

Mô hình AI trên FPGA: Mô hình CNN gọn nhẹ thông lượng
cao và công suất thấp cho bài toán nhận dạng chữ số

TÓM TẮT

Nghiên cứu này trình bày việc thiết kế và triển khai một mạng nơ-ron tích chập trên nền tảng SoC–FPGA để

phân loại chữ số viết tay sử dụng bộ dữ liệu MNIST. Mục tiêu là xây dựng một bộ gia tốc CNN gọn nhẹ và hiệu quả,

có dưới 1,000 tham số, hoạt động tương thích với bộ xử lý ARM trên bo mạch PYNQ-Z2 thông qua các giao tiếp

DMA và AXI. Bộ gia tốc được hiện thực ở mức RTL, với các giai đoạn mô phỏng, tổng hợp và tối ưu hóa tài nguyên,

đồng thời vẫn duy trì được độ chính xác của quá trình suy luận. Trên 10,000 ảnh kiểm thử MNIST, hệ thống đạt độ

chính xác 91.28%—thấp hơn khoảng 5% so với mô hình chạy trên CPU hai nhân ARM Cortex-A9 (96.26%)—nhưng

lại mang lại tốc độ xử lý nhanh hơn 7 lần và giảm 36% mức tiêu thụ điện năng. Thiết kế cho thấy hiệu quả của việc

song song hóa và pipeline hóa các phép tích chập trực tiếp trên FPGA, giúp giảm đáng kể mức sử dụng tài nguyên và

công suất tiêu thụ. Những kết quả này cung cấp một nền tảng thực tiễn cho các ứng dụng AI nhúng thời gian thực—

chẳng hạn như nhận dạng ký tự, giám sát hình ảnh, hệ thống IoT thông minh và tính toán biên—trên các nền tảng

SoC–FPGA.

Từ khóa: Bộ tăng tốc Mạng Nơ-ron Tích chập (Convolutional Neural Networks Accelerator), FPGA, Hệ thống trên

Chip (System on Chip), MNIST, Phân loại ảnh.

Practical Embedded AI on FPGA: A Compact CNN Achieving
High Throughput and Low Power for Digit Recognition

ABSTRACT

This work presents the design and deployment of a Convolutional Neural Network on an SoC–FPGA platform

for handwritten digit classification using the MNIST dataset. The goal is a compact, efficient FPGA-based CNN

accelerator with fewer than 1,000 parameters that integrates seamlessly with the ARM processor on the PYNQ-Z2

board via DMA and AXI interfaces. The accelerator is realized at the register-transfer level and undergoes simulation,

synthesis, and resource-focused optimization while preserving inference accuracy. On 10,000 MNIST test images, the

system attains 91.28% accuracy—about 5 percentage points below a CPU implementation on dual ARM Cortex-A9

cores (96.26%)—but delivers a 7–8× speedup and a 36% reduction in power consumption. The design highlights

effective parallelization and pipelining of convolution operations directly on the FPGA, achieving low resource usage

and power draw. These results provide a practical foundation for real-time embedded AI applications—such as

character recognition, image monitoring, intelligent IoT systems, and edge computing—on SoC–FPGA platforms.

Keywords: Convolutional Neural Networks Accelerator, FPGA, System on Chip, MNIST, Image Classification.

