

1

Thiết kế và triển khai robot di động tự hành dựa trên ROS với
giao diện hỗ trợ điều hướng theo lộ trình

TÓM TẮT

Robot di động tự hành (AMR) ngày càng được ứng dụng rộng rãi trong các môi trường logistics và dịch vụ

trong nhà, nơi yêu cầu phải bảo đảm khả năng lập bản đồ, định vị và điều hướng tin cậy. Bài báo này trình bày thiết

kế và triển khai một AMR nhỏ gọn dựa trên ROS, trang bị Raspberry Pi 4, LiDAR 2D, IMU và encoder. Nhằm tăng

tính thuận tiện khi vận hành, chúng tôi phát triển một giao diện đồ họa (GUI) độc lập, thay thế thao tác trực tiếp trên

Rviz, người dùng có thể điều khiển robot đến bốn điểm đích định sẵn hoặc thực thi lộ trình nhiều waypoint do người

dùng cấu hình, đồng thời theo dõi trạng thái điều hướng theo thời gian thực. Hệ thống tích hợp 2D SLAM để xây dựng

bản đồ, AMCL để định vị, Dijkstra cho lập kế hoạch toàn cục và Dynamic Window Approach (DWA) cho điều hướng

cục bộ kết hợp tránh vật cản. Thử nghiệm trong các kịch bản indoor cho thấy odometry từ encoder có sai số quãng

đường trung bình 5,8–7,0% trên đoạn 1–3 m; sai số đo khoảng cách LiDAR <3% đến 10 m; và kích thước bản đồ tái
tạo lệch <1,3% so với giá trị thực tế. Trong thử nghiệm điều hướng, robot đạt mục tiêu ổn định ở cả môi trường ít và

nhiều vật cản sau khi tinh chỉnh tham số, đồng thời thực thi tin cậy các nhiệm vụ waypoint liên tiếp. Kết quả khẳng

định tính khả thi của việc triển khai AMR dựa trên ROS với giao diện tương tác người dùng.

Từ khoá: ROS, AMR, SLAM, AMCL, DWA.

2

Design and Implementation of a ROS-Based Autonomous
Mobile Robot with a GUI-Assisted Route Navigation Interface

ABSTRACT

Autonomous mobile robots (AMRs) are increasingly deployed in indoor logistics and service environments,

where reliable mapping, localization, and navigation are essential. This paper presents the design and implementation

of a compact ROS-based AMR equipped with a Raspberry Pi 4, a 2D LiDAR, an IMU, and wheel encoders. To

improve operational usability, we develop a standalone graphical user interface (GUI) that replaces direct RViz

interaction; users can command the robot to navigate to one of four predefined destinations or execute a user-

configurable multi-waypoint route while monitoring navigation status in real time. The system integrates 2D SLAM

for map construction, AMCL for localization, a Dijkstra-based global planner, and the Dynamic Window Approach
(DWA) for local motion generation with obstacle avoidance. Experiments in representative indoor scenarios show

that encoder-based odometry yields a mean distance error of 5.8–7.0% over 1–3 m trajectories; LiDAR ranging error

remains below 3% up to 10 m; and reconstructed map dimensions deviate by less than 1.3% from ground-truth

measurements. In navigation trials, the robot consistently reached target goals in both obstacle-free and obstacle-rich

environments after parameter tuning, and it reliably executed sequential waypoint missions. These results confirm the

feasibility of deploying ROS-based AMRs with an interactive user interface for practical indoor applications.

Keywords: ROS, AMR, SLAM, AMCL, DWA.

1. INTRODUCTION

Nowadays, autonomous mobile robots (AMRs)

are being widely deployed across numerous

domains, ranging from logistics systems, goods
transportation, surveillance, and quality inspection

to navigation tasks in complex environments.

These applications optimize operational
workflows, reduce human intervention, and

improve overall productivity. In robotics research,

robot localization and navigation constitute key

areas; algorithms such as SLAM (Simultaneous
Localization and Mapping), path planning, and

motion control play pivotal roles in enabling

robots to operate effectively in previously

unknown environments.1-2

The field of autonomous robotics can be traced

back to Leonard’s work in 1990, which introduced
fundamental approaches for 2D mapping and

robot localization in three-dimensional space. This

line of research established the foundations for

SLAM (Simultaneous Localization and Mapping),
which was later advanced by Durrant-Whyte and

Bailey, providing essential tools for localization

and mapping in unknown environments.3-4 These
contributions have significantly influenced the

development of modern autonomous robotic

technologies, particularly the adoption of ROS

(Robot Operating System) and SLAM algorithms

for mobile robots.

Modern SLAM algorithms—especially methods
leveraging LiDAR and IMU sensing—have

demonstrated strong capability in accurate 2D

map reconstruction and effective robot
localization in three-dimensional space.

Nevertheless, deploying such SLAM approaches

in real-world settings can pose substantial
challenges, particularly when constrained by low-

cost, simplified hardware platforms. Several

recent studies have addressed this issue by

proposing cost-effective solutions that still
maintain high performance, especially for small-

and medium-scale autonomous robotic

applications.5-7

At present, many studies in mobile robotics

employ ROS to simulate SLAM algorithms or rely

on off-the-shelf robot platforms such as Pioneer
and Turtlebot. However, these platforms are often

incompatible with the financial constraints and

research infrastructure commonly encountered in

Vietnam, where funding for autonomous robotics
remains limited.8 Moreover, solutions that use

sensors such as LiDAR and cameras for mapping

and navigation typically entail challenges related

to cost and computational resources.9

In Vietnam, mobile robotics continues to be a

focal research topic. Existing studies largely

concentrate on developing control systems for
mobile robots operating in known environments,

often based on two-wheel differential-drive

structures and fixed kinematic models. However,

3

such approaches may not satisfy the requirements

for mobility in complex environments
characterized by dense obstacles and continuously

changing spatial configurations.10 Recent research

has therefore shifted toward path planning and
motion control, aiming to optimize trajectories for

