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Thiết kế và triển khai robot di động tự hành dựa trên ROS với 
giao diện hỗ trợ điều hướng theo lộ trình 

 

 
 

  

TÓM TẮT 

Robot di động tự hành (AMR) ngày càng được ứng dụng rộng rãi trong các môi trường logistics và dịch vụ 

trong nhà, nơi yêu cầu phải bảo đảm khả năng lập bản đồ, định vị và điều hướng tin cậy. Bài báo này trình bày thiết 

kế và triển khai một AMR nhỏ gọn dựa trên ROS, trang bị Raspberry Pi 4, LiDAR 2D, IMU và encoder. Nhằm tăng 

tính thuận tiện khi vận hành, chúng tôi phát triển một giao diện đồ họa (GUI) độc lập, thay thế thao tác trực tiếp trên 

Rviz, người dùng có thể điều khiển robot đến bốn điểm đích định sẵn hoặc thực thi lộ trình nhiều waypoint do người 

dùng cấu hình, đồng thời theo dõi trạng thái điều hướng theo thời gian thực. Hệ thống tích hợp 2D SLAM để xây dựng 

bản đồ, AMCL để định vị, Dijkstra cho lập kế hoạch toàn cục và Dynamic Window Approach (DWA) cho điều hướng 

cục bộ kết hợp tránh vật cản. Thử nghiệm trong các kịch bản indoor cho thấy odometry từ encoder có sai số quãng 

đường trung bình 5,8–7,0% trên đoạn 1–3 m; sai số đo khoảng cách LiDAR <3% đến 10 m; và kích thước bản đồ tái 
tạo lệch <1,3% so với giá trị thực tế. Trong thử nghiệm điều hướng, robot đạt mục tiêu ổn định ở cả môi trường ít và 

nhiều vật cản sau khi tinh chỉnh tham số, đồng thời thực thi tin cậy các nhiệm vụ waypoint liên tiếp. Kết quả khẳng 

định tính khả thi của việc triển khai AMR dựa trên ROS với giao diện tương tác người dùng. 

Từ khoá: ROS, AMR, SLAM, AMCL, DWA. 
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Design and Implementation of a ROS-Based Autonomous  
Mobile Robot with a GUI-Assisted Route Navigation Interface 

 
 

 
 

ABSTRACT 

Autonomous mobile robots (AMRs) are increasingly deployed in indoor logistics and service environments, 

where reliable mapping, localization, and navigation are essential. This paper presents the design and implementation 

of a compact ROS-based AMR equipped with a Raspberry Pi 4, a 2D LiDAR, an IMU, and wheel encoders. To 

improve operational usability, we develop a standalone graphical user interface (GUI) that replaces direct RViz 

interaction; users can command the robot to navigate to one of four predefined destinations or execute a user-

configurable multi-waypoint route while monitoring navigation status in real time. The system integrates 2D SLAM 

for map construction, AMCL for localization, a Dijkstra-based global planner, and the Dynamic Window Approach 
(DWA) for local motion generation with obstacle avoidance. Experiments in representative indoor scenarios show 

that encoder-based odometry yields a mean distance error of 5.8–7.0% over 1–3 m trajectories; LiDAR ranging error 

remains below 3% up to 10 m; and reconstructed map dimensions deviate by less than 1.3% from ground-truth 

measurements. In navigation trials, the robot consistently reached target goals in both obstacle-free and obstacle-rich 

environments after parameter tuning, and it reliably executed sequential waypoint missions. These results confirm the 

feasibility of deploying ROS-based AMRs with an interactive user interface for practical indoor applications. 

 

Keywords: ROS, AMR, SLAM, AMCL, DWA. 

1. INTRODUCTION  

Nowadays, autonomous mobile robots (AMRs) 

are being widely deployed across numerous 

domains, ranging from logistics systems, goods 
transportation, surveillance, and quality inspection 

to navigation tasks in complex environments. 

These applications optimize operational 
workflows, reduce human intervention, and 

improve overall productivity. In robotics research, 

robot localization and navigation constitute key 

areas; algorithms such as SLAM (Simultaneous 
Localization and Mapping), path planning, and 

motion control play pivotal roles in enabling 

robots to operate effectively in previously 

unknown environments.1-2 

The field of autonomous robotics can be traced 

back to Leonard’s work in 1990, which introduced 
fundamental approaches for 2D mapping and 

robot localization in three-dimensional space. This 

line of research established the foundations for 

SLAM (Simultaneous Localization and Mapping), 
which was later advanced by Durrant-Whyte and 

Bailey, providing essential tools for localization 

and mapping in unknown environments.3-4 These 
contributions have significantly influenced the 

development of modern autonomous robotic 

technologies, particularly the adoption of ROS 

(Robot Operating System) and SLAM algorithms 

for mobile robots. 

Modern SLAM algorithms—especially methods 
leveraging LiDAR and IMU sensing—have 

demonstrated strong capability in accurate 2D 

map reconstruction and effective robot 
localization in three-dimensional space. 