1. INTRODUCTION

In recent years, Convolutional Neural Networks

(CNNs) have become the dominant approach for

image recognition and classification owing to

their efficient spatial feature extraction and high

accuracy.1 However, CNN models typically

require substantial computation and memory,

which makes deployment challenging on

embedded systems with limited hardware

resources.2 Field-Programmable Gate Arrays

(FPGAs)—with their flexibility, massive

parallelism, and low power consumption—have

proven to be effective platforms for accelerating

CNNs in embedded applications.1,3

Implementing CNNs on FPGAs can reduce

inference latency relative to CPU- or GPU-based

software while efficiently utilizing hardware

resources such as DSP slices, Lookup Tables

(LUTs), and block RAM (BRAM). To achieve

high performance on FPGAs, many studies

quantize weights and activations to replace

floating-point operations with integer arithmetic,

thereby reducing hardware complexity while

maintaining accuracy.2 In addition, techniques

such as parallelization, pipelining, and data reuse

are commonly applied to increase throughput and

optimize memory bandwidth.3 In SoC–FPGA

architectures, the integration of FPGA

Programmable Logic (PL) and the embedded

ARM Processing System (PS) provides a balance

between performance and flexibility.4 The PL

handles computationally intensive kernels, while

the PS manages control and data movement via

direct memory access (DMA) over the Advanced

eXtensible Interface (AXI) interconnect.5,6 On

the PYNQ-Z2 platform, the Python Productivity

for Zynq (PYNQ) framework enables direct

control and testing of the CNN accelerator from

Python, facilitating data transfer between Double

Data Rate (DDR) memory and the FPGA and

thereby simplifying system development and

evaluation.6,7This work presents the design and

implementation of a lightweight CNN accelerator

on an SoC–FPGA platform for handwritten-digit

classification using the Modified National

Institute of Standards and Technology (MNIST)

dataset. The model is optimized to fewer than

1,000 parameters to balance accuracy, memory

footprint, and hardware feasibility on the PYNQ-

Z2. The system employs DMA/AXI for data

exchange between the CPU and FPGA and

integrates the PYNQ framework for control and

real-time inference. Experimental results

demonstrate that the proposed design delivers

high performance, efficient resource utilization,

and low power consumption, confirming the

feasibility of FPGA-based real-time embedded

AI systems.

2. RELATED WORKS

MNIST inference on FPGA/SoC platforms has

been extensively explored along two main

directions: (i) extreme-quantization approaches

(binary/ternary) that push hardware efficiency

and throughput, and (ii) fixed-/integer-point

CNN deployments (LeNet-5-based CNN) that

target higher accuracy with moderate resource

cost. In the first direction, FINN provides a

representative toolflow for binarized neural

networks on FPGAs and reports multi-million

classifications per second on MNIST with sub-

microsecond latency on a Zynq ZC706 platform,

together with explicit performance and power

reporting8. In the fixed-/integer-point CNN

category, González et al. implement a LeNet-5

inference accelerator using an SW/HW co-

processing scheme on a Zynq-7000 Arty Z7-20,

reporting 97.59% MNIST accuracy with 12-bit

fixed-point arithmetic and approximately 441

images/s at 100 MHz9. More recent full-network

deployments using HLS on Zynq devices provide

more complete reporting of model scale and

system metrics; for example, Liang et al. detail

LeNet-5 weight counts and report end-to-end

inference time, power, and error rate (e.g., 1.07

ms, 2.193 W, and 0.99% error for their

PIPELINE design)10. Complementary to binary

networks, ternary models have also been

proposed to improve efficiency while retaining

more representational capacity than binarization;

Alemdar et al. present ternary neural networks

and discuss FPGA/ASIC realizations that

leverage low-precision arithmetic and sparsity

effects for energy-efficient inference11. Beyond

CNNs, compact fixed-point DNN

implementations that keep weights entirely in on-

chip memory have also been demonstrated to

reduce external memory traffic; Park and Sung

describe an FPGA-based DNN design using 3-bit

weights with on-chip storage (no external DRAM

access) and report <5 W full-speed power in their

MNIST evaluation12.

3. DESIGN METHODOLOGY

As shown in Figure 1, the design process

comprises four stages: first, we specify the

MNIST classification task, target performance

and accuracy, hardware resource constraints, and

the PS–PL communication scheme within the

Zynq SoC to guide subsequent decisions. Next,

we design, train, and quantize the CNN in

PyTorch, convert the quantized weights to 8-bit

integers (int8), and export them as HEX files for

the hardware stage. We then implement the CNN

functional blocks at the Register-Transfer Level

(RTL), perform simulation and synthesis to

evaluate resource usage (LUTs, DSPs, BRAM),

and integrate the accelerator into the Zynq SoC

via the AXI4-Stream interface to enable high-

throughput PS–PL data movement. Finally, we

deploy the generated bitstream on the PYNQ-Z2,

control execution through the PYNQ framework

on the ARM Cortex-A9, and evaluate the system

using 10,000 MNIST test images to measure

performance, accuracy, and hardware resource

utilization.

