M6 hinh Al trén FPGA: M6 hinh CNN gon nhe thong Iwgng
cao va cdng suat thap cho bai toan nhan dang chir so

TOM TAT

Nghién ctru nay trinh bay viéc thiét ké va trién khai mot mang no-ron tich chép trén nén tang SoOC-FPGA dé
phan loai chir s6 viét tay sir dung bo dir liu MNIST. Muyc tiu la xay dung mot bo gia tc CNN gon nhe va hi¢u qua,
¢6 dudi 1,000 tham s6, hoat dong twong thich v6i bo xur Iy ARM trén bo mach PYNQ-Z2 thong qua cac giao tiép
DMA va AXI. B0 gia toc duoc hién thyc & mirc RTL, véi cac giai doan mo phong, tong hop va ti wu hoa tai nguyén,
dong thoi van duy tri dugce do chinh x4c ctia qué trinh suy luan. Trén 10,000 anh kiém thir MNIST, hé thong dat do
chinh xac 91.28%—thap hon khoang 5% so v&i mé hinh chay trén CPU hai nhan ARM Cortex-A9 (96.26%)—nhung
lai mang lai toc do xir Iy nhanh hon 7 1an va giam 36% mic tiéu thy dién nang. Thiét ké cho thdy hiéu qua cua viéc
song song hoa va pipeline hoa cac phép tich chap truc tlep trén FPGA, gitp giam déng ké muc sir dung tai nguyén va
cong sudt tiéu thu. Nhing két qua nay cung cdp mét nén tang thyc tién cho cac tmg dung Al nhing thoi gian thye—
chang han nhu nhan dang ky tu, giam sat hinh anh, hé théng IoT thong minh va tinh toan bién—trén cac nén tang
SoC-FPGA.

Tir khéa: B ting toc Mang No-ron Tich chdp (Convolutional Neural Networks Accelerator), FPGA, Hé théng trén
Chip (System on Chip), MNIST, Phdn loai danh.

Practical Embedded Al on FPGA: A Compact CNN Achieving
High Throughput and Low Power for Digit Recognition

ABSTRACT

This work presents the design and deployment of a Convolutional Neural Network on an SoOC—FPGA platform
for handwritten digit classification using the MNIST dataset. The goal is a compact, efficient FPGA-based CNN
accelerator with fewer than 1,000 parameters that integrates seamlessly with the ARM processor on the PYNQ-Z2
board via DMA and AXI interfaces. The accelerator is realized at the register-transfer level and undergoes simulation,
synthesis, and resource-focused optimization while preserving inference accuracy. On 10,000 MNIST test images, the
system attains 91.28% accuracy—about 5 percentage points below a CPU implementation on dual ARM Cortex-A9
cores (96.26%)—but delivers a 7-8x speedup and a 36% reduction in power consumption. The design highlights
effective parallelization and pipelining of convolution operations directly on the FPGA, achieving low resource usage
and power draw. These results provide a practical foundation for real-time embedded Al applications—such as
character recognition, image monitoring, intelligent IoT systems, and edge computing—on SoC—FPGA platforms.

Keywords: Convolutional Neural Networks Accelerator, FPGA, System on Chip, MNIST, Image Classification.

1. INTRODUCTION

In recent years, Convolutional Neural Networks
(CNNs) have become the dominant approach for
image recognition and classification owing to
their efficient spatial feature extraction and high
accuracy.! However, CNN models typically
require substantial computation and memory,
which makes deployment challenging on
embedded systems with limited hardware
resources.” Field-Programmable Gate Arrays
(FPGAs)—with their flexibility, massive
parallelism, and low power consumption—have
proven to be effective platforms for accelerating
CNNs in embedded applications.'?
Implementing CNNs on FPGAs can reduce
inference latency relative to CPU- or GPU-based
software while efficiently utilizing hardware
resources such as DSP slices, Lookup Tables
(LUTs), and block RAM (BRAM). To achieve
high performance on FPGAs, many studies
quantize weights and activations to replace
floating-point operations with integer arithmetic,
thereby reducing hardware complexity while
maintaining accuracy.’ In addition, techniques
such as parallelization, pipelining, and data reuse
are commonly applied to increase throughput and
optimize memory bandwidth.> In SoC-FPGA
architectures, the integration of FPGA
Programmable Logic (PL) and the embedded
ARM Processing System (PS) provides a balance
between performance and flexibility.* The PL
handles computationally intensive kernels, while

