
 
 

Ước lượng kênh cho hệ thống thông tin không dây hỗ trợ 
bởi bề mặt phản xạ thông minh: Phương pháp, thuật toán và 

thách thức thực tiễn 
 
   

 

 

TÓM TẮT 

Công nghệ bề mặt phản xạ thông minh (Intelligent Reflecting Surface - IRS) đã nổi lên như một yếu tố then 

chốt cho các hệ thống truyền thông không dây thế hệ thứ sáu (6G) trong tương lai, nhờ khả năng cải thiện vùng phủ 

sóng, hiệu suất phổ và độ tin cậy truyền dẫn thông qua việc tái cấu hình môi trường lan truyền vô tuyến. Bằng cách 

điều khiển thích ứng pha và/hoặc biên độ của một số lượng lớn các phần tử phản xạ thụ động chi phí thấp, IRS mang 

lại một giải pháp linh hoạt và tiết kiệm năng lượng nhằm đáp ứng các chỉ số hiệu suất khắt khe. Tuy nhiên, những 

lợi ích này phụ thuộc chặt chẽ vào việc thu thập thông tin trạng thái kênh (CSI) chính xác, vốn gặp nhiều thách thức 

do bản chất thụ động của các phần tử IRS và chi phí huấn luyện lớn. Bài báo này cung cấp kết quả nghiên cứu theo 

hệ thống về các kỹ thuật xử lý tín hiệu tiên tiến cho ước lượng kênh trong các hệ thống truyền thông không dây có 

hỗ trợ IRS. Hai kiến trúc IRS hoàn toàn thụ động và bán thụ động đều được xem xét dưới nhiều cấu hình hệ thống 

khác nhau. Các phương pháp hiện có được phân loại theo mô hình kênh, chiến lược ước lượng và kịch bản triển 

khai. Ngoài ra, bài báo phân tích ảnh hưởng của các khiếm khuyết phần cứng, bao gồm điều khiển pha rời rạc, ADC 

độ phân giải thấp và các suy hao RF, đồng thời nêu bật các thách thức còn tồn tại đối với triển khai IRS trong hệ 

thống 6G. 

Từ khóa: Bề mặt phản xạ thông minh (IRS), Thông tin trạng thái kênh (CSI), Ước lượng kênh (CE), Truyền thông 

không dây 6G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Channel estimation for intelligent reflecting surface-aided 
wireless communication systems: Methods, algorithms and 

practical challenges 

 

 

 

 

ABSTRACT 

Intelligent reflecting surface (IRS) technology has emerged as a key enabler for future sixth-generation (6G) 

wireless communication systems, owing to its capability to enhance coverage, spectral efficiency, and transmission 

reliability by reconfiguring the wireless propagation environment. By adaptively controlling the phase and/or 

amplitude of a large number of low-cost passive reflecting elements, IRS provides a flexible and energy-efficient 

solution to meet increasingly stringent performance requirements. However, realizing these benefits critically relies 

on the availability of accurate channel state information (CSI), which is particularly challenging due to the 

inherently passive nature of IRS elements and the resulting high training overhead. This paper presents a systematic 

investigation of advanced signal processing techniques for channel estimation in IRS-aided wireless communication 

systems. Both fully passive and semi-passive IRS architectures are examined under diverse system configurations. 

Existing approaches are classified according to channel models, estimation strategies, and deployment scenarios. 

Furthermore, the impact of practical hardware impairments, including discrete phase control, low-resolution analog-

to-digital converters (ADCs), and radio-frequency (RF) impairments, is analyzed, and key open challenges for the 

practical deployment of IRS in 6G systems are highlighted. 

Keyword: Intelligent Reflecting Surface (IRS), Channel State Information (CSI), Channel Estimation (CE), 6G 

wireless communications. 