3.1 CNNs for Hand-written digit classification

Selecting an appropriate CNN model is pivotal to

the overall system design because it directly

influences accuracy, processing latency, and

hardware resource utilization on the FPGA. On

an SoC–FPGA platform constrained by DSP

slices, LUTs, and BRAM, the model must

balance computational complexity with hardware

feasibility: an excessive parameter count can

exceed on-chip storage, increase DDR access

latency, and impede pipelining, whereas an

overly simplified network may weaken feature

extraction and reduce accuracy. Accordingly, the

research team aims to develop a compact,

efficient CNN architecture that enables high-

throughput inference in a RTL implementation.

As shown in Figure 2, the designed CNN model

comprises two convolutional layers, two pooling

layers with Rectified Linear Unit (ReLU)

activation, and a single fully connected layer. The

architecture follows the LeNet-5 paradigm but is

Figure 1. Design Implementation Flow

simplified for FPGA deployment. A 5×5 kernel is

employed to balance feature extraction quality

with streamlined, pipelined Multiply–

Accumulate (MAC) operations on DSP units.

After the two convolution–pooling stages, the

output is flattened into a 48×1 feature vector and

passed to a fully connected layer that produces

class scores over ten outputs corresponding to

digits 0–9.

As shown in Figure 2, the proposed CNN

contains a small number of parameters across all

layers, reflecting its lightweight design for FPGA

deployment. The CNN adopts a minimalist

architecture with an optimized dataflow tailored

to the FPGA’s bandwidth and buffering

constraints. The pooling layers progressively

reduce the spatial dimensions of the feature maps,

which facilitates deep pipelining and lowers the

computational load of subsequent layers. With a

total of 796 parameters, the model attains

approximately 96% accuracy in single-precision

(float32), providing a robust foundation for

quantization and hardware implementation.

To reduce hardware cost and accelerate

computation, we apply quantization-aware

training (QAT) to convert the model to int8,

reducing memory usage by approximately 4×

while preserving accuracy close to the floating-

point baseline. Quantized weights and biases are

exported per layer to enable direct inference on

the FPGA. The quantization pipeline consists of

three steps: (1) normalize weights and biases to

the range [−1, 1]; (2) scale by 128 to map values

to the int8 range [−128, 127]; and (3) encode

negative values in two’s-complement form for

FPGA storage. The resulting quantized

parameters are written as .mem files (one per

layer) and loaded directly into BRAM or register

files within the RTL design. This workflow yields

a CNN optimized for both accuracy and hardware

deployability and is ready for accelerator

construction and on-FPGA inference. As shown

in Figure 3, the quantization process follows a

structured three-step pipeline that ensures

numerical consistency between software

simulation and hardware implementation.

3.2 Implementation of CNN Accelerator Core

on FPGA

After completing the CNN model, the next step is

the design of the RTL module. A CNN

architecture can be implemented using various

approaches, including Naive Convolution,

Matrix Multiplication, or Winograd Convolution.

In this work, the basic Naive Convolution method

is adopted to construct the CNN hardware

architecture.

Figure 4 illustrates the overall system

architecture, in which the Buffer, Conv Calc,

Figure 2. CNN Model Architecture for MNIST Classification

Figure 3. Quantization Process of the CNN Model

Maxpooling, ReLU, Fully Connected, and

Comparator modules are independently designed

and then integrated into a complete CNN block.

Figure 4. Block Diagram of the CNN Accelerator

The Input Buffer Block stores incoming image

pixels. The accelerator ingests a 28×28 MNIST

bitmap (784 pixels), with each pixel represented

in 8 bits. Pixels arrive as a stream—one pixel per

clock cycle—in raster-scan order from the top-

left corner, proceeding left-to-right and top-to-

bottom. This serial loading scheme avoids

allocating on-chip memory for the entire image

and allows computation to begin immediately,

without waiting for full-frame capture. The line

buffer holds 140 entries of 8 bits each

(corresponding to 5 rows × 28 columns). After a

row is processed, the buffer is overwritten with

the next row until the entire image is consumed.

For convolution, 5×5 pixel windows are extracted

from the buffer and shifted by one pixel

horizontally at each cycle, repeating until the end

of the row. In every clock cycle, one 5×5 window

is emitted and forwarded to the convolution stage.

With a 5×5, stride-1, valid convolution on a

28×28 input, the first layer produces 24×24 = 576

windows (each containing 25 pixels), matching

the output feature-map dimensions of the layer.

Figure 5. Pipeline Stages of the Convolution Module

The Convolution Calculation Module performs

the convolution between the input data stream

from the buffer block and the 5×5 kernel weights.

