-resident images into a 

continuous AXI stream for the accelerator and 

returns inference outputs back to DDR using the 

same standardized AXI infrastructure. The two 

FIFOs isolate the accelerator from memory 

timing variability, while the AXI-Lite control 

path lets software orchestrate transfers without 

modifying the RTL datapath, yielding a reusable 

and scalable integration pattern for streaming 

CNN inference on Zynq.



 

Figure 6. System Block Diagram for implementation in Xilinx Vivado

4. RESULTS AND DISCUSSION 

This work implements a CNN hardware 

accelerator on the PYNQ-Z2 board operating at 

100 MHz. As summarized in Table 1, after 

simulating the accelerator with 10,000 MNIST 

test images, the classification accuracy reached 

approximately 91%. The implementation on the 

PYNQ-Z2 utilized 37.48% of LUTs, 100% of 

DSPs, and 2.5% of BRAM. Full utilization of 

DSP slices reflects the dominance of multiply–

accumulate (MAC) operations in the 

convolutional layers, whereas the moderate LUT 

usage and minimal BRAM consumption indicate 

an efficient architecture with well-optimized data 

reuse and pipelining. To evaluate performance, 

we executed the classification function on both 

the PL-based accelerator and the dual-core ARM 

Cortex-A9 CPU (650 MHz) for comparison. 

Power consumption was measured as total board 

power during continuous inference on 10,000 

MNIST test images over a 15-minute interval to 

ensure stable operating conditions. The baseline 

(idle) power was recorded with the board 

powered on and no inference running; the 

average processing power was then computed by 

subtracting this idle power from the total 

measured power. 

Table 1. CNN Accelerator Hardware Synthesis Results 

Hardware LUT DSP BRAM 

CNN core 
17052 

(32.05%) 

220 

(100%) 
0 

PL 
19942 

(37.48%) 

220 

(100%) 

3.5 

(2.5%) 

To reduce the DSP utilization on XC7Z020 to a 

more reasonable level, the accelerator can be re-

architected to trade a small amount of throughput 

for substantially lower multiplier parallelism. 

First, the 5×5 convolution dot-products can be 

implemented with partial unrolling (e.g., 1/5/10-

way) and time-multiplexed MAC accumulation, 

reusing a smaller set of multipliers over multiple 

cycles instead of instantiating all products in 

parallel. Second, layer folding can be applied so 

that a single shared MAC engine is reused 

sequentially across Conv1, Conv2, and the FC 

layer, allocating DSPs to the maximum 

requirement of one layer rather than the 

combined peak across layers. Third, because 

operands are int8, DSP48 packing/SIMD can be 

exploited to compute multiple 8-bit 

multiplications within one DSP block, further 

reducing the number of DSP instances required. 

Finally, where beneficial, fixed inference weights 

enable replacing some multipliers with LUT-

based constant-coefficient arithmetic (e.g., shift-

add or distributed arithmetic) and/or applying 

structured pruning with zero-skipping to reduce 

the effective MAC count. Collectively, these 

modifications can significantly lower DSP usage 

while preserving the AXI-streaming integration 

and maintaining sufficient throughput for MNIST 

inference.  

Figure 7(a) presents the time-resolved 

(instantaneous) PYNQ-Z2 board power during 

single-image inference, clearly capturing the 

transient transition from the idle baseline to the 

active computation phase. Figure 7(b)–(d) then 

compares the corresponding average power 

across three operating modes: (b) idle (baseline), 



(c) inference executed on the ARM CPU, and (d) 

inference executed on the PL-based SoC 

accelerator.

 

Figure 7. Measurement of instantaneous and average power consumption during CNN inference on the PYNQ-Z2 

platform. (a) Instantaneous power profile for a single input image, illustrating the transition from idle to active 

operation. (b)–(d) Comparison of average power consumption under idle conditions, CPU-based inference, and 

PL/SoC accelerator-based inference. 

Table 2 presents the summarized results—

including classification accuracy, frame rate, and 

average power. The proposed CNN accelerator 

achieves a classification accuracy of 91.28%, 

which is approximately 5% lower than the CPU 

implementation (96.26%). However, processing 

latency is significantly reduced—from 4.25 ms 

on the CPU to 0.54 ms on the FPGA—

representing a 7–8× speedup, despite the FPGA 

operating at a much lower frequency (100 MHz 

vs. 650 MHz). This improvement highlights the 

benefits of parallel computation and deep 

pipelining inherent in FPGA-based architectures. 

In terms of power efficiency, the FPGA 

implementation consumes 186 mW on average, 

compared with 291 mW for the CPU, resulting in 

an overall 36% reduction in power consumption. 

The corresponding energy per inference 

decreases from 1.234 mJ per image on the CPU 

to 0.102 mJ per image on the FPGA, 

demonstrating a substantial improvement in 

energy efficiency. Overall, these results indicate 

that the proposed CNN accelerator offers a 

favorable balance between performance and 

energy consumption, making it well suited for 

real-time embedded AI applications on resource-

constrained edge devices. 