the PS manages control and data movement via
direct memory access (DMA) over the Advanced
eXtensible Interface (AXI) interconnect.>® On
the PYNQ-Z2 platform, the Python Productivity
for Zynq (PYNQ) framework enables direct
control and testing of the CNN accelerator from
Python, facilitating data transfer between Double
Data Rate (DDR) memory and the FPGA and
thereby simplifying system development and
evaluation.®*’This work presents the design and
implementation of a lightweight CNN accelerator
on an SoC-FPGA platform for handwritten-digit
classification using the Modified National
Institute of Standards and Technology (MNIST)
dataset. The model is optimized to fewer than
1,000 parameters to balance accuracy, memory
footprint, and hardware feasibility on the PYNQ-
Z2. The system employs DMA/AXI for data
exchange between the CPU and FPGA and
integrates the PYNQ framework for control and
real-time inference. Experimental results
demonstrate that the proposed design delivers
high performance, efficient resource utilization,
and low power consumption, confirming the
feasibility of FPGA-based real-time embedded
Al systems.

2. RELATED WORKS

MNIST inference on FPGA/SoC platforms has
been extensively explored along two main
directions: (i) extreme-quantization approaches
(binary/ternary) that push hardware efficiency

and throughput, and (ii) fixed-/integer-point
CNN deployments (LeNet-5-based CNN) that
target higher accuracy with moderate resource
cost. In the first direction, FINN provides a
representative toolflow for binarized neural
networks on FPGAs and reports multi-million
classifications per second on MNIST with sub-
microsecond latency on a Zynq ZC706 platform,
together with explicit performance and power
reporting®. In the fixed-/integer-point CNN
category, Gonzalez et al. implement a LeNet-5
inference accelerator using an SW/HW co-
processing scheme on a Zyng-7000 Arty Z7-20,
reporting 97.59% MNIST accuracy with 12-bit
fixed-point arithmetic and approximately 441
images/s at 100 MHz’. More recent full-network
deployments using HLS on Zynq devices provide
more complete reporting of model scale and
system metrics; for example, Liang et al. detail
LeNet-5 weight counts and report end-to-end
inference time, power, and error rate (e.g., 1.07
ms, 2.193 W, and 0.99% error for their
PIPELINE design)!’. Complementary to binary
networks, ternary models have also been
proposed to improve efficiency while retaining
more representational capacity than binarization;
Alemdar et al. present ternary neural networks
and discuss FPGA/ASIC realizations that
leverage low-precision arithmetic and sparsity
effects for energy-efficient inference!!. Beyond
CNN:gs, compact fixed-point DNN
implementations that keep weights entirely in on-
chip memory have also been demonstrated to
reduce external memory traffic; Park and Sung
describe an FPGA-based DNN design using 3-bit
weights with on-chip storage (no external DRAM
access) and report <5 W full-speed power in their
MNIST evaluation'.

3. DESIGN METHODOLOGY

As shown in Figure 1, the design process
comprises four stages: first, we specify the
MNIST classification task, target performance
and accuracy, hardware resource constraints, and
the PS—PL communication scheme within the
Zynq SoC to guide subsequent decisions. Next,
we design, train, and quantize the CNN in
PyTorch, convert the quantized weights to 8-bit
integers (int8), and export them as HEX files for
the hardware stage. We then implement the CNN
functional blocks at the Register-Transfer Level
(RTL), perform simulation and synthesis to
evaluate resource usage (LUTs, DSPs, BRAM),
and integrate the accelerator into the Zynq SoC
via the AXI4-Stream interface to enable high-
throughput PS—PL data movement. Finally, we

deploy the generated bitstream on the PYNQ-Z2,
control execution through the PYNQ framework
on the ARM Cortex-A9, and evaluate the system
using 10,000 MNIST test images to measure
performance, accuracy, and hardware resource
utilization.

Define Design Objectives and|
Requirements

!