autonomous robots in environments without

detailed pre-existing maps, supported by

algorithms such as A* and DWA (Dynamic

Window Approach).11-12

With the objective of providing a low-cost

solution while maintaining high performance, this
paper presents a ROS-based system for navigation

and mapping, together with the DWA algorithm

for local trajectory planning. Both real-world

experiments and simulation results are reported,
demonstrating that our robot platform can

transport goods to user-selected target locations

marked on the map with high accuracy, thereby
meeting the requirements of autonomous robotic

applications. 13-14

The remainder of this paper is organized as
follows. Section 2 describes the system

architecture and hardware design, followed by the

differential-drive kinematic model and software

implementation under ROS. Section 3 presents the
adopted mapping, localization, and navigation

algorithms (slam_gmapping, AMCL, global

planning, and DWA-based local planning).
Section 4 reports experimental protocols and

quantitative results for sensor evaluation, mapping

accuracy, localization tuning, and navigation
performance. Section 5 concludes the paper and

outlines future improvements.

2. METHODS

2.1. Design methodology

An overview of the proposed system is illustrated

in Fig. 1. A user operates a host computer to
monitor the mapping process and to command the

robot to navigate to target locations via an

embedded Raspberry Pi 4. Both the host computer

and the Raspberry Pi 4 run ROS on Ubuntu 20.04
and communicate over a shared Wi-Fi network;

the Raspberry Pi is configured with a static IP

address. The embedded computer acquires LiDAR
measurements for map construction. Meanwhile,

the microcontroller collects inertial measurements

from the IMU and transmits them to the embedded
computer, and it also drives the actuators—two

DC motors—through a motor driver module.

Figure 1. Overview of the proposed system

2.1.1. Hardware design

Figure 2. Dimensional drawing of the robot

The robot chassis is fabricated from aluminum to
reduce mass and improve maneuverability, with

overall dimensions of 300 × 300 × 170 mm.

Because the platform is intended to operate

indoors on flat terrain with low wheel slip,
conventional wheels are adopted with radius r =

34mm (Fig 3a). The robot frame is designed to

accommodate a top cover that mounts an RPLidar
A1 sensor.

As shown in Fig. 3b, the robot body houses a

Raspberry Pi 4 for sensor processing and control-

board interfacing. A 9-DOF IMU (MPU-9250)
enables motion tracking along three spatial axes,

improving localization capability and motion

stability. Two BTS7960 motor driver modules
control two GA-25 DC geared motors equipped

with dual-channel A/B encoders, allowing

accurate motion execution and motor speed
feedback. The system is powered by a 12-V

battery pack.

 (a) (b)

Figure 3. Robot prototype: (a) external view, (b)

internal layout.

2.1.2. Component selection

Embedded computer (Raspberry Pi 4). The
Raspberry Pi 4 is used as the main embedded

4

computer and communicates with the

microcontroller. It features a quad-core ARM
Cortex-A72 CPU at 1.5 GHz, 4 GB RAM, USB

3.0, Gigabit Ethernet, Wi-Fi 802.11ac, Bluetooth

5.0, and a 40-pin GPIO header, making it well-
suited for the proposed autonomous robot

platform. The embedded computer acquires motor

speed information, robot yaw angle, and LiDAR

measurements, processes these data using
integrated ROS software packages, and transmits

control commands to the microcontroller for

execution.

Laser rangefinder (RPLidar A1). The RPLidar A1

measures distances to surrounding obstacles,

enabling 360° environmental scanning and map

generation using the slam_gmapping algorithm.
The sensor supports obstacle detection up to 12 m

with a sampling rate of 8000 samples/s. It is also

supported by ROS (Robot Operating System)

integration packages for robot applications.

IMU (9-DOF MPU-9250). The MPU-9250

integrates an accelerometer, gyroscope, and
magnetometer to measure tri-axial acceleration,

angular velocity, and magnetic field. Through I²C

communication, it provides nine sensor readings

that can be fused to estimate the robot’s Euler
angles (roll, pitch, yaw). This device is critical for

maintaining robot stability and heading

estimation, thereby supporting accurate and

efficient 2D navigation.

Geared DC motor with encoder (GA-25, 12

VDC). The GA-25 is a DC geared motor equipped
with an encoder to provide feedback signals. The

microcontroller counts encoder pulses and adjusts

motor actuation through the power driver,

enabling motor speed and rotation measurement.
Key specifications include: nominal voltage 12

VDC, shaft diameter 4 mm, gear ratio

approximately 46.8:1, no-load speed 130 rpm,
rated torque 0.9 kg·cm, and maximum torque 4.4

kg·cm. The encoder is dual-channel (A/B) with an

11-pulse disk per channel. This motor/encoder

pair enables accurate estimation of the robot’s
translational speed and displacement, and plays a

crucial role in motion control and trajectory

tracking.

Motor driver (BTS7960). The BTS7960 motor

driver is used to regulate motor speed and

direction via PWM control signals. With a current
capability up to 43 A, it supports stable velocity

regulation and smooth directional changes. This

driver contributes to precise and responsive motor

actuation, improving the overall navigation

performance of the robot.

Figure 4. Hardware wiring diagram.

Figure 4 summarizes the hardware
interconnections, illustrating how key modules are

integrated into a complete control system.

2.2. Algorithmic description

2.2.1. Kinematic model

A differential-drive autonomous mobile robot

(AMR) consists of two independently driven

wheels mounted on either side of a central chassis,
with passive caster wheels used for mechanical

stabilization.

Figure 5. Kinematic model of a two-wheel

differential-drive mobile robot

A typical configuration of a differential-drive
wheeled mobile robot (DDWMR) is shown in Fig.

5. Let a fixed reference frame 𝐹 be attached to the

ground, whose axes are represented by the

mutually orthogonal unit vectors 𝑥, 𝑦 and 𝑧 . A

body (mobile) frame 𝑀 is attached at the midpoint

of the line segment connecting the wheel centers

𝑐1 and 𝑐2. The unit vectors ℎ, 𝑙 and 𝑧 are

associated with the moving frame 𝑀. The wheel

radius is denoted by 𝑟. To derive the kinematic

model of the DDWMR, the following key

relationships are considered.