Nevertheless, deploying such SLAM approaches 

in real-world settings can pose substantial 
challenges, particularly when constrained by low-

cost, simplified hardware platforms. Several 

recent studies have addressed this issue by 

proposing cost-effective solutions that still 
maintain high performance, especially for small- 

and medium-scale autonomous robotic 

applications.5-7 

At present, many studies in mobile robotics 

employ ROS to simulate SLAM algorithms or rely 

on off-the-shelf robot platforms such as Pioneer 
and Turtlebot. However, these platforms are often 

incompatible with the financial constraints and 

research infrastructure commonly encountered in 

Vietnam, where funding for autonomous robotics 
remains limited.8 Moreover, solutions that use 

sensors such as LiDAR and cameras for mapping 

and navigation typically entail challenges related 

to cost and computational resources.9 

In Vietnam, mobile robotics continues to be a 

focal research topic. Existing studies largely 

concentrate on developing control systems for 
mobile robots operating in known environments, 

often based on two-wheel differential-drive 

structures and fixed kinematic models. However, 
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such approaches may not satisfy the requirements 

for mobility in complex environments 
characterized by dense obstacles and continuously 

changing spatial configurations.10 Recent research 

has therefore shifted toward path planning and 
motion control, aiming to optimize trajectories for 

autonomous robots in environments without 

detailed pre-existing maps, supported by 

algorithms such as A* and DWA (Dynamic 

Window Approach).11-12 

With the objective of providing a low-cost 

solution while maintaining high performance, this 
paper presents a ROS-based system for navigation 

and mapping, together with the DWA algorithm 

for local trajectory planning. Both real-world 

experiments and simulation results are reported, 
demonstrating that our robot platform can 

transport goods to user-selected target locations 

marked on the map with high accuracy, thereby 
meeting the requirements of autonomous robotic 

applications. 13-14 

The remainder of this paper is organized as 
follows. Section 2 describes the system 

architecture and hardware design, followed by the 

differential-drive kinematic model and software 

implementation under ROS. Section 3 presents the 
adopted mapping, localization, and navigation 

algorithms (slam_gmapping, AMCL, global 

planning, and DWA-based local planning). 
Section 4 reports experimental protocols and 

quantitative results for sensor evaluation, mapping 

accuracy, localization tuning, and navigation 
performance. Section 5 concludes the paper and 

outlines future improvements. 

 

2. METHODS 

2.1. Design methodology 

An overview of the proposed system is illustrated 

in Fig. 1. A user operates a host computer to 
monitor the mapping process and to command the 

robot to navigate to target locations via an 

embedded Raspberry Pi 4. Both the host computer 

and the Raspberry Pi 4 run ROS on Ubuntu 20.04 
and communicate over a shared Wi-Fi network; 

the Raspberry Pi is configured with a static IP 

address. The embedded computer acquires LiDAR 
measurements for map construction. Meanwhile, 

the microcontroller collects inertial measurements 

from the IMU and transmits them to the embedded 
computer, and it also drives the actuators—two 

DC motors—through a motor driver module. 

 

Figure 1. Overview of the proposed system 

2.1.1. Hardware design 

 

Figure 2. Dimensional drawing of the robot 

The robot chassis is fabricated from aluminum to 
reduce mass and improve maneuverability, with 

overall dimensions of 300 × 300 × 170 mm. 

Because the platform is intended to operate 

indoors on flat terrain with low wheel slip, 
conventional wheels are adopted with radius r = 

34mm (Fig 3a). The robot frame is designed to 

accommodate a top cover that mounts an RPLidar 
A1 sensor. 

As shown in Fig. 3b, the robot body houses a 

Raspberry Pi 4 for sensor processing and control-

board interfacing. A 9-DOF IMU (MPU-9250) 
enables motion tracking along three spatial axes, 

improving localization capability and motion 

stability. Two BTS7960 motor driver modules 
control two GA-25 DC geared motors equipped 

with dual-channel A/B encoders, allowing 

accurate motion execution and motor speed 
feedback. The system is powered by a 12-V 

battery pack. 

 
                  (a)                                         (b) 

Figure 3. Robot prototype: (a) external view, (b) 

internal layout. 

2.1.2. Component selection 

Embedded computer (Raspberry Pi 4). The 
Raspberry Pi 4 is used as the main embedded 
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computer and communicates with the 

microcontroller. It features a quad-core ARM 
Cortex-A72 CPU at 1.5 GHz, 4 GB RAM, USB 

3.0, Gigabit Ethernet, Wi-Fi 802.11ac, Bluetooth 

5.0, and a 40-pin GPIO header, making it well-
suited for the proposed autonomous robot 

platform. The embedded computer acquires motor 

speed information, robot yaw angle, and LiDAR 

measurements, processes these data using 
integrated ROS software packages, and transmits 

control commands to the microcontroller for 

execution.  

Laser rangefinder (RPLidar A1). The RPLidar A1 

measures distances to surrounding obstacles, 

enabling 360° environmental scanning and map 

generation using the slam_gmapping algorithm. 
The sensor supports obstacle detection up to 12 m 

with a sampling rate of 8000 samples/s. It is also 

supported by ROS (Robot Operating System) 

integration packages for robot applications.  

IMU (9-DOF MPU-9250). The MPU-9250 

integrates an accelerometer, gyroscope, and 
magnetometer to measure tri-axial acceleration, 

angular velocity, and magnetic field. Through I²C 

communication, it provides nine sensor readings 

that can be fused to estimate the robot’s Euler 
angles (roll, pitch, yaw). This device is critical for 

maintaining robot stability and heading 

estimation, thereby supporting accurate and 

efficient 2D navigation.  

Geared DC motor with encoder (GA-25, 12 

VDC). The GA-25 is a DC geared motor equipped 
with an encoder to provide feedback signals. The 

microcontroller counts encoder pulses and adjusts 

motor actuation through the power driver, 

enabling motor speed and rotation measurement. 
Key specifications include: nominal voltage 12 

VDC, shaft diameter 4 mm, gear ratio 

approximately 46.8:1, no-load speed 130 rpm, 
rated torque 0.9 kg·cm, and maximum torque 4.4 

kg·cm. The encoder is dual-channel (A/B) with an 

11-pulse disk per channel. This motor/encoder 

pair enables accurate estimation of the robot’s 
translational speed and displacement, and plays a 

crucial role in motion control and trajectory 

tracking. 

Motor driver (BTS7960). The BTS7960 motor 

driver is used to regulate motor speed and 

direction via PWM control signals. With a current 
capability up to 43 A, it supports stable velocity 

regulation and smooth directional changes. This 

driver contributes to precise and responsive motor 

actuation, improving the overall navigation 

performance of the robot. 