CNN Design and Weight
Extraction

CNN Design for MNIST
Model Training

Quantization and Weight
Extraction

| 5 Q i Weights per

¥ " Layer (in HEX format)

Hardware Implementation
Process

Design of Individual CNN
Accelerator Modules
Simulation and Synthesis

integration of CNN
Accelerator into SoC via
AX| Stream Interface

Bitstream and Configuration Files
% Simulation Results and Resource
Utilization Report
Deployment on FPGA Board
Framework

% Performance on Real Hardware

Performance Evaluation

Figure 1. Design Implementation Flow

3.1 CNNs for Hand-written digit classification

Selecting an appropriate CNN model is pivotal to
the overall system design because it directly
influences accuracy, processing latency, and
hardware resource utilization on the FPGA. On
an SoC-FPGA platform constrained by DSP
slices, LUTs, and BRAM, the model must
balance computational complexity with hardware
feasibility: an excessive parameter count can
exceed on-chip storage, increase DDR access
latency, and impede pipelining, whereas an
overly simplified network may weaken feature
extraction and reduce accuracy. Accordingly, the
research team aims to develop a compact,
efficient CNN architecture that enables high-
throughput inference in a RTL implementation.
As shown in Figure 2, the designed CNN model
comprises two convolutional layers, two pooling
layers with Rectified Linear Unit (ReLU)
activation, and a single fully connected layer. The
architecture follows the LeNet-5 paradigm but is

simplified for FPGA deployment. A 5x5 kernel is
employed to balance feature extraction quality
with streamlined, pipelined = Multiply—
Accumulate (MAC) operations on DSP units.
After the two convolution—pooling stages, the
output is flattened into a 48x1 feature vector and
passed to a fully connected layer that produces
class scores over ten outputs corresponding to
digits 0-9.

As shown in Figure 2, the proposed CNN
contains a small number of parameters across all

layers, reflecting its lightweight design for FPGA
deployment. The CNN adopts a minimalist
architecture with an optimized dataflow tailored
to the FPGA’s bandwidth and buffering
constraints. The pooling layers progressively
reduce the spatial dimensions of the feature maps,
which facilitates deep pipelining and lowers the
computational load of subsequent layers. With a
total of 796 parameters, the model attains
approximately 96% accuracy in single-precision
(float32), providing a robust foundation for
quantization and hardware implementation.

i 10

Input MNIST b
Convolution Layer 1 Convolution Layer 2 |
Max Pooling Layer 1 Max Pooling Layer 2,"
5X5x3] L o
LI O [T i
- =t D_“"‘_'_-_:- | [ME===- f
= - =1--" & \‘ & ¥
| /o
28x28x1 24x24x3 12x12x3 ¢

8x8x3 4x4x3 ““ |

Flatten H .
{L__L~” Fully Connected
Layer

Figure 2. CNN Model Architecture for MNIST Classification

To reduce hardware cost and accelerate
computation, we apply quantization-aware
training (QAT) to convert the model to intS§,
reducing memory usage by approximately 4x
while preserving accuracy close to the floating-
point baseline. Quantized weights and biases are
exported per layer to enable direct inference on
the FPGA. The quantization pipeline consists of
three steps: (1) normalize weights and biases to
the range [—1, 1]; (2) scale by 128 to map values
to the int8 range [—128, 127]; and (3) encode
negative values in two’s-complement form for

FPGA storage. The resulting quantized
parameters are written as .mem files (one per
layer) and loaded directly into BRAM or register
files within the RTL design. This workflow yields
a CNN optimized for both accuracy and hardware
deployability and is ready for accelerator
construction and on-FPGA inference. As shown
in Figure 3, the quantization process follows a
structured three-step pipeline that ensures
numerical consistency between software
simulation and hardware implementation.

weight/bias . weight/bias . weight/bias
float3z —| Ocalingfactor | 5o 0m o T‘g:;g;’nm’::ﬁ:;e)“t > 8 bit signed
[-1:1] (128) [-128:127] g integer (HEX)

Figure 3. Quantization Process of the CNN Model

3.2 Implementation of CNN Accelerator Core
on FPGA

After completing the CNN model, the next step is
the design of the RTL module. A CNN
architecture can be implemented using various
approaches, including Naive Convolution,

Matrix Multiplication, or Winograd Convolution.
In this work, the basic Naive Convolution method
is adopted to construct the CNN hardware
architecture.