Its input is a stream of 576 windows, each

containing 25 parallel pixels, supplied by the

buffer. At each clock cycle, one 5×5 window is

consumed to compute a dot product with the 5×5

kernel, followed by addition of the bias term.

Because arithmetic operations on the FPGA incur

propagation delay, the datapath is pipelined to

sustain high throughput. Figure 5 illustrates the

pipelined structure, realized by inserting registers

to partition the computation into multiple stages,

thereby shortening the critical path and increasing

the achievable clock frequency. With a four-stage

pipeline, the first valid output appears four cycles

after the corresponding input window is received;

thereafter, the module produces one output per

cycle.

For Max-Pooling and ReLU Modules, the first

convolution layer yields a 24×24 feature map,

emitted as 576 sequential values in a continuous

stream, which serves as the input to the

MaxPooling and ReLU modules. The 2×2

MaxPooling unit processes pixels in pairs of rows

(two from the first row and two from the second

row), outputs the maximum among the four, and

advances by one pooling stride. The result is then

passed to the ReLU activation, which preserves

non-negative values and sets negative values to

zero. A line buffer stores 12 elements—one

output row of the resulting 12×12 feature map

from the MaxPooling–ReLU stage. For each 2×2

cell, the running maximum is updated in the

buffer when the current value exceeds the stored

value; otherwise, the stored value is retained. The

buffered value is then compared with zero to

apply ReLU. Pointers and control flags step

through the buffer in sync with the 576-pixel

input stream, producing a 12×12 feature map with

144 outputs.

The Fully Connected and Comparator Module

Block receives input from the second convolution

and MaxPooling layers. The 4×4 feature maps

with three channels are flattened into a 48×1

vector, multiplied by the corresponding weights,

and summed with bias terms to produce ten

output neurons. Arithmetic operations in the

Fully Connected module are pipelined similarly

to the convolution module to optimize

performance. After computing the ten neuron

outputs, the Comparator identifies the neuron

with the highest value (argmax). A ten-element

line buffer temporarily stores the neuron values

from the Fully Connected module, and the index

of the maximum value is emitted as the predicted

class (digits 0–9).

3.3 Integration of CNN Accelerator Core into

Zynq SoC

After completing the CNN accelerator hardware

core, we integrated it into the Zynq SoC so that

the ARM processing system (PS) can drive the

programmable-logic (PL) inference engine

through a standard memory-to-stream pipeline.

Input images are stored in off-chip DDR, and a

Xilinx IP block (AXI DMA) bridges the DDR-

based memory subsystem and the streaming

accelerator, as depicted in Figure 6. To make the

accelerator compatible with the SoC

interconnect, we wrapped the RTL core with a

lightweight top-level module that presents a

compliant AXI4-Stream slave interface for input

pixels and an AXI4-Stream master interface for

output results. Since the CNN core natively

consumes data as a stream, the AXI-Stream

handshake signals (e.g., TVALID/TREADY and

frame delimiting) map naturally onto the existing

streaming datapath and ensure reliable

backpressure handling. The end-to-end dataflow

proceeds as follows. (1) The PS configures the

AXI DMA through the S_AXI_LITE control

port, programming the base DDR addresses and

transfer lengths for the input image buffer and the

output result buffer. (2) For the MM2S (memory-

mapped-to-stream) direction, the DMA fetches

pixel data from DDR via M_AXI_MM2S and

packetizes it into an AXI4-Stream on

M_AXIS_MM2S. (3) The outgoing stream is

optionally decoupled using axis_data_fifo_0,

which absorbs burstiness from DDR reads and

provides elastic buffering so the accelerator can

run smoothly even if memory traffic momentarily

stalls. (4) The buffered stream is then consumed

by the CNN accelerator (axis_cnn_mnist_0),

which performs inference in the PL and emits

classification outputs as an AXI4-Stream. (5) On

the output side, axis_data_fifo_1 buffers the

accelerator’s result stream and handles any

backpressure from the downstream DMA. (6) For

the S2MM (stream-to-memory-mapped)

direction, the DMA receives the output stream on

S_AXIS_S2MM and writes the results back to

DDR via M_AXI_S2MM. (7) Finally, the PS

reads the result buffer from DDR and uses it for

reporting (e.g., predicted digit) or for subsequent

software-side processing. Overall, this PS–PL

integration turns DDR-resident images into a

continuous AXI stream for the accelerator and

returns inference outputs back to DDR using the

same standardized AXI infrastructure. The two

FIFOs isolate the accelerator from memory

timing variability, while the AXI-Lite control

path lets software orchestrate transfers without

modifying the RTL datapath, yielding a reusable

and scalable integration pattern for streaming

CNN inference on Zynq.