 

Figure 4. Hardware wiring diagram. 

Figure 4 summarizes the hardware 
interconnections, illustrating how key modules are 

integrated into a complete control system. 

2.2. Algorithmic description 

2.2.1. Kinematic model 

A differential-drive autonomous mobile robot 

(AMR) consists of two independently driven 

wheels mounted on either side of a central chassis, 
with passive caster wheels used for mechanical 

stabilization. 

 

Figure 5. Kinematic model of a two-wheel 

differential-drive mobile robot 

A typical configuration of a differential-drive 
wheeled mobile robot (DDWMR) is shown in Fig. 

5. Let a fixed reference frame 𝐹 be attached to the 

ground, whose axes are represented by the 

mutually orthogonal unit vectors 𝑥, 𝑦 and 𝑧 . A 

body (mobile) frame 𝑀  is attached at the midpoint 

of the line segment connecting the wheel centers 

𝑐1 and 𝑐2. The unit vectors  ℎ, 𝑙 and  𝑧 are 

associated with the moving frame 𝑀. The wheel 

radius is denoted by 𝑟. To derive the kinematic 

model of the DDWMR, the following key 

relationships are considered.  

The angular velocities of the left and right wheels 

are denoted by 𝜃̇1 and 𝜃̇2 , forming an independent 

velocity vector: 

𝜃̇ = [
𝜃̇1

𝜃̇2

]                                                         (1) 
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The linear velocity 𝑉 and the angular velocity ̇  

in the moving frame 𝑀 are related to 𝜃̇ via a 

Jacobian matrix:  

𝑣 = [
𝑉

̇
] = 𝐾𝜃̇,  𝐾 = [

𝑟

2
    

𝑟

2
𝑟

𝑑
−

𝑟

𝑑

]                    (2) 

To transform velocities from the moving frame 𝑀 

to the fixed frame  𝐹, a rotation matrix is used:  

𝑅():  𝑅() = [
𝑐𝑜𝑠 − 𝑠𝑖𝑛 0
𝑠𝑖𝑛 𝑐𝑜𝑠 0

0 0 1

]         (3) 

The twist velocity in the fixed frame 𝑞̇ is obtained 

by multiplying the rotation matrix with the 

velocity vector 𝑣 expressed in frame  𝑀:   

𝑞̇ = 𝑅()𝑣                                                       (4) 

The Jacobian relating 𝑞̇ and 𝜃̇ is: 

 𝑞̇ = 𝐽𝜃̇,    𝐽 = 𝑅()𝐾                                    (5) 

Thus, 

𝐽 = [
𝑐𝑜𝑠 − 𝑠𝑖𝑛 0
𝑠𝑖𝑛 𝑐𝑜𝑠 0

0 0 1

] [

𝑟

2
    

𝑟

2
𝑟

𝑑
−

𝑟

𝑑

]            (6) 

Accordingly, the robot’s angular and linear 

velocities can be expressed in terms of wheel 

angular velocities: 

̇ = 
𝑟

𝑑
(𝜃̇1 − 𝜃̇2) và ̇ = 

𝑟

2
(𝜃̇1  + 𝜃̇2)          (7) 

In this study, pure rolling motion is assumed; 

therefore, lateral slip angles and side-slip 

displacement terms 𝛿𝑖 and ̇ are neglected (set to 

zero). 

Notation: 

𝜃̇1, 

𝜃̇2 

angular velocities of the left and right 
wheels 

𝑟 wheel radius 

𝑑 distance between the two drive wheels 

𝑉 robot linear velocity 

𝐾 
Jacobian mapping wheel angular 

velocity to [𝑉, ̇]𝑇  

𝑞̇ 
twist velocity expressed in the fixed 

frame 𝐹 

𝑅() rotation matrix from 𝑀 to 𝐹. 

𝐽 Jacobian mapping 𝜃̇ to 𝑞̇. 

𝑀 moving (body) frame 

𝐹 fixed (world) frame 

𝑙 
coordinate of the midpoint between the 

wheels 

ℎ 
wheel–ground contact location 

representation. 

𝑐1, 

𝑐2 

centers of the left and right wheels 

𝑝1, 

𝑝2 

left/right wheel ground contact points 

𝑥, 𝑦 unit vectors of the fixed frame 𝐹 

𝑧 unit vector along the 𝑧-axis 

2.2.2. Overall algorithm description 

Deploying an autonomous robot typically requires 

three core capabilities: mapping, localization, and 
navigation. In this work, ROS (Robot Operating 

System) is used to implement these capabilities, as 

it provides a mature ecosystem of tools and 
software packages. Specifically, we employ 

slam_gmapping for map construction and amcl for 

robot localization within a known map. For 

navigation, the ROS navigation stack is adopted, 
including move_base, global_planner, and 

base_local_planner. The AMCL (Adaptive Monte 

Carlo Localization) method uses a particle filter to 
estimate the robot pose on the map, maintaining 

localization accuracy during motion. 

The ROS navigation framework is organized into 

two planning layers: global planning and local 
planning, corresponding to algorithms such as 

Dijkstra (global planner) and the Dynamic 

Window Approach (DWA) for local trajectory 

generation. 

 

Figure 6. Flowchart of localization and navigation. 

Operationally, the robot explores an initially 

unknown environment using LiDAR 

measurements (with remote access/monitoring via 

SSH when needed). Sensor data from the LiDAR 
and IMU are continuously acquired to support 

simultaneous localization and mapping. If the map 

is not yet complete, the robot continues exploring 
and updating the map. Once the mapping phase is 

finalized, the user selects start and goal poses in 

ROS RViz. The robot then computes an optimal 
path from start to goal using global and local 

planning modules. If the robot has not reached the 

goal, the navigation loop continues; otherwise, the 

process terminates. The procedure completes 
when the robot successfully navigates to the 

designated goal location. 