Figure 4 illustrates the overall system
architecture, in which the Buffer, Conv Calc,

Maxpooling, ReLU, Fully Connected, and
Comparator modules are independently designed
and then integrated into a complete CNN block.

Channel 1
~» | Input Conv. | ——
Buffer Calc.
Channel 2
. > Ma:_(. Relu »| | Input Conv. > Ma).(. Relu
Pooling Buffer Ccale. Pooling
Channel 3
Input conv. | —
> | Buffer cale.

Fully
Connected

>

Comparator

—>

Figure 4. Block Diagram of the CNN Accelerator

The Input Buffer Block stores incoming image
pixels. The accelerator ingests a 28x28 MNIST
bitmap (784 pixels), with each pixel represented
in 8 bits. Pixels arrive as a stream—one pixel per
clock cycle—in raster-scan order from the top-
left corner, proceeding left-to-right and top-to-
bottom. This serial loading scheme avoids
allocating on-chip memory for the entire image
and allows computation to begin immediately,
without waiting for full-frame capture. The line
buffer holds 140 entries of 8 bits each

x0

wo wi

Stage 1

Stage 2

Stage 3

Stage 4

(corresponding to 5 rows x 28 columns). After a
row is processed, the buffer is overwritten with
the next row until the entire image is consumed.
For convolution, 5x5 pixel windows are extracted
from the buffer and shifted by one pixel
horizontally at each cycle, repeating until the end
of the row. In every clock cycle, one 5x5 window
is emitted and forwarded to the convolution stage.
With a 5x5, stride-1, valid convolution on a
28%28 input, the first layer produces 24x24 =576
windows (each containing 25 pixels), matching
the output feature-map dimensions of the layer.

Figure S. Pipeline Stages of the Convolution Module

The Convolution Calculation Module performs
the convolution between the input data stream
from the buffer block and the 5x5 kernel weights.
Its input is a stream of 576 windows, each
containing 25 parallel pixels, supplied by the
buffer. At each clock cycle, one 5x5 window is
consumed to compute a dot product with the 5x5
kernel, followed by addition of the bias term.
Because arithmetic operations on the FPGA incur
propagation delay, the datapath is pipelined to
sustain high throughput. Figure 5 illustrates the

pipelined structure, realized by inserting registers
to partition the computation into multiple stages,
thereby shortening the critical path and increasing
the achievable clock frequency. With a four-stage
pipeline, the first valid output appears four cycles
after the corresponding input window is received;
thereafter, the module produces one output per
cycle.

For Max-Pooling and ReLU Modules, the first
convolution layer yields a 24x24 feature map,
emitted as 576 sequential values in a continuous

stream, which serves as the input to the
MaxPooling and ReLU modules. The 2x2
MaxPooling unit processes pixels in pairs of rows
(two from the first row and two from the second
row), outputs the maximum among the four, and
advances by one pooling stride. The result is then
passed to the ReLLU activation, which preserves
non-negative values and sets negative values to
zero. A line buffer stores 12 elements—one
output row of the resulting 12x12 feature map
from the MaxPooling—ReLU stage. For each 2x2
cell, the running maximum is updated in the
buffer when the current value exceeds the stored
value; otherwise, the stored value is retained. The
buffered value is then compared with zero to
apply ReLU. Pointers and control flags step
through the buffer in sync with the 576-pixel
input stream, producing a 12x12 feature map with
144 outputs.

The Fully Connected and Comparator Module
Block receives input from the second convolution
and MaxPooling layers. The 4x4 feature maps
with three channels are flattened into a 48x1
vector, multiplied by the corresponding weights,
and summed with bias terms to produce ten
output neurons. Arithmetic operations in the
Fully Connected module are pipelined similarly
to the convolution module to optimize
performance. After computing the ten neuron
outputs, the Comparator identifies the neuron
with the highest value (argmax). A ten-element
line buffer temporarily stores the neuron values
from the Fully Connected module, and the index
of the maximum value is emitted as the predicted
class (digits 0-9).