Figure 6. System Block Diagram for implementation in Xilinx Vivado

4. RESULTS AND DISCUSSION

This work implements a CNN hardware

accelerator on the PYNQ-Z2 board operating at

100 MHz. As summarized in Table 1, after

simulating the accelerator with 10,000 MNIST

test images, the classification accuracy reached

approximately 91%. The implementation on the

PYNQ-Z2 utilized 37.48% of LUTs, 100% of

DSPs, and 2.5% of BRAM. Full utilization of

DSP slices reflects the dominance of multiply–

accumulate (MAC) operations in the

convolutional layers, whereas the moderate LUT

usage and minimal BRAM consumption indicate

an efficient architecture with well-optimized data

reuse and pipelining. To evaluate performance,

we executed the classification function on both

the PL-based accelerator and the dual-core ARM

Cortex-A9 CPU (650 MHz) for comparison.

Power consumption was measured as total board

power during continuous inference on 10,000

MNIST test images over a 15-minute interval to

ensure stable operating conditions. The baseline

(idle) power was recorded with the board

powered on and no inference running; the

average processing power was then computed by

subtracting this idle power from the total

measured power.

Table 1. CNN Accelerator Hardware Synthesis Results

Hardware LUT DSP BRAM

CNN core
17052

(32.05%)

220

(100%)
0

PL
19942

(37.48%)

220

(100%)

3.5

(2.5%)

To reduce the DSP utilization on XC7Z020 to a

more reasonable level, the accelerator can be re-

architected to trade a small amount of throughput

for substantially lower multiplier parallelism.

First, the 5×5 convolution dot-products can be

implemented with partial unrolling (e.g., 1/5/10-

way) and time-multiplexed MAC accumulation,

reusing a smaller set of multipliers over multiple

cycles instead of instantiating all products in

parallel. Second, layer folding can be applied so

that a single shared MAC engine is reused

sequentially across Conv1, Conv2, and the FC

layer, allocating DSPs to the maximum

requirement of one layer rather than the

combined peak across layers. Third, because

operands are int8, DSP48 packing/SIMD can be

exploited to compute multiple 8-bit

multiplications within one DSP block, further

reducing the number of DSP instances required.

Finally, where beneficial, fixed inference weights

enable replacing some multipliers with LUT-

based constant-coefficient arithmetic (e.g., shift-

add or distributed arithmetic) and/or applying

structured pruning with zero-skipping to reduce

the effective MAC count. Collectively, these

modifications can significantly lower DSP usage

while preserving the AXI-streaming integration

and maintaining sufficient throughput for MNIST

inference.

Figure 7(a) presents the time-resolved

(instantaneous) PYNQ-Z2 board power during

single-image inference, clearly capturing the

transient transition from the idle baseline to the

active computation phase. Figure 7(b)–(d) then

compares the corresponding average power

across three operating modes: (b) idle (baseline),

(c) inference executed on the ARM CPU, and (d)

inference executed on the PL-based SoC

accelerator.

Figure 7. Measurement of instantaneous and average power consumption during CNN inference on the PYNQ-Z2

platform. (a) Instantaneous power profile for a single input image, illustrating the transition from idle to active

operation. (b)–(d) Comparison of average power consumption under idle conditions, CPU-based inference, and

PL/SoC accelerator-based inference.

Table 2 presents the summarized results—

including classification accuracy, frame rate, and

average power. The proposed CNN accelerator

achieves a classification accuracy of 91.28%,

which is approximately 5% lower than the CPU

implementation (96.26%). However, processing

latency is significantly reduced—from 4.25 ms

on the CPU to 0.54 ms on the FPGA—

representing a 7–8× speedup, despite the FPGA

operating at a much lower frequency (100 MHz

vs. 650 MHz). This improvement highlights the

benefits of parallel computation and deep

pipelining inherent in FPGA-based architectures.