In addition to the ROS-native workflow, we 
introduce a mission-level graphical user interface 
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(GUI) that abstracts away direct RViz interaction 

during deployment. The GUI enables non-expert 
users to command the robot using high-level 

navigation tasks: (i) selecting one of four 

predefined goal locations, or (ii) executing a 
sequential mission consisting of multiple 

waypoints arranged in a user-defined order. Under 

the hood, the GUI translates these task selections 

into standard ROS navigation goals, dispatches 
them to the navigation stack, and monitors 

execution states in real time (e.g., goal accepted, 

in-progress, succeeded, or aborted). For sequential 
missions, the interface issues the next waypoint 

only after the current one is completed (or after a 

configured retry/termination condition), thereby 

ensuring deterministic mission progression. This 
design simplifies operational procedures, 

improves usability outside laboratory settings, and 

provides a practical pathway for integrating ROS-
based autonomy with application-oriented user 

interaction. 

2.2.3. SLAM-based mapping algorithm 

SLAM (Simultaneous Localization and Mapping) 

is a class of algorithms that enables a robot to 

construct a map of its environment while 

simultaneously estimating its own pose. During 
motion, sensors such as LiDAR, IMU, and wheel 

encoders acquire measurements of the 

surroundings, which are then transformed into a 
structured map representation. A reliable map is a 

prerequisite for subsequent localization and 

navigation, since the robot must be able to 
estimate its pose with respect to the constructed 

map. 

The SLAM problem can be formulated as the 

following posterior probability: 

𝑃(𝑚𝑡 , 𝑥𝑡  | 𝑜1:𝑡 , 𝑢1:𝑡)   (8) 

where: 

▪ 𝑥𝑡  denotes the robot state (pose) at time 𝑡. 

▪ 𝑚𝑡 is the environment map 

▪ 𝑜1:𝑡 represents the sensor observations 

from time 1 to 𝑡. 

▪ 𝑢1:𝑡  denotes the control inputs from time 

1 to 𝑡. 

The continuous Bayesian update for the map and 

pose can be expressed as: 

𝑃(𝑥𝑡|𝑜1:𝑡 , 𝑢1:𝑡𝑚𝑡) ∝ 𝑃(𝑜𝑡|𝑥𝑡 , 𝑚𝑡) 

∫ 𝑃 (𝑥𝑡  | 𝑥𝑡−1, 𝑢𝑡)𝑃(𝑥𝑡−1 | 𝑜1:𝑡−1, 𝑢1:𝑡−1, 𝑚𝑡)𝑑𝑥𝑡−1 

SLAM not only yields an optimization solution, 
but also provides a real-time probabilistic 

estimate, allowing the robot to continuously 

update both the map and its pose in dynamic 
environments. 

2.2.4. AMCL localization algorithm 

After the environment map has been constructed, 

the robot must estimate its current pose within this 
map. This functionality is provided by Adaptive 

Monte Carlo Localization (AMCL), which is a 

particle-filter-based approach. AMCL typically 
consists of two main steps: (i) sampling candidate 

poses from the process (motion) model, and (ii) 

computing particle weights using the 

measurement model, followed by resampling to 
emphasize high-weight particles. 

The AMCL filter proceeds as follows: 

Step 1. Initialize empty particle sets: 

𝑋̅𝑡 = 𝑋𝑡 = ∅                    (9) 

Step 2. For each particle, sample a predicted pose 

and compute its weight: 

Sampling: 𝑥𝑡
[𝑖]

∼ 𝑝 (𝑥𝑡|𝑢𝑡 , 𝑥𝑡
[𝑖]

)      (10) 

Weight computation:  

𝜔𝑡
[𝑖]

= 𝑝 (𝑧𝑡|𝑥𝑡
[𝑖]

)            (11) 

Update the temporary particle set:  

𝑋̅𝑡 = 𝑋̅𝑡 + 〈𝑥𝑡
[𝑖]

, 𝜔𝑡
[𝑖]〉       (12) 

Compute the mean weight: 

𝜔𝑎𝑣𝑔 = 𝜔𝑎𝑣𝑔 +
1

𝑀
𝜔𝑖

[𝑚]
  (13) 

Short-term weight estimate: 

𝜔𝑠𝑙𝑜𝑤 = 𝜔𝑠𝑙𝑜𝑤 + 𝛼𝑠𝑙𝑜𝑤(𝜔𝑎𝑣𝑔 − 𝜔𝑠𝑙𝑜𝑤)   (14) 

Long-term weight estimate: 

𝜔𝑓𝑎𝑠𝑡 = 𝜔𝑓𝑎𝑠𝑡 + 𝛼𝑓𝑎𝑠𝑡(𝜔𝑎𝑣𝑔 − 𝜔𝑓𝑎𝑠𝑡)     (15) 

Step 3. Inject random particles into the official set 

𝑋𝑡 with probability: 

max
 

(0.0,1.0 −
𝜔𝑓𝑎𝑠𝑡

𝜔𝑠𝑙𝑜𝑤
)   (16) 

Step 4. Resample 𝑥𝑡
[𝑚]

 from the temporary set 

𝑋̄𝑡  according to the corresponding weights, and 
update the particle set: 

 𝑋𝑡 = 𝑋𝑡 + 〈𝑥𝑡
[𝑚]

, 𝜔𝑡
[𝑚]〉     (17) 

The short- and long-term update rates should 

satisfy: 

 0 ≤ 𝛼𝑠𝑙𝑜𝑤 ≪ 𝛼𝑓𝑎𝑠𝑡 

When the short-term estimate exceeds the long-

term estimate, the filter is performing well, 
indicating that additional random particle 

injection is unnecessary. 