1. INTRODUCTION 

Fifth-generation (5G) wireless communication 

systems have been rapidly deployed worldwide, 

supporting a wide range of services, including :1-3 

enhanced mobile broadband (eMBB), which 

provides data rates of up to 1 Gbps for mobile 

users; ultra-reliable and low-latency 

communications (URLLC), enabling end-to-end 

latencies on the order of milliseconds with 

reliability levels no lower than 99.999%; and 

massive machine-type communications (mMTC), 

which allow the simultaneous connection of up to 

106 devices per km2  in Internet-of-Things (IoT) 

networks. However, driven by the explosive 

growth in the number of mobile subscribers and 

wireless devices, as well as the rapid emergence 

of new wireless applications-such as augmented 

reality (AR), mixed reality (MR), virtual reality 

(VR), wireless industrial automation, the tactile 

Internet, and beyond 5G is no longer sufficient to 

meet the ever-increasing demands for system 

capacity, spectral efficiency, and massive 

connectivity in the IoT era. Moreover, practical 

5G deployments still face several inherent 

limitations, including high energy consumption, 

costly hardware implementations, and severe 

propagation losses, even when advanced enabling 

technologies such as massive multiple-input 

multiple-output (MIMO) and millimeter-wave 

(mmWave) communications are employed. These 

challenges have motivated intensive research 

efforts toward sixth-generation (6G) wireless 

systems, which aim to support unprecedented 

performance targets, including data rates 

exceeding 1 Tbps, energy efficiency 

improvements by a factor of 10-100 compared 

with 5G to enable green communications, ultra-

high system reliability beyond 99.99999%, 

support for ultra-high-mobility scenarios with 

speeds up to 1000 km/h, and connection densities 

approaching 107 devices per km2 to 

accommodate future IoT and immersive 

AR/MR/VR applications.4-9 

The emergence of intelligent reflecting 

surfaces (IRSs) has been recognized as a 

disruptive paradigm capable of fundamentally 

transforming intelligent wireless communication 

systems by effectively reshaping the wireless 

propagation environment at a relatively low 

cost.10-12 Specifically, an IRS is a digitally 

controllable metasurface composed of a large 

number of nearly passive reflecting elements 

with extremely low power consumption, which 

can manipulate the phase shifts and/or amplitudes 

of the incident signals in a programmable manner 

to achieve desired propagation characteristics. 

IRSs exhibit significant potential in several key 

aspects:  

i) Coverage enhancement and data rate 

improvement: By creating virtual line-of-sight 

(LoS) links, IRSs can substantially extend 



coverage in unfavorable propagation 

environments. In this way, signal blockage and 

coverage holes between transmitters and 

receivers can be effectively mitigated;  

ii) Channel power and rank enhancement: By 

introducing additional controllable signal paths, 

IRSs can improve the channel power and matrix 

rank, thereby enhancing spatial multiplexing 

gains and spectral efficiency in broadband and 

multi-antenna communication systems;  

iii) Reliability improvement: IRSs can 

transform fast-fading Rayleigh channels into 

more stable Rician fading channels, significantly 

improving link reliability; 

iv) Interference management: Through 

intelligent reflection control, IRSs can facilitate 

interference suppression and coordination, 

including co-channel and inter-cell interference 

mitigation, leading to improved quality of service 

(QoS) for users; 

v) Cost-effective densification: IRSs enable 

higher connection densities in a cost- and energy-

efficient manner, without the need for dense 

deployment of power-hungry base stations (BSs) 

or access points (APs). 

As illustrated in Fig. 1, several potential 

deployment scenarios and application contexts of 

Intelligent Reflecting surface-aided Wireless 

Communications (IRS-aWC) can be envisioned 

for future wireless networks, including smart 

cities, smart offices, smart industrial 

environments, as well as communication 

infrastructures serving remote areas such as 

mountainous regions, forests, and deserts. In 

these scenarios, IRSs can be flexibly installed on 

building facades, streetlight poles, billboards, and 

even mounted on or integrated into high-mobility 

platforms, such as vehicles and high-speed 

transportation systems, thereby enabling 

programmable and energy-efficient 

reconfiguration of the wireless propagation 

environment. 

 

Figure. 1. Deployment model and representative applications of intelligent. 

In summary, IRS represents a disruptive 

enabling technology that can be applied to a wide 

range of scenarios to transform today’s 

inefficient wireless propagation environments 

into intelligent and programmable ones, thereby 

providing enhanced support for massive device 

connectivity in the Internet of Everything (IoE). 