The angular velocities of the left and right wheels

are denoted by 𝜃̇1 and 𝜃̇2 , forming an independent

velocity vector:

𝜃̇ = [
𝜃̇1

𝜃̇2

] (1)

5

The linear velocity 𝑉 and the angular velocity ̇

in the moving frame 𝑀 are related to 𝜃̇ via a

Jacobian matrix:

𝑣 = [
𝑉

̇
] = 𝐾𝜃̇, 𝐾 = [

𝑟

2

𝑟

2
𝑟

𝑑
−

𝑟

𝑑

] (2)

To transform velocities from the moving frame 𝑀

to the fixed frame 𝐹, a rotation matrix is used:

𝑅(): 𝑅() = [
𝑐𝑜𝑠 − 𝑠𝑖𝑛 0
𝑠𝑖𝑛 𝑐𝑜𝑠 0

0 0 1

] (3)

The twist velocity in the fixed frame 𝑞̇ is obtained

by multiplying the rotation matrix with the

velocity vector 𝑣 expressed in frame 𝑀:

𝑞̇ = 𝑅()𝑣 (4)

The Jacobian relating 𝑞̇ and 𝜃̇ is:

 𝑞̇ = 𝐽𝜃̇, 𝐽 = 𝑅()𝐾 (5)

Thus,

𝐽 = [
𝑐𝑜𝑠 − 𝑠𝑖𝑛 0
𝑠𝑖𝑛 𝑐𝑜𝑠 0

0 0 1

] [

𝑟

2

𝑟

2
𝑟

𝑑
−

𝑟

𝑑

] (6)

Accordingly, the robot’s angular and linear

velocities can be expressed in terms of wheel

angular velocities:

̇ =
𝑟

𝑑
(𝜃̇1 − 𝜃̇2) và ̇ =

𝑟

2
(𝜃̇1 + 𝜃̇2) (7)

In this study, pure rolling motion is assumed;

therefore, lateral slip angles and side-slip

displacement terms 𝛿𝑖 and ̇ are neglected (set to

zero).

Notation:

𝜃̇1,

𝜃̇2

angular velocities of the left and right
wheels

𝑟 wheel radius

𝑑 distance between the two drive wheels

𝑉 robot linear velocity

𝐾
Jacobian mapping wheel angular

velocity to [𝑉, ̇]𝑇

𝑞̇
twist velocity expressed in the fixed

frame 𝐹

𝑅() rotation matrix from 𝑀 to 𝐹.

𝐽 Jacobian mapping 𝜃̇ to 𝑞̇.

𝑀 moving (body) frame

𝐹 fixed (world) frame

𝑙
coordinate of the midpoint between the

wheels

ℎ
wheel–ground contact location

representation.

𝑐1,

𝑐2

centers of the left and right wheels

𝑝1,

𝑝2

left/right wheel ground contact points

𝑥, 𝑦 unit vectors of the fixed frame 𝐹

𝑧 unit vector along the 𝑧-axis

2.2.2. Overall algorithm description

Deploying an autonomous robot typically requires

three core capabilities: mapping, localization, and
navigation. In this work, ROS (Robot Operating

System) is used to implement these capabilities, as

it provides a mature ecosystem of tools and
software packages. Specifically, we employ

slam_gmapping for map construction and amcl for

robot localization within a known map. For

navigation, the ROS navigation stack is adopted,
including move_base, global_planner, and

base_local_planner. The AMCL (Adaptive Monte

Carlo Localization) method uses a particle filter to
estimate the robot pose on the map, maintaining

localization accuracy during motion.

The ROS navigation framework is organized into

two planning layers: global planning and local
planning, corresponding to algorithms such as

Dijkstra (global planner) and the Dynamic

Window Approach (DWA) for local trajectory

generation.

Figure 6. Flowchart of localization and navigation.

Operationally, the robot explores an initially

unknown environment using LiDAR

measurements (with remote access/monitoring via

SSH when needed). Sensor data from the LiDAR
and IMU are continuously acquired to support

simultaneous localization and mapping. If the map

is not yet complete, the robot continues exploring
and updating the map. Once the mapping phase is

finalized, the user selects start and goal poses in

ROS RViz. The robot then computes an optimal
path from start to goal using global and local

planning modules. If the robot has not reached the

goal, the navigation loop continues; otherwise, the

process terminates. The procedure completes
when the robot successfully navigates to the

designated goal location.

In addition to the ROS-native workflow, we
introduce a mission-level graphical user interface

6

(GUI) that abstracts away direct RViz interaction

during deployment. The GUI enables non-expert
users to command the robot using high-level

navigation tasks: (i) selecting one of four

predefined goal locations, or (ii) executing a
sequential mission consisting of multiple

waypoints arranged in a user-defined order. Under

the hood, the GUI translates these task selections

into standard ROS navigation goals, dispatches
them to the navigation stack, and monitors

execution states in real time (e.g., goal accepted,

in-progress, succeeded, or aborted). For sequential
missions, the interface issues the next waypoint

only after the current one is completed (or after a

configured retry/termination condition), thereby

ensuring deterministic mission progression. This
design simplifies operational procedures,

improves usability outside laboratory settings, and

provides a practical pathway for integrating ROS-
based autonomy with application-oriented user

interaction.

2.2.3. SLAM-based mapping algorithm

SLAM (Simultaneous Localization and Mapping)

is a class of algorithms that enables a robot to

construct a map of its environment while

simultaneously estimating its own pose. During
motion, sensors such as LiDAR, IMU, and wheel

encoders acquire measurements of the

surroundings, which are then transformed into a
structured map representation. A reliable map is a

prerequisite for subsequent localization and

navigation, since the robot must be able to
estimate its pose with respect to the constructed

map.