2.2.5. Navigation algorithm 

We employ Dijkstra’s algorithm, a shortest-path 

method for graphs with non-negative edge 

weights. The environment is represented as a 
costmap, where each grid cell is assigned a 

traversal cost (e.g., obstacle cells have high cost). 
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Figure 7. Illustration of Dijkstra-based path planning. 

The core Dijkstra update rule is: 

𝑑(𝑣)  =  𝑚𝑖𝑛(𝑑(𝑢)  +  𝑤(𝑢, 𝑣))  ∀(𝑢, 𝑣) 

where: 

𝑑(𝑣) is the current best estimate of the minimum 

cost to node 𝑣, and 𝑤(𝑢, 𝑣)is the traversal cost 

from node 𝑢to node 𝑣. Starting from the initial 

node, the algorithm iteratively expands nodes in 
increasing order of cost to compute the shortest 

path to all reachable nodes, and terminates once 

the goal is reached. 
For global planning, the pre-built map is 

discretized into grid cells and Dijkstra’s algorithm 

is applied to obtain an optimal path from the start 

pose to the goal pose. 
For local planning, relying solely on a global 

planner is insufficient because unexpected 

obstacles may appear during execution, rendering 
the precomputed global path infeasible. Therefore, 

we adopt the DWA local planner (Dynamic 

Window Approach), which provides a reactive 
control layer coupled to the planner. DWA 

evaluates candidate velocity commands using a 

grid-based cost function that encodes traversal 

costs. The controller selects the command 

velocities (𝑥,̇ 𝑦̇, 𝜃̇)to be issued to the robot. 

The key steps of DWA are summarized as follows: 

Step 1: Independently sample control commands 

in the robot control space (𝑥,̇ 𝑦̇, 𝜃̇) 

Step 2: For each sampled command, perform 

forward simulation from the current robot state 
over a short time horizon to predict the resulting 

motion. 

Step 3: Score each simulated trajectory using a 
weighted objective that accounts for factors such 

as obstacle clearance, goal proximity, adherence 

to the global path, and velocity; discard invalid 
trajectories that lead to collisions. 

Step 4: Select the highest-scoring trajectory and 

send the corresponding velocity and angular-rate 

commands to the robot. 
 

3. EXPERIMENTS AND EVALUATION 

3.1. Encoder evaluation 

The robot employs two wheel encoders to 

independently control the left and right drive 

wheels. To assess encoder accuracy, we measured 

the robot’s actual traveled distance and compared 
it with the distance estimated from encoder pulse 

counts, in conjunction with the robot kinematic 

model. Experiments were conducted for 
commanded travel distances of 1 m, 2 m, and 3 m, 

with three trials per distance. 

Table 1. Encoder evaluation results. 

 To compute the theoretical encoder pulses for 
each travel distance, the wheel circumference is 

obtained by: 

𝐶 =  𝜋 ×  𝐷 

Where: 𝐶is the wheel circumference and 𝐷is the 

wheel diameter. With 𝐷 = 68mm, the wheel 

circumference is approximately 𝐶 ≈ 213.6mm. 

For a 1 m displacement, the required number of 

wheel revolutions is: 

N=
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐶
 

which yields 𝑁 ≈ 4.68revolutions. Since each 
revolution generates 514 pulses, the theoretical 

pulse count for a 1 m displacement is 2415 pulses. 

Similarly, the theoretical pulse counts for 2 m and 

3 m are 4831 pulses and 7247 pulses, respectively. 

The results indicate that for a 1 m displacement, 

the average error is 5.79%, reflecting relatively 

high encoder accuracy over short distances. For 2 
m, the average error increases slightly to 6.84%; 

however, this level remains within a reasonable 

range and does not significantly affect the robot’s 
overall performance. For 3 m, the average error is 

7.04%, which is the largest among the three tested 

distances but is still acceptable. Overall, the 
results suggest that the estimation error tends to 

increase with travel distance. 

In summary, the wheel encoders provide 

sufficiently accurate distance measurement for the 
proposed AMR platform, with errors ranging from 

5.79% to 7.04% under low-disturbance indoor 

conditions. This accuracy is considered acceptable 

Actual 
(m) 

Theoretical 
(pulses) 

Trial 
Measured 
(pulses) 

Estimated 
(m) 

Error 
(%) 

1 2415 

1 2566 1.06334 6.33 

2 2509 1.03972 3.97 

3 2581 1.06955 6.96 

Avg 2552 1.05787 5.79 

2 4831 

1 5188 2.14989 7.49 

2 5089 2.10886 5.44 

3 5192 2.15154 7.58 

Avg 5156.3 2.13676 6.84 

3 7247 

1 7722 3.19997 6.67 

2 7751 3.21199 7.07 

3 7848 3.22135 7.38 

Avg 7773.6 3.2111 7.04 
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for autonomous navigation tasks in the target 

operating environment. 

3.2. IMU sensor evaluation 

The IMU performance is evaluated by measuring 

the robot’s yaw angle, which represents the 

robot’s rotation about the vertical 𝑧-axis. The yaw 
angle is used to determine the robot heading 

during motion and is therefore critical for 

localization and navigation. 

 

Figure 8. IMU evaluation: (a) initial yaw angle, (b) 

−90°, (c) 90°, and (d) 180°. 

In this study, the IMU accuracy was assessed 
through three rotational maneuvers. The IMU 

outputs include raw yaw (unprocessed) and 

filtered yaw (after applying the proposed filter). 
This comparison is used to evaluate (i) the 

practical accuracy of the IMU under real operating 

conditions and (ii) the effectiveness of filtering in 
improving measurement accuracy. Throughout 

the experiments, yaw follows the right-hand 

convention, where counterclockwise rotations are 

positive and clockwise rotations are negative. 

 

Figure 9. Raw and filtered yaw profiles for rotations 1 

and 2. 