The remarkable advantages of IRSs have 

stimulated extensive research on their design and 

performance evaluation in various wireless 

communication systems, including OFDM-based 

systems,13-15 multi-antenna systems, and NOMA-

enabled networks.16-17 In parallel, several survey 

and tutorial papers have systematically 

summarized existing results on IRS channel 

modeling and system design, as well as hardware 

implementation and practical deployment aspects 

of IRSs.21-23 However, the majority of existing 

works typically assume the availability of perfect 

channel state information (CSI), an assumption 

that is highly unrealistic in practice, especially 

for passive IRSs whose reflecting elements are 

incapable of signal processing or transmission. 

Moreover, although some studies have addressed 

IRS hardware  mplementations, practical 

hardware limitations-such as finite phase 

resolution, reflection noise, reflection loss, and 

mutual coupling among IRS elements are often 

not fully incorporated into channel estimation 

models and system-level designs.21-23 

Consequently, there is still a lack of in-depth and 

comprehensive investigations that jointly 

consider IRS channel estimation and the impact 

of realistic hardware constraints from a wireless 



communications perspective. This gap constitutes 

the primary motivation of the present paper. 

Although IRSs exhibit great potential in 

enhancing the performance of wireless 

communication systems, their practical 

deployment still faces several critical challenges. 

The key issues include: i) channel estimation and 

acquisition of IRS-related channel state 

information (CSI); ii) reflection design under 

imperfect CSI; and iii) practical hardware 

limitations of IRSs.  

In this paper, we focus on a detailed 

investigation of IRS channel estimation and the 

impact of practical IRS hardware on channel 

estimation performance, which are fundamental 

to the realistic deployment of IRS-aided wireless 

communication (IRS-aWC) systems. These two 

issues can be summarized as follows. 

• Challenges in IRS channel estimation and 

CSI acquisition: For IRSs to effectively control 

the wireless propagation environment, accurate 

CSI acquisition is a fundamental requirement in 

IRS-aWC systems. However, this task is 

particularly challenging because IRS elements 

are typically passive and lack signal processing 

and transmission capabilities, making 

conventional pilot-based channel estimation 

inapplicable. Moreover, the large number of 

reflecting elements at the IRS significantly 

increases the number of channel coefficients to 

be estimated, leading to high training overhead 

and computational complexity.11-12,19-20 In 

addition, the diversity of system configurations 

and communication scenarios, such as the 

number of users, the number of IRSs, 

narrowband versus wideband transmission, and 

user mobility, imposes heterogeneous 

requirements on CSI acquisition and estimation 

strategies. This diversity calls for efficient, 

scalable, and practically implementable IRS 

channel estimation methods. 

• Impact of practical IRS hardware 

impairments on channel estimation: Most early 

studies on IRS-aWC systems assume ideal IRS 

reflection models in order to simplify system 

design and performance optimization. In practice, 

however, IRSs suffer from various hardware 

limitations and imperfections, including discrete 

phase and amplitude resolutions, phase-

dependent reflection amplitudes, reflection 

losses, and mutual coupling among adjacent 

reflecting elements. These non-idealities 

fundamentally alter the reflection behavior of 

IRSs and, consequently, the structure of the 

effective channels to be estimated. Therefore, 

IRS channel estimation schemes must be 

designed based on realistic hardware models 

rather than idealized assumptions. Accurately 

capturing and modeling these hardware 

constraints is essential to fully exploit the 

performance gains promised by IRSs, but it also 

significantly complicates the system design and 

signal processing tasks. These challenges will be 

discussed in detail in Section 3 of this paper.  