The SLAM problem can be formulated as the

following posterior probability:

𝑃(𝑚𝑡 , 𝑥𝑡 | 𝑜1:𝑡 , 𝑢1:𝑡) (8)

where:

▪ 𝑥𝑡 denotes the robot state (pose) at time 𝑡.

▪ 𝑚𝑡 is the environment map

▪ 𝑜1:𝑡 represents the sensor observations

from time 1 to 𝑡.

▪ 𝑢1:𝑡 denotes the control inputs from time

1 to 𝑡.

The continuous Bayesian update for the map and

pose can be expressed as:

𝑃(𝑥𝑡|𝑜1:𝑡 , 𝑢1:𝑡𝑚𝑡) ∝ 𝑃(𝑜𝑡|𝑥𝑡 , 𝑚𝑡)

∫ 𝑃 (𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡)𝑃(𝑥𝑡−1 | 𝑜1:𝑡−1, 𝑢1:𝑡−1, 𝑚𝑡)𝑑𝑥𝑡−1

SLAM not only yields an optimization solution,
but also provides a real-time probabilistic

estimate, allowing the robot to continuously

update both the map and its pose in dynamic
environments.

2.2.4. AMCL localization algorithm

After the environment map has been constructed,

the robot must estimate its current pose within this
map. This functionality is provided by Adaptive

Monte Carlo Localization (AMCL), which is a

particle-filter-based approach. AMCL typically
consists of two main steps: (i) sampling candidate

poses from the process (motion) model, and (ii)

computing particle weights using the

measurement model, followed by resampling to
emphasize high-weight particles.

The AMCL filter proceeds as follows:

Step 1. Initialize empty particle sets:

𝑋̅𝑡 = 𝑋𝑡 = ∅ (9)

Step 2. For each particle, sample a predicted pose

and compute its weight:

Sampling: 𝑥𝑡
[𝑖]

∼ 𝑝 (𝑥𝑡|𝑢𝑡 , 𝑥𝑡
[𝑖]

) (10)

Weight computation:

𝜔𝑡
[𝑖]

= 𝑝 (𝑧𝑡|𝑥𝑡
[𝑖]

) (11)

Update the temporary particle set:

𝑋̅𝑡 = 𝑋̅𝑡 + 〈𝑥𝑡
[𝑖]

, 𝜔𝑡
[𝑖]〉 (12)

Compute the mean weight:

𝜔𝑎𝑣𝑔 = 𝜔𝑎𝑣𝑔 +
1

𝑀
𝜔𝑖

[𝑚]
 (13)

Short-term weight estimate:

𝜔𝑠𝑙𝑜𝑤 = 𝜔𝑠𝑙𝑜𝑤 + 𝛼𝑠𝑙𝑜𝑤(𝜔𝑎𝑣𝑔 − 𝜔𝑠𝑙𝑜𝑤) (14)

Long-term weight estimate:

𝜔𝑓𝑎𝑠𝑡 = 𝜔𝑓𝑎𝑠𝑡 + 𝛼𝑓𝑎𝑠𝑡(𝜔𝑎𝑣𝑔 − 𝜔𝑓𝑎𝑠𝑡) (15)

Step 3. Inject random particles into the official set

𝑋𝑡 with probability:

max

(0.0,1.0 −
𝜔𝑓𝑎𝑠𝑡

𝜔𝑠𝑙𝑜𝑤
) (16)

Step 4. Resample 𝑥𝑡
[𝑚]

 from the temporary set

𝑋̄𝑡 according to the corresponding weights, and
update the particle set:

 𝑋𝑡 = 𝑋𝑡 + 〈𝑥𝑡
[𝑚]

, 𝜔𝑡
[𝑚]〉 (17)

The short- and long-term update rates should

satisfy:

 0 ≤ 𝛼𝑠𝑙𝑜𝑤 ≪ 𝛼𝑓𝑎𝑠𝑡

When the short-term estimate exceeds the long-

term estimate, the filter is performing well,
indicating that additional random particle

injection is unnecessary.

2.2.5. Navigation algorithm

We employ Dijkstra’s algorithm, a shortest-path

method for graphs with non-negative edge

weights. The environment is represented as a
costmap, where each grid cell is assigned a

traversal cost (e.g., obstacle cells have high cost).

7

Figure 7. Illustration of Dijkstra-based path planning.

The core Dijkstra update rule is:

𝑑(𝑣) = 𝑚𝑖𝑛(𝑑(𝑢) + 𝑤(𝑢, 𝑣)) ∀(𝑢, 𝑣)

where:

𝑑(𝑣) is the current best estimate of the minimum

cost to node 𝑣, and 𝑤(𝑢, 𝑣)is the traversal cost

from node 𝑢to node 𝑣. Starting from the initial

node, the algorithm iteratively expands nodes in
increasing order of cost to compute the shortest

path to all reachable nodes, and terminates once

the goal is reached.
For global planning, the pre-built map is

discretized into grid cells and Dijkstra’s algorithm

is applied to obtain an optimal path from the start

pose to the goal pose.
For local planning, relying solely on a global

planner is insufficient because unexpected

obstacles may appear during execution, rendering
the precomputed global path infeasible. Therefore,

we adopt the DWA local planner (Dynamic

Window Approach), which provides a reactive
control layer coupled to the planner. DWA

evaluates candidate velocity commands using a

grid-based cost function that encodes traversal

costs. The controller selects the command

velocities (𝑥,̇ 𝑦̇, 𝜃̇)to be issued to the robot.

The key steps of DWA are summarized as follows:

Step 1: Independently sample control commands

in the robot control space (𝑥,̇ 𝑦̇, 𝜃̇)

Step 2: For each sampled command, perform

forward simulation from the current robot state
over a short time horizon to predict the resulting

motion.

Step 3: Score each simulated trajectory using a
weighted objective that accounts for factors such

as obstacle clearance, goal proximity, adherence

to the global path, and velocity; discard invalid
trajectories that lead to collisions.

Step 4: Select the highest-scoring trajectory and

send the corresponding velocity and angular-rate

commands to the robot.