3.3 Integration of CNN Accelerator Core into
Zynq SoC

After completing the CNN accelerator hardware
core, we integrated it into the Zynq SoC so that
the ARM processing system (PS) can drive the
programmable-logic (PL) inference engine
through a standard memory-to-stream pipeline.
Input images are stored in off-chip DDR, and a
Xilinx IP block (AXI DMA) bridges the DDR-
based memory subsystem and the streaming
accelerator, as depicted in Figure 6. To make the

accelerator compatible with the SoC
interconnect, we wrapped the RTL core with a
lightweight top-level module that presents a
compliant AXI4-Stream slave interface for input
pixels and an AXI4-Stream master interface for
output results. Since the CNN core natively
consumes data as a stream, the AXI-Stream
handshake signals (e.g., TVALID/TREADY and
frame delimiting) map naturally onto the existing
streaming datapath and ensure reliable
backpressure handling. The end-to-end dataflow
proceeds as follows. (1) The PS configures the
AXI DMA through the S AXI LITE control
port, programming the base DDR addresses and
transfer lengths for the input image buffer and the
output result buffer. (2) For the MM2S (memory-
mapped-to-stream) direction, the DMA fetches
pixel data from DDR via M_AXI MM2S and
packetizes it into an AXI4-Stream on
M_AXIS MM2S. (3) The outgoing stream is
optionally decoupled using axis data fifo O,
which absorbs burstiness from DDR reads and
provides elastic buffering so the accelerator can
run smoothly even if memory traffic momentarily
stalls. (4) The buffered stream is then consumed
by the CNN accelerator (axis_cnn_mnist 0),
which performs inference in the PL and emits
classification outputs as an AXI4-Stream. (5) On
the output side, axis data fifo 1 buffers the
accelerator’s result stream and handles any
backpressure from the downstream DMA. (6) For
the S2MM (stream-to-memory-mapped)
direction, the DMA receives the output stream on
S AXIS S2MM and writes the results back to
DDR via M_AXI S2MM. (7) Finally, the PS
reads the result buffer from DDR and uses it for
reporting (e.g., predicted digit) or for subsequent
software-side processing. Overall, this PS—-PL
integration turns DDR-resident images into a
continuous AXI stream for the accelerator and
returns inference outputs back to DDR using the
same standardized AXI infrastructure. The two
FIFOs isolate the accelerator from memory
timing variability, while the AXI-Lite control
path lets software orchestrate transfers without
modifying the RTL datapath, yielding a reusable
and scalable integration pattern for streaming
CNN inference on Zynq.

processing_system?_0

W woo i 45 AXI_HPO_FIFO_GTRL.
"Xn ey ont]

5_AX_HPO FIXED_{O

Vo

L'T_

—AXTSmarCommedl AL HP2 ZYNQ‘ MLAXI_GPO+ i

o | |

—={M_AXI_GPO_ACLK FCLK_C

g——{S_AXI_HP2_ACLK

.o MOO_AX! o e ZYNQT Processing Sysiem

smartconnect t 1 g—e={S_AXI_HPO_ACLK FCLK_RESET0_NO»—

) AcLK E=E moomadf

ARESETN g g

)_ACLK.

)_ARESETN

—
“AXT Interconnect (Discontinued)

M_AXI!

- +5_AXI_LITE
= S_AXIS_S20M

M_AXI_S

M_AXIS. !

axis_data fifo 0

—2i 45 AXIS

mm2s_introut}

s2mm_introut)

s ais_acik RTL m:

_ oXscmnmnist0
s axis_aresetn M_AXIS s axis L

AX]4-Stream Data FIFO

AXI Direct Memory Access

1st_ps7_0_100M

t_syne_clk mb_reset

t resetin bus_struct_reset{0:0]
aux_reset_in peripheral_reset{0:0]