Unlike existing survey and overview 

papers on IRS channel estimation, which mainly 

focus on limited system models or rely heavily 

on idealized assumptions, this paper provides a 

comprehensive, systematic, and practice-oriented 

review of recent advances in Intelligent 

Reflecting Surface–aided Wireless 

Communications (IRS-aWC). Beyond a mere 

compilation of prior work, this paper offers in-

depth analysis of the fundamental limitations of 

existing approaches and explicitly bridges the 

gap between theoretical developments and 

practical deployment considerations. The key 

novel contributions and distinguishing features of 

this paper are summarized as follows: 

• Unified and structured framework for IRS 

channel estimation: We present a unified and 

structured framework for IRS channel estimation 

across a wide range of system configurations, 

including semi-passive and fully passive IRS 

architectures, single-IRS and multi-IRS systems, 

narrowband and wideband transmissions, as well 

as single-user and multiuser scenarios. These 

aspects are often treated in isolation or 

insufficiently covered in existing surveys.  

• Joint perspective on signal processing, 

channel modeling, and hardware constraints: 

Moving beyond a purely algorithm-centric 

survey, this paper establishes clear connections 

between signal processing techniques, such as 

LS/LMMSE estimation, compressed sensing, 

matrix/tensor factorization, and deep learning and 

IRS channel models, hardware architectures, and 

training overhead in practical IRS-aWC systems. 

• Comprehensive treatment of IRS hardware 

impairments: For the first time, this paper 

provides a systematic and comprehensive 

discussion on the impact of IRS hardware 

impairments and constraints, including discrete 

phase/amplitude control, phase-dependent 

reflection amplitudes, mutual coupling effects, 

low-resolution ADCs, and RF impairments, on 

the accuracy and robustness of IRS channel 

estimation. These critical aspects are often 

overlooked or overly simplified in existing 

survey works.  



• Unified comparison between model-based 

and learning-based approaches: We offer a 

unified comparison between conventional model-

based channel estimation methods and data-

driven deep learning approaches, highlighting 

their respective advantages, limitations, and 

applicability under realistic IRS-aWC scenarios. 

• Identification of open challenges and 

future research directions: The paper identifies 

key open challenges and outlines promising 

future research directions, including channel 

estimation for multi-IRS and wideband systems, 

hardware impairment aware estimation 

algorithms, and hybrid model driven and learning 

based frameworks. These directions are expected 

to play a pivotal role in enabling efficient and 

scalable IRS deployment in future 6G wireless 

systems.  

Overall, this work aims to serve as a timely 

and insightful reference that not only surveys the 

state of the art but also guides future research 

toward practically viable IRS-aided wireless 

communication systems. The remainder of this 

paper is organized as follows. Section 2 provides 

a comprehensive survey of representative channel 

estimation results for intelligent reflecting 

surface-aided wireless communication (IRS-

aWC) systems. Section 3 further discusses 

practical hardware limitations and impairments of 

IRSs, along with existing modeling approaches 

and their impacts on IRS channel estimation 

performance. Finally, concluding remarks are 

drawn in Section 4. For ease of reference, the 

definitions of the main acronyms used throughout 

this paper are summarized in Table 1. 