3. EXPERIMENTS AND EVALUATION

3.1. Encoder evaluation

The robot employs two wheel encoders to

independently control the left and right drive

wheels. To assess encoder accuracy, we measured

the robot’s actual traveled distance and compared
it with the distance estimated from encoder pulse

counts, in conjunction with the robot kinematic

model. Experiments were conducted for
commanded travel distances of 1 m, 2 m, and 3 m,

with three trials per distance.

Table 1. Encoder evaluation results.

 To compute the theoretical encoder pulses for
each travel distance, the wheel circumference is

obtained by:

𝐶 = 𝜋 × 𝐷

Where: 𝐶is the wheel circumference and 𝐷is the

wheel diameter. With 𝐷 = 68mm, the wheel

circumference is approximately 𝐶 ≈ 213.6mm.

For a 1 m displacement, the required number of

wheel revolutions is:

N=
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐶

which yields 𝑁 ≈ 4.68revolutions. Since each
revolution generates 514 pulses, the theoretical

pulse count for a 1 m displacement is 2415 pulses.

Similarly, the theoretical pulse counts for 2 m and

3 m are 4831 pulses and 7247 pulses, respectively.

The results indicate that for a 1 m displacement,

the average error is 5.79%, reflecting relatively

high encoder accuracy over short distances. For 2
m, the average error increases slightly to 6.84%;

however, this level remains within a reasonable

range and does not significantly affect the robot’s
overall performance. For 3 m, the average error is

7.04%, which is the largest among the three tested

distances but is still acceptable. Overall, the
results suggest that the estimation error tends to

increase with travel distance.

In summary, the wheel encoders provide

sufficiently accurate distance measurement for the
proposed AMR platform, with errors ranging from

5.79% to 7.04% under low-disturbance indoor

conditions. This accuracy is considered acceptable

Actual
(m)

Theoretical
(pulses)

Trial
Measured
(pulses)

Estimated
(m)

Error
(%)

1 2415

1 2566 1.06334 6.33

2 2509 1.03972 3.97

3 2581 1.06955 6.96

Avg 2552 1.05787 5.79

2 4831

1 5188 2.14989 7.49

2 5089 2.10886 5.44

3 5192 2.15154 7.58

Avg 5156.3 2.13676 6.84

3 7247

1 7722 3.19997 6.67

2 7751 3.21199 7.07

3 7848 3.22135 7.38

Avg 7773.6 3.2111 7.04

8

for autonomous navigation tasks in the target

operating environment.

3.2. IMU sensor evaluation

The IMU performance is evaluated by measuring

the robot’s yaw angle, which represents the

robot’s rotation about the vertical 𝑧-axis. The yaw
angle is used to determine the robot heading

during motion and is therefore critical for

localization and navigation.

Figure 8. IMU evaluation: (a) initial yaw angle, (b)

−90°, (c) 90°, and (d) 180°.

In this study, the IMU accuracy was assessed
through three rotational maneuvers. The IMU

outputs include raw yaw (unprocessed) and

filtered yaw (after applying the proposed filter).
This comparison is used to evaluate (i) the

practical accuracy of the IMU under real operating

conditions and (ii) the effectiveness of filtering in
improving measurement accuracy. Throughout

the experiments, yaw follows the right-hand

convention, where counterclockwise rotations are

positive and clockwise rotations are negative.

Figure 9. Raw and filtered yaw profiles for rotations 1

and 2.

The robot was initially aligned at a fixed heading

of 0∘(Fig. 8a), then rotated to a target heading of

−90∘(Fig. 8b). Next, it was commanded to rotate

to 180∘(Fig. 8d). The corresponding raw and
filtered yaw measurements are shown in Fig. 9.

Figure 10. Raw and filtered yaw profiles for rotation

3.

Finally, the robot was rotated to a target heading

of 90∘(Fig. 8c). The raw and filtered yaw signals
for this third maneuver are reported in Fig. 10.
Table 2. Comparison of raw and filtered yaw

measurements.

Rotation
Actual

(°)

Yaw

raw (°)

Yaw

filtered

(°)

Raw

error

(%)

Filtered

error

(%)

1 -90 -90.2 -89.5 0.22 0.56

2 180 179.2 180.1 0.44 0.06

3 90 87.5 90 2.78 0

For rotation 1, the IMU raw yaw exhibited high

accuracy with an error of 0.22%, whereas filtering
did not improve the estimate and resulted in an

error of 0.56%. For rotation 2, the raw

measurement remained accurate (0.44%), and

filtering further improved the estimate, reducing
the error to 0.06%. For rotation 3, the raw yaw

error increased to 2.78%; however, the filtered

yaw achieved 0% error, indicating that the filter
effectively mitigated noise and bias in this

maneuver. Overall, the IMU provides reasonably

accurate raw yaw estimates, while filtering
significantly reduces errors, particularly during

rapid or large-angle rotations.

Overall, the IMU provides reasonably accurate

raw yaw estimates, but the error may increase
under rapid heading changes or large rotations.

The applied filter significantly reduces the error

and improves yaw accuracy under such
conditions.

3.3. LiDAR sensor evaluation

Figure 11. Experimental setup for LiDAR evaluation.

The accuracy of the RPLidar A1 laser rangefinder
was evaluated as showed in Fig 11. A target

obstacle was placed at a distance of exactly one

floor-tile length from the LiDAR sensor (each tile

is 40 cm). The sensor’s measured distance was
recorded and compared against the ground-truth

distance. The procedure was repeated by

incrementally increasing the obstacle distance by
integer multiples of the tile length. For each

distance, 10 measurements were collected and

averaged. The results are reported in Table 3.

9

Table 3. LiDAR distance measurement evaluation.