mb_debug_sys_rst interconnect_aresetn{0:0
dom_locked peripheral_a

Processor System Reset

Figure 6. System Block Diagram for implementation in Xilinx Vivado

4. RESULTS AND DISCUSSION

This work implements a CNN hardware
accelerator on the PYNQ-Z2 board operating at
100 MHz. As summarized in Table 1, after
simulating the accelerator with 10,000 MNIST
test images, the classification accuracy reached
approximately 91%. The implementation on the
PYNQ-Z2 utilized 37.48% of LUTs, 100% of
DSPs, and 2.5% of BRAM. Full utilization of
DSP slices reflects the dominance of multiply—
accumulate (MAC) operations in the
convolutional layers, whereas the moderate LUT
usage and minimal BRAM consumption indicate
an efficient architecture with well-optimized data
reuse and pipelining. To evaluate performance,
we executed the classification function on both
the PL-based accelerator and the dual-core ARM
Cortex-A9 CPU (650 MHz) for comparison.
Power consumption was measured as total board
power during continuous inference on 10,000
MNIST test images over a 15-minute interval to
ensure stable operating conditions. The baseline
(idle) power was recorded with the board
powered on and no inference running; the
average processing power was then computed by
subtracting this idle power from the total
measured power.

Table 1. CNN Accelerator Hardware Synthesis Results

Hardware LUT DSP BRAM ‘
17052 220
CNNeore | 35 059%) | (100%) 0
. 19942 220 35
(37.48%) | (100%) | (2.5%)

To reduce the DSP utilization on XC7Z020 to a
more reasonable level, the accelerator can be re-
architected to trade a small amount of throughput
for substantially lower multiplier parallelism.
First, the 5x5 convolution dot-products can be
implemented with partial unrolling (e.g., 1/5/10-
way) and time-multiplexed MAC accumulation,
reusing a smaller set of multipliers over multiple
cycles instead of instantiating all products in
parallel. Second, layer folding can be applied so
that a single shared MAC engine is reused
sequentially across Convl, Conv2, and the FC
layer, allocating DSPs to the maximum
requirement of one layer rather than the
combined peak across layers. Third, because
operands are int8, DSP48 packing/SIMD can be
exploited to compute multiple 8-bit
multiplications within one DSP block, further
reducing the number of DSP instances required.
Finally, where beneficial, fixed inference weights
enable replacing some multipliers with LUT-
based constant-coefficient arithmetic (e.g., shift-
add or distributed arithmetic) and/or applying
structured pruning with zero-skipping to reduce
the effective MAC count. Collectively, these
modifications can significantly lower DSP usage
while preserving the AXI-streaming integration
and maintaining sufficient throughput for MNIST
inference.

Figure 7(a) presents the time-resolved
(instantaneous) PYNQ-Z2 board power during
single-image inference, clearly capturing the
transient transition from the idle baseline to the
active computation phase. Figure 7(b)—(d) then
compares the corresponding average power
across three operating modes: (b) idle (baseline),

(c) inference executed on the ARM CPU, and (d)
inference executed on the PL-based SoC
accelerator.

4.96963 v
0.37958 1%
1.88635 s

i

B © 000:11:34

@ (032wn

4.978 [14.976 (14 .98 M
0.448 110.342 §0.34 N
2241707 J1.71 0

NOD & 000:15:00

@ (o505wWn J

4.972 114.966 (4.97 W
0.466 110401 11040
2.313[51.998 [J2.00 W

N @ 000:15:00

@ (0478 Wh

4.972[14.970[4.97H
0.446 110.380 110.38
2215[1.8831J1.88 M

Figure 7. Measurement of instantaneous and average power consumption during CNN inference on the PYNQ-Z2
platform. (a) Instantaneous power profile for a single input image, illustrating the transition from idle to active
operation. (b)—(d) Comparison of average power consumption under idle conditions, CPU-based inference, and

PL/SoC accelerator-based inference.

Table 2 presents the summarized results—
including classification accuracy, frame rate, and
average power. The proposed CNN accelerator
achieves a classification accuracy of 91.28%,
which is approximately 5% lower than the CPU
implementation (96.26%). However, processing
latency is significantly reduced—from 4.25 ms
on the CPU to 0.54 ms on the FPGA—
representing a 7-8x speedup, despite the FPGA
operating at a much lower frequency (100 MHz
vs. 650 MHz). This improvement highlights the
benefits of parallel computation and deep
pipelining inherent in FPGA-based architectures.
In terms of power efficiency, the FPGA
implementation consumes 186 mW on average,

compared with 291 mW for the CPU, resulting in
an overall 36% reduction in power consumption.
The corresponding energy per inference
decreases from 1.234 mJ per image on the CPU
to 0.102 mJ] per image on the FPGA,
demonstrating a substantial improvement in
energy efficiency. Overall, these results indicate
that the proposed CNN accelerator offers a
favorable balance between performance and
energy consumption, making it well suited for
real-time embedded Al applications on resource-
constrained edge devices.