Table 1. List of Acronyms and Abbreviations 

Acronyms Definition Acronyms Definition 

5G  
Fifth-generation communication 

system  
LoS  Line-of-sight 

6G  
Sixth-generation communication 

system  
LS  Least square 

ADC  Analog-to-digital converter  MIMO  Multiple-input multiple-output 

AO  Alternating optimization  MISO  Multiple-input single-output 

AoA  Angle-of-arrival  (L)MMSE  
(Linear) Minimum mean-squared-

error 

AoD  Angle-of-departure  mMTC  
Massive machine-type 

communication 

AP  Access point  mmWave  Millimeter-wave 

BCD  Block coordinate descent  MRT  Maximum ratio transmission 

BS  Base station  NOMA  Non-orthogonal multiple access 

CFR  Channel frequency response  OFDM  
Orthogonal frequency division 

multiplexing 

CIR  Channel impulse responses  OMP  Orthogonal matching pursuit 

CNN  Convolutional neural network  PHY  Physical layer 

CRLB  Cramer-Rao lower bound ´  PU  Primary User 

CSI  Channel state information  QoS  Quality-of-service 



DFT  Discrete Fourier transform  RF  Radio-frequency 

DNN  Deep neural network  RIS  Reconfigurable intelligent surface 

eMBB  Enhanced mobile broadband  SCA  Successive convex approximation 

FDD  Frequency-division duplexing  SDR  Semi-definite relaxation 

GNN  Graph neural network  SINR  
Signal-to-interference-plus-noise 

ratio 

IoE  Internet-of-Everything  SISO  Single-input single-output 

IoT  Internet-of-Things  SNR  Signal-to-noise ratio 

IRS  Intelligent reflecting surface  SU  Secondary user 

IRS-aWC 
Intelligent reflecting surface- aided 

Wireless Communications 
SVD  Singular value decomposition 

ISAC  
Integrated sensing and 

communication  
TDD  Time-division duplexing 

ITS  Intelligent transmitting surface  THz  Terahertz 

ITU  
International Telecommunication 

Union  
URLLC  

Ultra-reliable low-latency 

communication 

KPI  Key performance indicator  WPT  Wireless power transfer 

LISA  Large intelligent surface/antennas  V2X Vehicle-to-Everything 

2. CHANNEL ESTIMATION TECHNIQUES 

FOR IRS-AIDED WIRELESS 

COMMUNICATIONS 

In this section, we conduct a systematic survey 

and classification of existing studies on channel 

estimation for IRS-aWC systems. The reviewed 

works are broadly categorized into three main 

groups. The first group focuses on signal 

processing–based channel estimation approaches, 

encompassing both classical and advanced 

techniques, such as least squares (LS), linear 

minimum mean square error (LMMSE), 

compressed sensing, matrix factorization, as well 

as machine learning and deep learning-based 

methods. 

The second group classifies channel 

estimation methods according to the hardware 

architecture of the IRS, including fully passive 

and semi-passive IRS designs. Within this 

category, existing studies investigate the separate 

or joint estimation of the constituent channels, 

namely the base station-to-IRS channel, the IRS-

to-user channel, and the corresponding cascaded 

channel. The third group categorizes channel 

estimation methods based on different IRS-aWC 

system configurations. These configurations 

include single and multi-User scenarios with a 

single IRS, as well as wideband and multi-User 

systems assisted by multiple IRSs. Following the 

presentation of each group, we provide a 

comprehensive evaluation and in-depth 

discussion, highlighting the advantages, 

limitations, and open challenges of the existing 

approaches, and thereby identifying promising 

directions for future research on IRS-assisted 

communication systems. 

2.1 Classification of IRS architectures and 

signal model for IRS-aWC systems 

To facilitate the investigation of channel 

estimation methods, we first specify the types of 

IRS architectures considered in this paper. In 

practice, depending on whether sensing and 

signal processing units are integrated into the IRS 

elements, IRSs can be broadly classified into two 

categories: semi-passive IRSs and fully passive 

IRSs.18 A semi-passive IRS architecture is 

equipped not only with passive reflecting 

elements but also with a small number of active 



sensing components capable of signal reception 

and basic processing. In contrast, a fully passive 

IRS consists solely of passive reflecting elements 

without any sensing or signal processing 

capability, and thus can only reflect the 

impinging signals. 

Accordingly, existing approaches for 

estimating IRS-related channels can be divided 

into two main classes, namely separate channel 

estimation for semi-passive IRS architectures and 

cascaded channel estimation for fully passive IRS 

architectures, as illustrated in Fig. 2. 

 

Figure 2. Illustration of separate channel estimation for semi-passive IRSs (a) and cascaded channel estimation 

(uplink) for fully passive IRSs (b). 

Next, we present the signal model, which 

mainly describes a narrowband IRS-aWC system. 

The considered system consists of the following 

components: 

• A base station (BS) equipped with MB  

antennas; 

• An IRS operating in one of two possible 

architectures: i) a semi-passive IRS comprising N 

passive reflecting elements and NS sensing 

elements (NS ≪ N) as illustrated in Fig. 2(a); and 

ii) a fully passive IRS consisting of N passive 

reflecting elements only, as shown in Fig. 2(b); 

• K co-channel Users, each equipped with 

MU antennas. 