Actual

(m)

Mean

measured

(m)

Absolute

error (m)

Error

(%)

0.4 0.4033 0.0033 0.825

0.8 0.8086 0.0086 1.075

1.2 1.2162 0.0161 1.34

2 2.0315 0.0315 1.58

3.6 3.6639 0.0639 1.78

4.6 4.6882 0.0882 1.92

6.6 6.7531 0.1531 2.31

8.2 8.412 0.221 2.59

10 10.2835 0.2835 2.84

The LiDAR performs effectively at short ranges
(below 5 m), where the measurement error

remains under 2%. However, the error increases

with distance, indicating reduced accuracy at

longer ranges. The maximum observed error is
2.84% at 10 m. Although the manufacturer-rated

maximum range is 12 m, repeated measurements

suggest that the practical effective range is
approximately 10–10.5 m, with an error increasing

from about 0.8% to 2.8% as distance grows. These

errors remain acceptable for the mapping stage in
our application.

3.4. Mapping accuracy evaluation

Figure 12. 2D map construction results.

We performed 2D mapping in an indoor

environment. The objective is to evaluate mapping
accuracy by comparing the reconstructed map

dimensions with the ground-truth environment

dimensions and quantifying the resulting errors. In
the map, black regions represent obstacles, while

white regions denote free space where the robot

can traverse.

Table 4. Comparison between ground-truth and map-

measured environment dimensions.

Dimension
Actual

(m)
Measured

on map (m)
Absolute
error (m)

Error
(%)

Length 10.6 10.46336 0.13664 1.29%

Width 4.08 4.04712 0.03288 0.81%

The reconstructed map closely matches the real

environment. The length error is 1.29%, which is
acceptable, while the width error is only 0.81%.

Errors below 2% indicate that the proposed system

provides reliable measurement and mapping
performance. It should be noted that obstacles are

detected only if they are approximately at the same

height as the LiDAR sensor and lie within the

sensing range; therefore, environmental and
system noise can introduce additional mapping

artifacts. Nonetheless, the observed errors remain

within acceptable limits for the intended

application.

3.5. AMCL localization performance

evaluation

We first evaluated the AMCL filter under different
particle set sizes to identify a configuration that

provides the best trade-off between accuracy and

computational efficiency.

AMCL employs a particle filter to estimate the

robot pose within the environment. The number of

particles is a critical factor that strongly influences
both estimation accuracy and computational cost.

In this experiment, three particle counts (1000,

5000, and 7000) were tested to evaluate AMCL

performance.

Figure 13. AMCL particle filter initialization with

1000, 5000, and 7000 particles.
Table 5. Impact of particle count on AMCL
performance.

Particles

Performanc

e

(%)

Accurac

y

(m)

Error

(%)

Computation

time (s)

1000 70 1.45
10.2

5
0.5

5000 90 0.93 6.75 1.2

7000 95 0.75 5.31 2.3

With 1000 particles, AMCL is able to estimate

robot pose, but the accuracy is limited, yielding a
relatively large error (10.25%) despite low

computation time. Increasing the particle count to

5000 improves pose estimation accuracy and
reduces the error to 6.75%, although the accuracy

remains moderate. The 7000-particle

configuration achieves the best localization

10

accuracy (error reduced to 5.31%), at the expense

of longer computation time.

Based on these results, 7000 particles is selected

as the optimal configuration, providing a

favorable balance between localization accuracy
and overall system performance. After the robot

moves for a period of time, the particle set

converges and the estimated pose aligns most

closely with the given map.

3.6. Navigation performance evaluation

We evaluated the robot navigation capability in

two types of environments:

▪ Obstacle-free environment with a straight-

line trajectory

Figure 14. Robot navigation in an obstacle-free

environment (straight trajectory).

▪ Complex environment with obstacles

Figure 15. Robot navigation in a complex

environment with obstacles.

Table bellow summarizes the navigation

performance in both scenarios, Particles were

fixed at 7000 in all navigation tria

Table 6. Navigation performance under obstacle-free

and obstacle-rich environments

Time to

goal

(s)

Travel

distance

(m)

Error

(%)

No obstacles 4.5s 4.0m 0

Obstacles

(cost factor= 1.5)
6.5s 4.2m 1.0

Obstacles

(cost factor = 1.2)
5.8s 4.3m 0.7

Obstacles

(cost factor = 1.0)
5.1s 4.5m 0.4

In the obstacle-free case, the robot reached the
goal with a short travel time and path length,

achieving accurate motion without noticeable

deviation. In the obstacle-rich environment, a
higher cost factor (cost factor = 1.5) caused the

robot to perform overly conservative obstacle

avoidance, increasing the time to reach the goal
while still maintaining acceptable accuracy. When

the cost factor was reduced to 1.0, the time-to-goal

decreased significantly by reducing unnecessary

detours, and the error dropped to 0.4%, indicating
robust navigation behavior. Therefore, cost factor

= 1.0 was selected as the most suitable setting for

our system, achieving faster navigation while

preserving reliable performance.

3.7. Navigation to predefined target locations

To enable navigation to predefined target
positions, we developed a user interface with a

simple and intuitive design. The operator can

easily select the destination point, which

streamlines autonomous operation and allows the
AMR to navigate to predefined locations on the

map. The interface displays several preset goal

markers (Position 1, Position 2, Position 3, and

Position 4) that the robot can navigate to.

Figure 16. UI layout and labeled goals.

11

Figure 17. UI screenshot during experiment and robot

trajectory overlay.

The interface provides real-time updates of the
robot’s current state, allowing the operator to

monitor the navigation process conveniently. The

preset goal points represent key task locations.
During navigation, the robot must pass through

narrow regions, which require accurate and agile

motion control. The control system and interface
support continuous observation and performance

verification throughout the mission.

Figure 18. Robot navigation user interface.

We evaluated a multi-goal mission in which the

robot started at Position 4, then navigated

sequentially to Position 1, Position 3, Position 2,

and finally returned to Position 4.

Figure 19. Robot navigation in real-world

environment.

Table 7. Navigation performance for predefined goal

locations.