Table 2. Experimental results and performance comparison

Hardware Latency Accuracy FPS Power Efficiency
Platform (ms) (%) (mW) (mJ/frame)
FPGA
0.54 91.28 1852 186 0.102
(100 MHz)
CPU ARM Cortex A9
4.25 96.26 235 291 1.234
(650 MHz)

Table 3 shows that prior FPGA MNIST
accelerators typically emphasize either higher
accuracy using larger LeNet-5—class models >
or extremely high throughput via aggressive
quantization such as binary or ternary
networks®!12 In contrast, our work targets a
different operating point by implementing a very
small int8§ CNN (2 conv + 1 FC) with only 796
parameters directly in RTL and integrating it on
the low-cost PYNQ-Z2 (XC7Z020) using an
AXI-DMA streaming flow; on 10,000 test images
it achieves 91.28% accuracy, 0.54 ms/image
latency (1,852 FPS), and 186 mW incremental
power (0.102 mJ/image). Compared with earlier
studies, the primary strength is model
compactness, since the parameter count is far

smaller than the larger LeNet-5 implementations
and the 3-layer FC network with substantial
parameter storage®*!°. However, the compact
model yields lower accuracy than all other works
reporting accuracy (<95.83%-<99.01%)* . In
throughput, our design exceeds slower FPGA
results such as 441 FPS and 934.6 FPS*!° but
remains well below the ultra-high-throughput
designs reporting 61,035-70,000 FPS or even
multi-mega FPS enabled by extreme quantization
and heavy parallelism®''?. Finally, while our
absolute power is low compared to watt-level
implementations®™!°, the energy per image is not
best-in-class because 0.102 mJ/image (~102
pnJ/image) is higher than the best reported
wJ/image figures'!*!12,

Table 3. Comparison of FPGA-based MNIST inference accelerators

Work Precision Platform Model Accuracy | Throughput Power
. . PYNQ-Z2 Compact CNN 1.852 FPS 186 mW,
This work int8 (Zynq (2 conv. + 1 FC.) 91.28% 0.54 ms/im 0.102 ml/im
XC72020) 796 params ‘ S £
Umuroglu . ZC706 3-layer FC,] o 12.361 M- Pchip 7.3 W,
et al. [8] 1-bit (Zynq Z7045) 256 neu_rons/layer, 95.83% FPS,. Pwall 212 W
0.3 Mbits params 0.31 ps/img)
Gonzalez | fixed-point Arty Z7-20 LeNet-5 o 441 FPS
et al. [9] (12-bit) (Zyng-7000) (params N/R) 97.39% 2.27 ms/img L7z w
Liang et Integer /
al. fixed-point | Zynq platform LeNet-5 ~99.01% 934.6 F.PS 2.19W
. 1.07 ms/img
[10] variants
Alemdar Ternary Kintex-7 o 61,035 FPS, .
et al. [11] NN (XC7TK160T) not reported 98.14% | ¢ 09 ysimg | 63 W/img
3-bit
Park) ZC706 not .
weights, 8- not reported 70,000 FPS 71 wJ/img
et al. [12] bit signals (Zynq Z27045) reported
5. CONCLUSION cost PYNQ-Z2 (XC7Z020) via AXI4-Stream and

This work delivers a deployable, end-to-end
SoC—FPGA inference pipeline that goes beyond
demonstrating ~ MNIST classification by
integrating model design with a practical
embedded hardware realization. We (i) design a
minimalist int§ CNN (2 conv + pooling/ReLU +
1 FC) with only 796 parameters and export
FPGA-ready quantized weights, (ii) implement a
fully RTL streaming accelerator that processes
input pixels at one pixel per clock using
lightweight line buffering and a pipelined
datapath, and (iii) integrate the core on the low-