Let:  

+ NM NIRS BS − H  là ma trận kênh giữa 

trạm gốc BS và IRS (BS-IRS), 

+ 
N MUs IRS

k
U

− G  là ma trận kênh giữa 

người dùng k (User k) và IRS (User k-IRS), 

+ B UM M

k


D  là ma trận kênh trực tiếp 

giữa người dùng k và trạm gốc BS (Userk-BS), 

+   1

1 2, ,...,
T N

Nθ θ θ = θ  là vector của 

luồng tín hiệu phản xạ IRS.  

It should be noted that, in the absence of 

IRS reflection, the IRS phase shifts satisfy       θ 

= 0. This scenario corresponds to channel 

estimation in conventional wireless systems 

without IRS assistance, where the base station 

can estimate the direct channels, i.e.  
1

K

k=
D , 

typically by employing sequential or orthogonal 

pilot signaling transmitted by different users. In 

this work, we mainly focus on the estimation of 

IRS related channels, namely the BS-to-IRS 

channel BS IRS−
H  and the IRS-to-User channel 

  .
Us IRS

k

−
G   

2.2 Signal processing frameworks for IRS-

aided channel estimation 

In the existing literature, regardless of the 

considered communication system model or 

architecture, signal processing–based channel 

estimation plays a crucial role in optimizing 

system parameters and overall performance. For 

different IRS channel models, substantial 

research efforts have been devoted to the design 

of efficient IRS channel estimation methods 

based on various signal processing techniques, 

including LS/LMMSE estimation, compressed 

sensing, matrix factorization, and deep learning. 

2.2.1 IRS channel estimation using conventional 

signal processing methods 

Two conventional channel estimation methods 

that are widely adopted in the literature are the 

least squares (LS) and linear minimum mean 

square error (LMMSE) estimators. Owing to their 

relatively simple algorithmic structures and low 

implementation complexity, these methods are 

often preferred in practical systems. In the 

context of channel estimation for IRS-aided 

wireless communication (IRS-aWC) systems, 

LS/LMMSE-based approaches typically require 

the number of observations (or measurements) to 

be no smaller than the number of unknown 



channel parameters in order to avoid estimation 

ambiguity and ensure identifiability. 

For analytical convenience, we consider a 

fully passive IRS channel model, as illustrated in 

Fig. 2(b). Specifically, we focus on uplink 

channel training, where the users transmit pilot 

signals and the base station (BS) collects the 

received observations. The pilot signals are 

transmitted over a training interval of length t. 

Accordingly, the received signal vector at the BS 

can be expressed as 

( ) ( ) ( )( )

1

K
t t tt BS IRS Us IRS

B U k k B

k

P − −

=

= +y H Θ G x n

 
(1) 

where 
( ) 1Ut M

k


x

 denotes the pilot signal 

transmitted by the k-th User, 
( ) ( )

( )
t t

diag=Θ 

represents the diagonal IRS reflection matrix 

during the training interval of length t, and 
( ) 1B
t M

B

n denotes the additive white Gaussian 

noise (AWGN) vector at the BS.
 

By exploiting the properties of the Khatri–

Rao product, we have 

( )( ) ( )
, 1,2...,

t tBS IRS User IRS

k kvec k K− − = =H Θ G G θ

 
(2) 

where, 

( ) B U
T

M M NUser IRS BS IRS
k k

− − = 
  

G G H

 

represents the cascaded channel matrix associated 

with the k-th User, vec(⋅) denotes the 

vectorization operation, and ⊙ denotes the 

Khatri–Rao product. By expanding the 

Kronecker product, the received signal vector at 

the BS in (1) can be compactly rewritten as 

( )( ) ( ) ( )( )

1

,
B

K T
t t tt

B U k M k B

k

P G
=

 =  +
  

y x I θ n

 (3) 

where,
 
⊗ denotes the Kronecker product. 