Goal Accuracy

(%)

Time to

goal (s)

Navigation outcome

Position

1
95 25 Smooth

Position

3
85 21

Wheel slip occurred

in a narrow passage

Position

2
92 13

Heading deviation

during goal

reorientation

Position
4

90 20 Smooth

Overall, the proposed navigation system performs

effectively in both obstacle-free and complex

obstacle environments. The highest accuracy is
obtained in open areas (up to 98%), whereas

accuracy decreases to approximately 90% in

narrow passages. Although the robot maintains
high accuracy in most cases, deviations increase

when traversing tight corners and during heading

alignment toward the commanded goal. The
LiDAR and IMU sensors provide reliable distance

measurements and pose-related information;

however, the control strategy and sensor

configuration can be further improved to reduce

deviation in constrained environments.

4. DISCUSSION

Previous studies on autonomous robots have

mainly focused on using expensive robot

platforms or complex sensing suites to achieve
localization and mapping. In contrast, the

proposed indoor AMR platform demonstrates that

low-cost and simple hardware—including

Raspberry Pi 4, LiDAR, IMU, and wheel
encoders—can be effectively integrated with ROS

to achieve high-performance mapping,

probabilistic localization, and navigation in small-
to medium-scale industrial environments, even

under complex conditions. This approach not only

reduces research and deployment costs, but also

broadens applicability to laboratories and

industries with limited budgets.

A notable contribution of this work is the intuitive

user interface, which improves human–robot
interaction, particularly in scenarios requiring

flexible route changes or emergency handling.

This is important because many prior works
emphasize complex control architectures while

paying less attention to usability and operator

interaction.15-16

Our system differs clearly from related studies.
For example, Zhou et al. (2022), in “LiDAR-Based

Mobile Mapping System for an Indoor

12

Environment”, used LiDAR to construct 2D maps

for autonomous robots, but the system relied on
relatively expensive hardware and sensors,

required substantial computational resources, and

may be difficult to deploy under budget
constraints.17 In contrast, our platform adopts a

simplified hardware configuration that reduces

cost while still achieving effective mapping,

localization, and navigation in complex indoor

environments.

Similarly, “Autonomous Navigation System of

Indoor Mobile Robots Using 2D LiDAR”
(Mathematics, 2023) presented an indoor SLAM-

based navigation system using 2D LiDAR for data

acquisition, mapping, and path planning.18 The

work emphasized RBPF-SLAM for robust
localization in complex settings; however, it still

relied on comparatively capable computing

hardware and did not highlight low-cost
implementation. In comparison, our design uses

Raspberry Pi 4, a widely available low-cost

platform that remains sufficiently capable of
running ROS-based SLAM and navigation,

demonstrating that accurate autonomous operation

is achievable without high-end hardware.

Other studies, such as “Research on SLAM Path
Planning of ROS Robot based on LiDAR” (2021)

and (2023), have proposed strong SLAM systems

using ROS, LiDAR, and IMU to optimize
mapping and localization in complex

environments.19 Nevertheless, these systems

generally do not emphasize user-interface
optimization, focusing instead on map accuracy

and navigation algorithm performance.

5. CONCLUSIONS AND FUTURE WORK

In this study, we designed and implemented an
indoor autonomous mobile robot system based on

ROS, integrating wheel encoders, an IMU, and a

LiDAR sensor to realize key functionalities
including odometry estimation, yaw/heading

measurement, 2D map construction, probabilistic

localization, and navigation in environments with

and without obstacles. The system was evaluated
through a set of real-world experiments targeting

individual sensors and core tasks (mapping,

localization, and navigation), thereby assessing
both component-level performance and overall

operational capability in indoor settings.

The main contributions of this work are as
follows: (i) development of a differential-drive

motion model and control mechanism based on

encoder feedback, combined with a mathematical

model for traveled-distance estimation; (ii)
utilization of the IMU for yaw measurement and

application of noise filtering to improve heading

signal stability; (iii) use of LiDAR for distance

sensing and 2D mapping, including verification of
geometric map errors against ground-truth

dimensions; (iv) implementation of AMCL

localization using a particle filter and investigation
of the impact of particle count (1000/5000/7000)

on pose stability and computational cost; (v)

navigation experiments in both obstacle-free and

obstacle-rich scenarios, including parameter
tuning (e.g., cost_factor, costmap parameters, and

local-controller parameters) to improve trajectory

quality and time-to-goal; and (vi) development of
a user interface that enables selection of

predefined goal locations and real-time

monitoring of robot status, improving system

usability and operator interaction.

Quantitatively, the encoder experiments show that

the average error for 1–3 m travel distances lies in

the range of 5.79% to 7.04%, indicating that
encoder-based distance estimation is acceptable

for indoor navigation tasks. For the IMU, raw yaw

errors were as low as 0.44% in the tested rotations;
after filtering, errors were reduced to

approximately 0.56% down to 0%, confirming

that noise filtering is necessary to improve

heading reliability, especially for in-place
rotations. For the LiDAR, distance-measurement

errors from 0.4 m to 10 m ranged from 0.82% to

2.84%, and map dimension verification produced
length and width errors of 1.29% and 0.81%,

respectively, indicating that LiDAR

measurements are sufficiently accurate for
mapping in the experimental environment.

Regarding AMCL, increasing the particle count

from 1000 to 7000 improved pose convergence

but increased processing time, highlighting the
trade-off between localization accuracy and

computational efficiency. At the system level, the

robot successfully completed navigation scenarios
with an overall stability of approximately 95%,

and tuning the cost factor from 1.5 to 1.0 reduced

overly conservative detours and improved time-

to-goal.

Despite these promising results, several

limitations remain. Encoder error tends to increase

with distance due to wheel slip, accumulated error,
and floor surface conditions. The IMU may be

affected by slip and mechanical vibration, causing

heading drift during rapid maneuvers if calibration
and appropriate sensor fusion are not applied.

LiDAR performance is constrained by surface

reflectivity and scan-plane geometry; obstacles

above or below the sensor height, or outside the
effective sensing range, may not be fully detected.

In addition, AMCL performance depends strongly

on map quality, environmental features, and

13

parameter configuration; larger particle sets

improve accuracy but increase computational load

and may reduce update rates in dynamic scenarios.