AXI-DMA for complete PS—PL deployment. On
10,000 MNIST test images, the PL
implementation achieves 91.28% accuracy—
about five percentage points below the dual ARM
Cortex-A9 CPU baseline—while providing a 7—
8% throughput improvement (0.54 ms/image,
1,852 FPS vs. 4.25 ms/image, 235 FPS) and
lower incremental power, resulting in markedly
better energy per inference. These results
highlight the advantages of FPGA-based CNN
acceleration for deterministic low-latency and
energy-efficient edge inference on resource-
constrained platforms, and the presented

workflow offers a reproducible template
spanning quantization, RTL development,
pipelining, resource-aware design, and PYNQ-
based system integration. Although accuracy is
limited by the intentionally compact model and
int8 quantization, and the XC7Z020 imposes
tight DSP/BRAM constraints, the proposed
system establishes a solid foundation for future
improvements such as layer folding and time-
multiplexed MACs to reduce DSP usage, refined
quantization-aware training to recover accuracy,
and scaling to larger FPGAs or modestly larger
networks while preserving the same streaming
integration methodology. Overall, the paper
demonstrates a practical and extensible approach
to embedded FPGA inference suitable for real-
time edge applications including digit/character
recognition and low-power intelligent sensing in
IoT systems.

Acknowledgments

REFERENCES

1. A. Shawahna, S. Sait, A. El-Maleh. “FPGA-
based accelerators of deep learning networks for
learning and classification: A review,” IEEE Access,
2019, 7, 7823-7859.

2. V. K. Pham, N. Q. Tran, N. L. Nguyen.
“Optimizing the convolutional neural networks for
resource-constrained hardwares,” Science &
Technology Development Journal — Engineering and
Technology, 2022, 4(4), 906.

3. S. Bouguezzi, H. B. Fredj, T. Belabed, C.
Valderrama, H. Faiedh, C. Souani. “An efficient
FPGA-based convolutional neural network for
classification: Ad-MobileNet,” Electronics, 2021,
10(18), 2272.

4. M. Faizan, 1. Intzes, 1. Cretu, H. Meng.
“Implementation of deep learning models on an SoC-
FPGA device for real-time music genre
classification,” Technologies, 2023, 11(4), 91.

5. Anjali, J. P. Anita. “AXI based DMA Memory
System Testbench Architecture Using UVM Harness
Technique,” The 9th International Conference on
Advances in Computing and Communication, ICACC
2019, Kochi, India, 2019.

6. A. Sharma. “Evaluation of AXI-Interfaces for
Hardware Software Communication,” Master’s thesis,
Technische Universitit Chemnitz, Chemnitz, 2019.

7. S. Sun, J. Zou, Z. Zou, S. Wang (eds.).
“Experience of PYNQ: Tutorials for PYNQ-Z2,”
Springer Nature Singapore, Singapore, 2023.

8. Y. Umuroglu, N. J. Fraser, G. Gambardella, M.
Blott, P. H. W. Leong, M. Jahre, K. A. Vissers.
“FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” Proceedings of the 2017
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2017, Monterey,
CA, USA, 2017, 65-74.

9. E. Gonzilez, W. D. Villamizar Luna, C. A.
Fajardo Ariza. “A Hardware Accelerator for the
Inference of a Convolutional Neural Network,”
Ciencia e Ingenieria Neogranadina, 2020, 30(1), 107-
116.

10. Y. Liang, J. Tan, Z. Xie, Z. Chen, D. Lin, Z.
Yang. “Research on Convolutional Neural Network
Inference Acceleration and Performance Optimization
for Edge Intelligence,” Sensors, 2024, 24(1), 240.

11. H. Alemdar, V. Leroy, A. Prost-Boucle, F.
Pétrot. “Ternary Neural Networks for Resource-
Efficient Al Applications,” 2017 International Joint
Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, 2017, 2547-2554.

12. J. Park, W. Sung. “FPGA Based
Implementation of Deep Neural Networks Using On-
Chip Memory Only,” 2016 IEEE International
Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, Shanghai, China, 2016,

1011-1015.