For simplicity, without loss of generality, 

we consider a signal model with a single user and 

a single fully passive IRS. Accordingly, the 

baseband received signal in (3) with K = 1 can be 

expressed as 

         
( )( ) ( ) ( ) ( )

B

T
t t t t

B U M BP  =  +
  

y x I Gθ n

     

(4) 

            
( )( ) ( ) ( )ˆ

B

N
T

t t t

U M n n B

n

P
  =  +    
x I g θ n

    
(5) 

where,  1 2
ˆ ˆ ˆ, ,..., .NG g g g  

By leveraging the properties of the 

Kronecker product, (4) can be equivalently 

expressed as 

( )( ) ( ) ( ) ( )ˆ ,
B

t t t t

B u M BP  =   +
 

y θ x I g n
 
(6) 

where ( )ˆˆ vecg G
 
denotes the cascaded channel 

vector. 

In (6), the term 

( )( ) ( ) ( ) B B u

B

M T M M Nt t t

M


  θ x I F

serves as the observation matrix associated with 

the estimation of ˆ.g  

Assume that Σt  denotes the number of 

pilot symbols within a channel training period. 

By stacking the received signal vectors  ( )

1

tt

B t



=
y

 
into yB, we obtain 

(1) (1) (1)

( ) ( ) ( )

ˆ ,

t t t

B B

B B

u

B B

P
  

     
     

= +     
     
     

y F n

y F n

g

y F n

   

  (7) 

Where, ( ) B B uM T M M Nt 
F denotes the 

overall observation matrix, which depends on the 

IRS training reflection patterns  ( )

1

tt

t



=
θ

 
and the 

transmitted pilot sequence  ( )

1

tt

t



=
x . It is worth 

noting that, in order to estimate the matrix ˆ,g F 

must have full column rank, which requires Σt ≥ 

MUN. Assuming that F is full column rank, two 

conventional approaches can be employed to 

estimate ĝ . 

• LS Channel Estimation 

For the LS channel estimation algorithm, 

the estimator is given by,25 

2

ˆ

ˆarg min ,LS B uP= −
g

g y Fg

   

(8) 

In closed form, the LS estimate is given by 

† †1 1
ˆ ,LS B B

u uP P
= = +g F y g F n

    

(9) 

where ( )
1

† .
−

= H H
F F F F  

• LMMSE Channel Estimation: 

Unlike the LS estimator, the LMMSE 

estimator exploits the second-order statistical 

information of both the channel and the noise in 

order to minimize the mean square error (MSE). 

By leveraging the channel and noise covariance 

matrices, the LMMSE approach achieves 



improved estimation accuracy, particularly in 

low-SNR regimes. Specifically, the LMMSE-

based channel estimator is formulated as 

follows:25 

 2
arg min ,LM B=  −

W

W Wy g

    
(10) 

with, ,LM LM B=g W y
 

the closed-form LMMSE 

estimator is given by 

( )
1

2

ˆ ˆ ,
B

H H
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−

= +
g g
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where, we have used
  ˆ 0, =g  ˆ

ˆ ˆ H
g

R gg
 

which represents the spatial correlation matrix of  

ˆ,g
2

Bσ  
denotes the noise variance at the base 

station (BS). 

It should be emphasized that, to ensure the 

feasibility of the aforementioned LS and 

LMMSE estimators and to reduce channel 

estimation errors, the IRS training reflection 

patterns  
Σ

( )

1

tt

t=
θ  and the transmitted pilot 

sequences  
Σ

( )

1

tt

t=
x

 
at the transmitter must be 

carefully designed to construct a well-

conditioned observation matrix F. In the 

following, we provide an overview and critical 

assessment of existing works on LS/LMMSE-

based IRS channel estimation under various 

channel models. 