The robot was initially aligned at a fixed heading 

of 0∘(Fig. 8a), then rotated to a target heading of 

−90∘(Fig. 8b). Next, it was commanded to rotate 

to 180∘(Fig. 8d). The corresponding raw and 
filtered yaw measurements are shown in Fig. 9. 

 
Figure 10. Raw and filtered yaw profiles for rotation 

3. 

Finally, the robot was rotated to a target heading 

of 90∘(Fig. 8c). The raw and filtered yaw signals 
for this third maneuver are reported in Fig. 10. 
Table 2. Comparison of raw and filtered yaw 

measurements. 

Rotation 
Actual 

(°) 

Yaw 

raw (°) 

Yaw 

filtered 

(°) 

Raw 

error 

(%) 

Filtered 

error 

(%) 

1 -90 -90.2 -89.5 0.22 0.56 

2 180 179.2 180.1 0.44 0.06 

3 90 87.5 90 2.78 0 

For rotation 1, the IMU raw yaw exhibited high 

accuracy with an error of 0.22%, whereas filtering 
did not improve the estimate and resulted in an 

error of 0.56%. For rotation 2, the raw 

measurement remained accurate (0.44%), and 

filtering further improved the estimate, reducing 
the error to 0.06%. For rotation 3, the raw yaw 

error increased to 2.78%; however, the filtered 

yaw achieved 0% error, indicating that the filter 
effectively mitigated noise and bias in this 

maneuver. Overall, the IMU provides reasonably 

accurate raw yaw estimates, while filtering 
significantly reduces errors, particularly during 

rapid or large-angle rotations. 

Overall, the IMU provides reasonably accurate 

raw yaw estimates, but the error may increase 
under rapid heading changes or large rotations. 

The applied filter significantly reduces the error 

and improves yaw accuracy under such 
conditions. 

3.3. LiDAR sensor evaluation 

 
Figure 11. Experimental setup for LiDAR evaluation. 

The accuracy of the RPLidar A1 laser rangefinder 
was evaluated as showed in Fig 11. A target 

obstacle was placed at a distance of exactly one 

floor-tile length from the LiDAR sensor (each tile 

is 40 cm). The sensor’s measured distance was 
recorded and compared against the ground-truth 

distance. The procedure was repeated by 

incrementally increasing the obstacle distance by 
integer multiples of the tile length. For each 

distance, 10 measurements were collected and 

averaged. The results are reported in Table 3.  
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Table 3. LiDAR distance measurement evaluation. 

Actual 

(m) 

Mean 

measured 

(m) 

Absolute 

error (m) 

Error 

(%) 

0.4 0.4033 0.0033 0.825 

0.8 0.8086 0.0086 1.075 

1.2 1.2162 0.0161 1.34 

2 2.0315 0.0315 1.58 

3.6 3.6639 0.0639 1.78 

4.6 4.6882 0.0882 1.92 

6.6 6.7531 0.1531 2.31 

8.2 8.412 0.221 2.59 

10 10.2835 0.2835 2.84 

The LiDAR performs effectively at short ranges 
(below 5 m), where the measurement error 

remains under 2%. However, the error increases 

with distance, indicating reduced accuracy at 

longer ranges. The maximum observed error is 
2.84% at 10 m. Although the manufacturer-rated 

maximum range is 12 m, repeated measurements 

suggest that the practical effective range is 
approximately 10–10.5 m, with an error increasing 

from about 0.8% to 2.8% as distance grows. These 

errors remain acceptable for the mapping stage in 
our application. 

3.4. Mapping accuracy evaluation 

 
Figure 12. 2D map construction results. 

We performed 2D mapping in an indoor 

environment. The objective is to evaluate mapping 
accuracy by comparing the reconstructed map 

dimensions with the ground-truth environment 

dimensions and quantifying the resulting errors. In 
the map, black regions represent obstacles, while 

white regions denote free space where the robot 

can traverse. 

Table 4. Comparison between ground-truth and map-

measured environment dimensions. 

Dimension 
Actual 

(m) 
Measured 

on map (m) 
Absolute 
error (m) 

Error 
(%) 

Length 10.6 10.46336 0.13664 1.29% 

Width 4.08 4.04712 0.03288 0.81% 

The reconstructed map closely matches the real 

environment. The length error is 1.29%, which is 
acceptable, while the width error is only 0.81%. 

Errors below 2% indicate that the proposed system 

provides reliable measurement and mapping 
performance. It should be noted that obstacles are 

detected only if they are approximately at the same 

height as the LiDAR sensor and lie within the 

sensing range; therefore, environmental and 
system noise can introduce additional mapping 

artifacts. Nonetheless, the observed errors remain 

within acceptable limits for the intended 

application. 

3.5. AMCL localization performance 

evaluation 

We first evaluated the AMCL filter under different 
particle set sizes to identify a configuration that 

provides the best trade-off between accuracy and 

computational efficiency. 

AMCL employs a particle filter to estimate the 

robot pose within the environment. The number of 

particles is a critical factor that strongly influences 
both estimation accuracy and computational cost. 

In this experiment, three particle counts (1000, 

5000, and 7000) were tested to evaluate AMCL 

performance. 

 

Figure 13. AMCL particle filter initialization with 

1000, 5000, and 7000 particles. 
Table 5. Impact of particle count on AMCL 
performance. 

Particles 

Performanc

e 

(%) 

Accurac

y 

(m) 

Error 

(%) 

Computation 

time (s) 

1000 70 1.45 
10.2

5 
0.5 

5000 90 0.93 6.75 1.2 

7000 95 0.75 5.31 2.3 

With 1000 particles, AMCL is able to estimate 

robot pose, but the accuracy is limited, yielding a 
relatively large error (10.25%) despite low 

computation time. Increasing the particle count to 

5000 improves pose estimation accuracy and 
reduces the error to 6.75%, although the accuracy 

remains moderate. The 7000-particle 

configuration achieves the best localization 
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accuracy (error reduced to 5.31%), at the expense 

of longer computation time. 