For future work, localization and navigation

robustness in more complex environments can be
enhanced by implementing sensor fusion (e.g.,

fusing wheel odometry and IMU via an EKF) to

mitigate slip effects and stabilize pose estimation

over time. Moreover, a systematic parameter-
tuning workflow for AMCL/costmap/local

planner based on experimental data (including

supervised optimization) can reduce reliance on
manual tuning. Evaluation metrics should also be

extended using standard robotics criteria such as

success rate, time-to-goal, path length, number of

replans, minimum obstacle clearance, and
CPU/RAM utilization to provide more objective

benchmarking. Algorithmically, alternative

planners and local controllers can be tested for
quantitative comparison, and handling of dynamic

obstacles and “stuck” recovery can be added to

improve robustness in real deployments. Finally,
the user interface can be expanded to support

multi-goal mission management, task history

logging, and real-time system-health monitoring

for indoor transport applications in corridors,

classrooms, and warehouse-like environments.

In summary, this work demonstrates the feasibility

of an indoor ROS-based autonomous robot system
with an end-to-end pipeline comprising mapping,

localization, navigation, and an operational user

interface. Experimental results show that encoder-
based odometry yields an average distance error of

5.79–7.04% over 1–3 m trajectories, while LiDAR

ranging error remains below 3% up to 10 m. After

AMCL parameter tuning (7000 particles), the
robot achieved reliable goal-reaching performance

in both obstacle-free and obstacle-rich indoor

scenarios, with reduced deviations when costmap
cost_factor was set to 1.0. These results validate

the feasibility of a low-cost ROS-based indoor

AMR and provide a reproducible baseline for

further robustness improvements in narrow
passages and during heading reorientation.

Acknowledgments

REFERENCES
1. H. Durrant-Whyte, T. Bailey. Simultaneous

Localization and Mapping: Part I, IEEE Robotics &

Automation Magazine, 2006, 13, 99-110.

2. Feder, H. J. S., Leonard, J. J., & Smith, C. M.

Adaptive mobile robot navigation and mapping. The

International Journal of Robotics Research, 1999,
Volume 18, 650-668.

3. J. J. Leonard and H. F. Durrant-Whyte.

Simultaneous map building and localization for an

autonomous mobile robot, in Proceedings of the

IEEE/RSJ International Workshop on Intelligent

Robots and Systems, Osaka, Japan, 1991.

4. S. Thrun, W. Burgard, and D. Fox. Probabilistic

Robotics, MIT Press, 2005.

5. J. Zhu, J. et al., Camera, LiDAR, and IMU Based

Multi-Sensor Fusion SLAM: A Survey, IEEE

Transactions on Instrumentation and Measurement,

2024, 73, 1-22.

6. X. Yue, Y. Zhang, J. Chen, J. Chen, X. Zhou, and

M. He. LiDAR-based SLAM for robotic mapping: state

of the art and new frontiers, Industrial Robot: the

international journal of robotics research and

application, 2024, 51, 196-205.

7. W. Chen, W. Chi, S. Ji, H. Ye, J. Liu, Y. Jia, J. Yu

and J. Cheng. A survey of autonomous robots and

multi-robot navigation: Perception, planning and

collaboration, Biomimetic Intelligence and Robotics,

2025, 5, 100203.

8. N. AbuJabal, M. Baziyad, R. Fareh, B. Brahmi, T.

Rabie, and M. Bettayeb. A Comprehensive Study of

Recent Path‑Planning Techniques in Dynamic

Environments for Autonomous Robots, Sensors, 2024,

24, 8089.

9. P. Chen, H. Liu and Z. Qiao. A review of research

on SLAM technology based on the fusion of LiDAR

and vision, Sensors, 2025, 25, 1447.

10. Y. Bai, Z. Wang, and H. Xu. Path planning for

mobile robots based on A* algorithm, Journal of

Robotics and Automation, 2017, 34, 169-177.

11. K. Cai, C. Wang, J. Cheng, C. W. De Silva, and M.

Q.-H. Meng. Mobile Robot Path Planning in Dynamic

Environments: A Survey, arXiv, 2021.

12. K. Trejos, L. Rincón, M. Bolaños, J. Fallas and

L. Marín. 2D SLAM algorithms characterization,

calibration, and comparison considering pose error,

map accuracy as well as CPU and memory usage,

Sensors, 2022, 22, 6903.

13. F. G. Sayyad and D. Salunke. Autonomous mobile

robot base: cost effective solution for ROS-based

navigation, in Proceedings of the Advances in Robotics

(AIR) Conference, New York, NY, USA, 2023.

14. Z. Wang, H. Tu, S. Chan, C. Huang and Y. Zhao.

Vision-based initial localization of AGV and path

planning with PO-JPS algorithm, Egyptian Informatics

Journal, 2024, 27, 100527.

15. W. Xu, Y. Cai, D. He, J. Lin and F. Zhang.

FAST‑LIO2: Fast Direct LiDAR‑Inertial Odometry,

IEEE Transactions on Robotics, 2022, 38, 2053-2073.

16. Y. Hu, F. Xie, J. Yang, J. Zhao, Q. Mao, F. Zhao, and

X. Liu. Efficient Path Planning Algorithm Based on

Laser SLAM and an Optimized Visibility Graph for

Robots, Remote Sensing, 2024, 16, 2938.

17. J. Sun, J. Zhao, X. Hu, H. Gao and J. Yu.

Autonomous Navigation System of Indoor Mobile

Robots Using 2D LiDAR, Mathematics, 2023, 11,

1455.

14

18. H. Hu, L. Sun and H. Xu. Research on SLAM path

planning of ROS robot based on LiDAR, in Highlights

in Science, Engineering and Technology, 2022, 24,

179-181.

19. J. M. Santos, D. Portugal and R. P. Rocha. An

Evaluation of 2D SLAM Techniques Available in

Robot Operating System, in IEEE Int. Symp. Safety,

Security, and Rescue Robotics (SSRR), 2013.