In terms of power efficiency, the FPGA

implementation consumes 186 mW on average,

compared with 291 mW for the CPU, resulting in

an overall 36% reduction in power consumption.

The corresponding energy per inference

decreases from 1.234 mJ per image on the CPU

to 0.102 mJ per image on the FPGA,

demonstrating a substantial improvement in

energy efficiency. Overall, these results indicate

that the proposed CNN accelerator offers a

favorable balance between performance and

energy consumption, making it well suited for

real-time embedded AI applications on resource-

constrained edge devices.

Table 2. Experimental results and performance comparison

Hardware

Platform

Latency

(ms)

Accuracy

(%)

FPS Power

(mW)

Efficiency

(mJ/frame)

FPGA

(100 MHz)
0.54 91.28 1852 186 0.102

CPU ARM Cortex A9

(650 MHz)
4.25 96.26 235 291 1.234

Table 3 shows that prior FPGA MNIST

accelerators typically emphasize either higher

accuracy using larger LeNet-5–class models 9,10

or extremely high throughput via aggressive

quantization such as binary or ternary

networks8,11,12. In contrast, our work targets a

different operating point by implementing a very

small int8 CNN (2 conv + 1 FC) with only 796

parameters directly in RTL and integrating it on

the low-cost PYNQ-Z2 (XC7Z020) using an

AXI-DMA streaming flow; on 10,000 test images

it achieves 91.28% accuracy, 0.54 ms/image

latency (1,852 FPS), and 186 mW incremental

power (0.102 mJ/image). Compared with earlier

studies, the primary strength is model

compactness, since the parameter count is far

smaller than the larger LeNet-5 implementations

and the 3-layer FC network with substantial

parameter storage8,9,10. However, the compact

model yields lower accuracy than all other works

reporting accuracy (≈95.83%–≈99.01%)8–11. In

throughput, our design exceeds slower FPGA

results such as 441 FPS and 934.6 FPS9,10 but

remains well below the ultra-high-throughput

designs reporting 61,035–70,000 FPS or even

multi-mega FPS enabled by extreme quantization

and heavy parallelism8,11,12. Finally, while our

absolute power is low compared to watt-level

implementations9,10, the energy per image is not

best-in-class because 0.102 mJ/image (~102

µJ/image) is higher than the best reported

µJ/image figures11,12.

Table 3. Comparison of FPGA-based MNIST inference accelerators

Work Precision Platform Model Accuracy Throughput Power

This work int8

PYNQ-Z2

(Zynq

XC7Z020)

Compact CNN

(2 conv. + 1 FC.)

796 params

91.28%
1,852 FPS

0.54 ms/img

186 mW,

0.102 mJ/img

Umuroglu

et al. [8]
1-bit

ZC706

(Zynq Z7045)

3-layer FC,

256 neurons/layer;

0.3 Mbits params

95.83%

12.361 M-

FPS,

0.31 µs/img

Pchip 7.3 W,

Pwall 21.2 W

González

et al. [9]

fixed-point

(12-bit)

Arty Z7-20

(Zynq-7000)

LeNet-5

(params N/R)
97.59%

441 FPS

2.27 ms/img
1.72 W

Liang et

al.

[10]

Integer /

fixed-point

variants

Zynq platform LeNet-5 ≈99.01%
934.6 FPS

1.07 ms/img
2.19 W

Alemdar

et al. [11]

Ternary

NN

Kintex-7

(XC7K160T)
not reported 98.14%

61,035 FPS,

8.09 µs/img
3.63 µJ/img

Park

et al. [12]