Based on these results, 7000 particles is selected 

as the optimal configuration, providing a 

favorable balance between localization accuracy 
and overall system performance. After the robot 

moves for a period of time, the particle set 

converges and the estimated pose aligns most 

closely with the given map. 

3.6. Navigation performance evaluation 

We evaluated the robot navigation capability in 

two types of environments: 

▪ Obstacle-free environment with a straight-

line trajectory 

 

Figure 14. Robot navigation in an obstacle-free 

environment (straight trajectory). 

▪ Complex environment with obstacles 

 

Figure 15. Robot navigation in a complex 

environment with obstacles. 

Table bellow summarizes the navigation 

performance in both scenarios, Particles were 

fixed at 7000 in all navigation tria 

Table 6. Navigation performance under obstacle-free 

and obstacle-rich environments 

 

Time to 

goal 

(s) 

Travel 

distance 

(m) 

Error 

(%) 

No obstacles 4.5s 4.0m 0 

Obstacles  

(cost factor= 1.5)  
6.5s 4.2m 1.0 

Obstacles 

(cost factor = 1.2) 
5.8s 4.3m 0.7 

Obstacles 

(cost factor = 1.0) 
5.1s 4.5m 0.4 

In the obstacle-free case, the robot reached the 
goal with a short travel time and path length, 

achieving accurate motion without noticeable 

deviation. In the obstacle-rich environment, a 
higher cost factor (cost factor = 1.5) caused the 

robot to perform overly conservative obstacle 

avoidance, increasing the time to reach the goal 
while still maintaining acceptable accuracy. When 

the cost factor was reduced to 1.0, the time-to-goal 

decreased significantly by reducing unnecessary 

detours, and the error dropped to 0.4%, indicating 
robust navigation behavior. Therefore, cost factor 

= 1.0 was selected as the most suitable setting for 

our system, achieving faster navigation while 

preserving reliable performance. 

3.7. Navigation to predefined target locations 

To enable navigation to predefined target 
positions, we developed a user interface with a 

simple and intuitive design. The operator can 

easily select the destination point, which 

streamlines autonomous operation and allows the 
AMR to navigate to predefined locations on the 

map. The interface displays several preset goal 

markers (Position 1, Position 2, Position 3, and 

Position 4) that the robot can navigate to. 

 

Figure 16. UI layout and labeled goals. 
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Figure 17. UI screenshot during experiment and robot 

trajectory overlay. 

The interface provides real-time updates of the 
robot’s current state, allowing the operator to 

monitor the navigation process conveniently. The 

preset goal points represent key task locations. 
During navigation, the robot must pass through 

narrow regions, which require accurate and agile 

motion control. The control system and interface 
support continuous observation and performance 

verification throughout the mission. 

 

Figure 18. Robot navigation user interface. 

We evaluated a multi-goal mission in which the 

robot started at Position 4, then navigated 

sequentially to Position 1, Position 3, Position 2, 

and finally returned to Position 4. 

 

Figure 19. Robot navigation in real-world 

environment. 

Table 7. Navigation performance for predefined goal 

locations. 

Goal Accuracy 

(%) 

Time to 

goal (s) 

Navigation outcome 

Position 

1 
95 25 Smooth 

Position 

3 
85 21 

Wheel slip occurred 

in a narrow passage 

Position 

2 
92 13 

Heading deviation 

during goal 

reorientation 

Position 
4 

90 20 Smooth 

Overall, the proposed navigation system performs 

effectively in both obstacle-free and complex 

obstacle environments. The highest accuracy is 
obtained in open areas (up to 98%), whereas 

accuracy decreases to approximately 90% in 

narrow passages. Although the robot maintains 
high accuracy in most cases, deviations increase 

when traversing tight corners and during heading 

alignment toward the commanded goal. The 
LiDAR and IMU sensors provide reliable distance 

measurements and pose-related information; 

however, the control strategy and sensor 

configuration can be further improved to reduce 

deviation in constrained environments. 

 

4. DISCUSSION 

Previous studies on autonomous robots have 

mainly focused on using expensive robot 

platforms or complex sensing suites to achieve 
localization and mapping. In contrast, the 

proposed indoor AMR platform demonstrates that 

low-cost and simple hardware—including 

Raspberry Pi 4, LiDAR, IMU, and wheel 
encoders—can be effectively integrated with ROS 

to achieve high-performance mapping, 

probabilistic localization, and navigation in small- 
to medium-scale industrial environments, even 

under complex conditions. This approach not only 

reduces research and deployment costs, but also 

broadens applicability to laboratories and 

industries with limited budgets. 

A notable contribution of this work is the intuitive 

user interface, which improves human–robot 
interaction, particularly in scenarios requiring 

flexible route changes or emergency handling. 

This is important because many prior works 
emphasize complex control architectures while 

paying less attention to usability and operator 

interaction.15-16 

Our system differs clearly from related studies. 
For example, Zhou et al. (2022), in “LiDAR-Based 

Mobile Mapping System for an Indoor 
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Environment”, used LiDAR to construct 2D maps 

for autonomous robots, but the system relied on 
relatively expensive hardware and sensors, 

required substantial computational resources, and 

may be difficult to deploy under budget 
constraints.17 In contrast, our platform adopts a 

simplified hardware configuration that reduces 

cost while still achieving effective mapping, 

localization, and navigation in complex indoor 

environments. 

Similarly, “Autonomous Navigation System of 

Indoor Mobile Robots Using 2D LiDAR” 
(Mathematics, 2023) presented an indoor SLAM-

based navigation system using 2D LiDAR for data 

acquisition, mapping, and path planning.18 The 

work emphasized RBPF-SLAM for robust 
localization in complex settings; however, it still 

relied on comparatively capable computing 

hardware and did not highlight low-cost 
implementation. In comparison, our design uses 

Raspberry Pi 4, a widely available low-cost 

platform that remains sufficiently capable of 
running ROS-based SLAM and navigation, 

demonstrating that accurate autonomous operation 

is achievable without high-end hardware. 