 

 



Table 2. Experimental results and performance comparison 

Hardware 

Platform 

Latency 

(ms) 

Accuracy 

(%) 

FPS Power 

(mW) 

Efficiency 

(mJ/frame) 

FPGA  

(100 MHz) 
0.54  91.28 1852 186 0.102 

CPU ARM Cortex A9  

(650 MHz) 
4.25  96.26 235 291 1.234 

 

Table 3 shows that prior FPGA MNIST 

accelerators typically emphasize either higher 

accuracy using larger LeNet-5–class models 9,10 

or extremely high throughput via aggressive 

quantization such as binary or ternary 

networks8,11,12. In contrast, our work targets a 

different operating point by implementing a very 

small int8 CNN (2 conv + 1 FC) with only 796 

parameters directly in RTL and integrating it on 

the low-cost PYNQ-Z2 (XC7Z020) using an 

AXI-DMA streaming flow; on 10,000 test images 

it achieves 91.28% accuracy, 0.54 ms/image 

latency (1,852 FPS), and 186 mW incremental 

power (0.102 mJ/image). Compared with earlier 

studies, the primary strength is model 

compactness, since the parameter count is far 

smaller than the larger LeNet-5 implementations 

and the 3-layer FC network with substantial 

parameter storage8,9,10. However, the compact 

model yields lower accuracy than all other works 

reporting accuracy (≈95.83%–≈99.01%)8–11. In 

throughput, our design exceeds slower FPGA 

results such as 441 FPS and 934.6 FPS9,10 but 

remains well below the ultra-high-throughput 

designs reporting 61,035–70,000 FPS or even 

multi-mega FPS enabled by extreme quantization 

and heavy parallelism8,11,12. Finally, while our 

absolute power is low compared to watt-level 

implementations9,10, the energy per image is not 

best-in-class because 0.102 mJ/image (~102 

µJ/image) is higher than the best reported 

µJ/image figures11,12. 

Table 3. Comparison of FPGA-based MNIST inference accelerators 

Work Precision Platform Model  Accuracy Throughput Power  

This work int8 

PYNQ-Z2 

(Zynq 

XC7Z020) 

Compact CNN 

(2 conv. + 1 FC.) 

796 params 

91.28%  
1,852 FPS  

0.54 ms/img 

186 mW, 

0.102 mJ/img 

Umuroglu 

et al. [8] 
1-bit 

ZC706 

(Zynq Z7045) 

3-layer FC, 

256 neurons/layer; 

0.3 Mbits params 

95.83% 

12.361 M-

FPS, 

0.31 µs/img 

Pchip 7.3 W, 

Pwall 21.2 W 

González 

et al. [9] 

fixed-point 

(12-bit) 

Arty Z7-20 

(Zynq-7000) 

LeNet-5 

(params N/R) 
97.59% 

441 FPS 

2.27 ms/img 
1.72 W 

Liang et 

al. 

[10] 

Integer / 

fixed-point 

variants 

Zynq platform LeNet-5 ≈99.01% 
934.6 FPS  

1.07 ms/img 
2.19 W 

Alemdar 

et al. [11] 

Ternary 

NN 

Kintex-7 

(XC7K160T) 
not reported 98.14% 

61,035 FPS, 

8.09 µs/img 
3.63 µJ/img 

Park 

et al. [12] 

3-bit 

weights, 8-

bit signals 

ZC706 

(Zynq Z7045) 
not reported 

not 

reported 
70,000 FPS 71 µJ/img 

 

5. CONCLUSION 

This work delivers a deployable, end-to-end 

SoC–FPGA inference pipeline that goes beyond 

demonstrating MNIST classification by 

integrating model design with a practical 

embedded hardware realization. We (i) design a 

minimalist int8 CNN (2 conv + pooling/ReLU + 

1 FC) with only 796 parameters and export 

FPGA-ready quantized weights, (ii) implement a 

fully RTL streaming accelerator that processes 

input pixels at one pixel per clock using 

lightweight line buffering and a pipelined 

datapath, and (iii) integrate the core on the low-

cost PYNQ-Z2 (XC7Z020) via AXI4-Stream and 

AXI-DMA for complete PS–PL deployment. On 

10,000 MNIST test images, the PL 

implementation achieves 91.28% accuracy—

about five percentage points below the dual ARM 

Cortex-A9 CPU baseline—while providing a 7–

8× throughput improvement (0.54 ms/image, 

1,852 FPS vs. 4.25 ms/image, 235 FPS) and 

lower incremental power, resulting in markedly 

better energy per inference. These results 

highlight the advantages of FPGA-based CNN 

acceleration for deterministic low-latency and 

energy-efficient edge inference on resource-

constrained platforms, and the presented 



workflow offers a reproducible template 

spanning quantization, RTL development, 

pipelining, resource-aware design, and PYNQ-

based system integration. Although accuracy is 

limited by the intentionally compact model and 

int8 quantization, and the XC7Z020 imposes 

tight DSP/BRAM constraints, the proposed 

system establishes a solid foundation for future 

improvements such as layer folding and time-

multiplexed MACs to reduce DSP usage, refined 

quantization-aware training to recover accuracy, 

and scaling to larger FPGAs or modestly larger 

networks while preserving the same streaming 

integration methodology. Overall, the paper 

demonstrates a practical and extensible approach 

to embedded FPGA inference suitable for real-

time edge applications including digit/character 

recognition and low-power intelligent sensing in 

IoT systems. 
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