3-bit

weights, 8-

bit signals

ZC706

(Zynq Z7045)
not reported

not

reported
70,000 FPS 71 µJ/img

5. CONCLUSION

This work delivers a deployable, end-to-end

SoC–FPGA inference pipeline that goes beyond

demonstrating MNIST classification by

integrating model design with a practical

embedded hardware realization. We (i) design a

minimalist int8 CNN (2 conv + pooling/ReLU +

1 FC) with only 796 parameters and export

FPGA-ready quantized weights, (ii) implement a

fully RTL streaming accelerator that processes

input pixels at one pixel per clock using

lightweight line buffering and a pipelined

datapath, and (iii) integrate the core on the low-

cost PYNQ-Z2 (XC7Z020) via AXI4-Stream and

AXI-DMA for complete PS–PL deployment. On

10,000 MNIST test images, the PL

implementation achieves 91.28% accuracy—

about five percentage points below the dual ARM

Cortex-A9 CPU baseline—while providing a 7–

8× throughput improvement (0.54 ms/image,

1,852 FPS vs. 4.25 ms/image, 235 FPS) and

lower incremental power, resulting in markedly

better energy per inference. These results

highlight the advantages of FPGA-based CNN

acceleration for deterministic low-latency and

energy-efficient edge inference on resource-

constrained platforms, and the presented

workflow offers a reproducible template

spanning quantization, RTL development,

pipelining, resource-aware design, and PYNQ-

based system integration. Although accuracy is

limited by the intentionally compact model and

int8 quantization, and the XC7Z020 imposes

tight DSP/BRAM constraints, the proposed

system establishes a solid foundation for future

improvements such as layer folding and time-

multiplexed MACs to reduce DSP usage, refined

quantization-aware training to recover accuracy,

and scaling to larger FPGAs or modestly larger

networks while preserving the same streaming

integration methodology. Overall, the paper

demonstrates a practical and extensible approach

to embedded FPGA inference suitable for real-

time edge applications including digit/character

recognition and low-power intelligent sensing in

IoT systems.

Acknowledgments

REFERENCES

1. A. Shawahna, S. Sait, A. El-Maleh. “FPGA-

based accelerators of deep learning networks for

learning and classification: A review,” IEEE Access,

2019, 7, 7823-7859.

2. V. K. Pham, N. Q. Tran, N. L. Nguyen.

“Optimizing the convolutional neural networks for

resource-constrained hardwares,” Science &

Technology Development Journal – Engineering and

Technology, 2022, 4(4), 906.

3. S. Bouguezzi, H. B. Fredj, T. Belabed, C.

Valderrama, H. Faiedh, C. Souani. “An efficient

FPGA-based convolutional neural network for

classification: Ad-MobileNet,” Electronics, 2021,

10(18), 2272.

4. M. Faizan, I. Intzes, I. Cretu, H. Meng.

“Implementation of deep learning models on an SoC-

FPGA device for real-time music genre

classification,” Technologies, 2023, 11(4), 91.

5. Anjali, J. P. Anita. “AXI based DMA Memory

System Testbench Architecture Using UVM Harness

Technique,” The 9th International Conference on

Advances in Computing and Communication, ICACC

2019, Kochi, India, 2019.

6. A. Sharma. “Evaluation of AXI-Interfaces for

Hardware Software Communication,” Master’s thesis,

Technische Universität Chemnitz, Chemnitz, 2019.

7. S. Sun, J. Zou, Z. Zou, S. Wang (eds.).

“Experience of PYNQ: Tutorials for PYNQ-Z2,”

Springer Nature Singapore, Singapore, 2023.

8. Y. Umuroglu, N. J. Fraser, G. Gambardella, M.

Blott, P. H. W. Leong, M. Jahre, K. A. Vissers.

“FINN: A Framework for Fast, Scalable Binarized

Neural Network Inference,” Proceedings of the 2017

ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, FPGA 2017, Monterey,

CA, USA, 2017, 65-74.

9. E. González, W. D. Villamizar Luna, C. A.

Fajardo Ariza. “A Hardware Accelerator for the

Inference of a Convolutional Neural Network,”

Ciencia e Ingeniería Neogranadina, 2020, 30(1), 107-

116.

10. Y. Liang, J. Tan, Z. Xie, Z. Chen, D. Lin, Z.

Yang. “Research on Convolutional Neural Network

Inference Acceleration and Performance Optimization

for Edge Intelligence,” Sensors, 2024, 24(1), 240.

11. H. Alemdar, V. Leroy, A. Prost-Boucle, F.

Pétrot. “Ternary Neural Networks for Resource-

Efficient AI Applications,” 2017 International Joint

Conference on Neural Networks, IJCNN 2017,

Anchorage, AK, USA, 2017, 2547-2554.

12. J. Park, W. Sung. “FPGA Based

Implementation of Deep Neural Networks Using On-

Chip Memory Only,” 2016 IEEE International

Conference on Acoustics, Speech and Signal

Processing, ICASSP 2016, Shanghai, China, 2016,

1011-1015.