Other studies, such as “Research on SLAM Path 
Planning of ROS Robot based on LiDAR” (2021) 

and (2023), have proposed strong SLAM systems 

using ROS, LiDAR, and IMU to optimize 
mapping and localization in complex 

environments.19 Nevertheless, these systems 

generally do not emphasize user-interface 
optimization, focusing instead on map accuracy 

and navigation algorithm performance. 

5. CONCLUSIONS AND FUTURE WORK 

In this study, we designed and implemented an 
indoor autonomous mobile robot system based on 

ROS, integrating wheel encoders, an IMU, and a 

LiDAR sensor to realize key functionalities 
including odometry estimation, yaw/heading 

measurement, 2D map construction, probabilistic 

localization, and navigation in environments with 

and without obstacles. The system was evaluated 
through a set of real-world experiments targeting 

individual sensors and core tasks (mapping, 

localization, and navigation), thereby assessing 
both component-level performance and overall 

operational capability in indoor settings. 

The main contributions of this work are as 
follows: (i) development of a differential-drive 

motion model and control mechanism based on 

encoder feedback, combined with a mathematical 

model for traveled-distance estimation; (ii) 
utilization of the IMU for yaw measurement and 

application of noise filtering to improve heading 

signal stability; (iii) use of LiDAR for distance 

sensing and 2D mapping, including verification of 
geometric map errors against ground-truth 

dimensions; (iv) implementation of AMCL 

localization using a particle filter and investigation 
of the impact of particle count (1000/5000/7000) 

on pose stability and computational cost; (v) 

navigation experiments in both obstacle-free and 

obstacle-rich scenarios, including parameter 
tuning (e.g., cost_factor, costmap parameters, and 

local-controller parameters) to improve trajectory 

quality and time-to-goal; and (vi) development of 
a user interface that enables selection of 

predefined goal locations and real-time 

monitoring of robot status, improving system 

usability and operator interaction. 

Quantitatively, the encoder experiments show that 

the average error for 1–3 m travel distances lies in 

the range of 5.79% to 7.04%, indicating that 
encoder-based distance estimation is acceptable 

for indoor navigation tasks. For the IMU, raw yaw 

errors were as low as 0.44% in the tested rotations; 
after filtering, errors were reduced to 

approximately 0.56% down to 0%, confirming 

that noise filtering is necessary to improve 

heading reliability, especially for in-place 
rotations. For the LiDAR, distance-measurement 

errors from 0.4 m to 10 m ranged from 0.82% to 

2.84%, and map dimension verification produced 
length and width errors of 1.29% and 0.81%, 

respectively, indicating that LiDAR 

measurements are sufficiently accurate for 
mapping in the experimental environment. 

Regarding AMCL, increasing the particle count 

from 1000 to 7000 improved pose convergence 

but increased processing time, highlighting the 
trade-off between localization accuracy and 

computational efficiency. At the system level, the 

robot successfully completed navigation scenarios 
with an overall stability of approximately 95%, 

and tuning the cost factor from 1.5 to 1.0 reduced 

overly conservative detours and improved time-

to-goal. 

Despite these promising results, several 

limitations remain. Encoder error tends to increase 

with distance due to wheel slip, accumulated error, 
and floor surface conditions. The IMU may be 

affected by slip and mechanical vibration, causing 

heading drift during rapid maneuvers if calibration 
and appropriate sensor fusion are not applied. 

LiDAR performance is constrained by surface 

reflectivity and scan-plane geometry; obstacles 

above or below the sensor height, or outside the 
effective sensing range, may not be fully detected. 

In addition, AMCL performance depends strongly 

on map quality, environmental features, and 
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parameter configuration; larger particle sets 

improve accuracy but increase computational load 

and may reduce update rates in dynamic scenarios. 

For future work, localization and navigation 

robustness in more complex environments can be 
enhanced by implementing sensor fusion (e.g., 

fusing wheel odometry and IMU via an EKF) to 

mitigate slip effects and stabilize pose estimation 

over time. Moreover, a systematic parameter-
tuning workflow for AMCL/costmap/local 

planner based on experimental data (including 

supervised optimization) can reduce reliance on 
manual tuning. Evaluation metrics should also be 

extended using standard robotics criteria such as 

success rate, time-to-goal, path length, number of 

replans, minimum obstacle clearance, and 
CPU/RAM utilization to provide more objective 

benchmarking. Algorithmically, alternative 

planners and local controllers can be tested for 
quantitative comparison, and handling of dynamic 

obstacles and “stuck” recovery can be added to 

improve robustness in real deployments. Finally, 
the user interface can be expanded to support 

multi-goal mission management, task history 

logging, and real-time system-health monitoring 

for indoor transport applications in corridors, 

classrooms, and warehouse-like environments. 

In summary, this work demonstrates the feasibility 

of an indoor ROS-based autonomous robot system 
with an end-to-end pipeline comprising mapping, 

localization, navigation, and an operational user 

interface. Experimental results show that encoder-
based odometry yields an average distance error of 

5.79–7.04% over 1–3 m trajectories, while LiDAR 

ranging error remains below 3% up to 10 m. After 

AMCL parameter tuning (7000 particles), the 
robot achieved reliable goal-reaching performance 

in both obstacle-free and obstacle-rich indoor 

scenarios, with reduced deviations when costmap 
cost_factor was set to 1.0. These results validate 

the feasibility of a low-cost ROS-based indoor 

AMR and provide a reproducible baseline for 

further robustness improvements in narrow 
passages and during heading reorientation. 
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