In,13,24,25 the authors propose the use of an 

on-off training reflection pattern at the IRS to 

perform separate channel estimation based on the 

least squares (LS) method. Specifically, the direct 

User-BS channel is first estimated using a 

conventional LS algorithm by turning off all IRS 

reflecting elements. Subsequently, the cascaded 

UserIRS-BS channel is estimated sequentially 

over time by activating one IRS element at a 

time, while keeping all remaining elements in the 

off state. Although this approach features a 

simple structure and is easy to implement, it 

suffers from several notable limitations. In 

particular, the effective power of the on-off 

training reflection patterns is severely attenuated, 

and the estimation process is further impaired by 

interference from the direct channel. These 

factors significantly degrade the accuracy of 

channel estimation. To overcome the 

aforementioned drawbacks, several studies have 

proposed the use of fully activated IRS training 

reflection patterns, where all reflecting elements 

are simultaneously turned on throughout the 

channel training phase. This approach is further 

developed and rigorously analyzed in,14,25 

demonstrating that the LS estimation accuracy 

can be substantially improved by fully exploiting 

the aperture gain of the IRS. However, the 

estimation performance of these methods remains 

highly dependent on the training sequence length 

and the transmit power. Consequently, the works 

in15,26 focus on the joint optimization of the IRS 

training reflection patterns and the pilot 

sequences at the transmitter. Analytical and 

simulation results demonstrate that these 

approaches are capable of achieving optimal 

estimation performance under the LS or LMMSE 

criteria. In addition, in,13-14 adjacent IRS elements 

with inter-element spacing smaller than one 

wavelength are grouped into sub-surfaces to 

reduce the estimation complexity and the number 

of parameters to be estimated, while still 

preserving the desired reflection characteristics of 

the overall IRS. Fig. 3 illustrates the grouping of 

IRS elements into sub-surfaces. 

 

Figure 3. Illustration of IRS element grouping into 

sub-surfaces. 

Assume that the IRS consists of N 

reflecting elements that are partitioned into N  

sub-surfaces, where each sub-surface contains a 

ratio =B N N  of adjacent elements sharing a 

common reflection coefficient, as illustrated in 

Fig. 3. Accordingly, the IRS reflection vector can 

be redefined as 1=  Mθ θ 1 , and the cascaded 

channel in (4) can be reformulated as 

( )1 1 2
ˆ ˆ , ,..., ,B N=  = =  Gθ G θ 1 g g g θ Gθ

 

     (12) 

where 1Nθ  denotes the grouped IRS 

reflection vector, B UM M N
G  represents the 

effective cascaded channel after element 

grouping, and ( )1
1

ˆ
B

n b n B
b

g g
+ −

=

=  characterizes the 

equivalent aggregate channel of the sub-surface 

n , with 1,2,..., .=n N  

As a result, it is sufficient to estimate only 

the equivalent aggregate channel of each sub-

surface, which reduces the training overhead by a 

factor of B. It is worth noting that by adjusting 



the size of each sub-surface, i.e., tuning the 

grouping factor B to reduce the training cost, the 

element grouping strategy enables a flexible 

tradeoff between training overhead (or design 

complexity) and passive beamforming 

performance, without relying on any specific 

channel model assumptions. Beyond the design 

of IRS training reflection patterns and transmit 

pilot sequences, various channel training 

protocols have been proposed to further enhance 

LS/LMMSE-based channel estimation 

performance, particularly in multi-user or multi-

IRS scenarios, where efficient training 

coordination is required to limit resource 

consumption. For instance, the IRS channel 

estimation methods developed for single-user 

systems have been extended to narrowband and 

wideband multi-User systems in.27 The core idea 

of these approaches is to exploit the cascaded 

channel of a representative user as a reference 

channel state information (CSI). Based on this 

reference, the cascaded channels of the remaining 

users can be expressed in lower-dimensional 

forms, enabling efficient LS estimation at the BS 

with substantially reduced training overhead. 

Moreover, in,28 the authors propose an LS-based 

cascaded channel estimation method for two BS-

IRS-BS links to identify the common IRS-BS 

channel, by utilizing pilot signals transmitted 

from the BS and reflected back through the IRS. 

Building upon this approach,29 introduces the use 

of two anchor nodes deployed near the IRS to 

assist in estimating the common IRS-BS channel 

by exploiting dedicated training and feedback 

signals from these anchor nodes. The CSI of the 

common IRS-BS channel obtained via LS 

estimation is then leveraged to estimate the 

dynamic IRS-User channels. The results in,28-29 

demonstrate that accurate estimation of the 

common channel can be achieved with low real-

time training overhead, making these approaches 

well suited for systems requiring frequent 

channel updates. In addition to single-IRS 

scenarios, LS-based channel estimation methods 

for dual-IRS systems have been investigated in,30-

32 where various training protocols are proposed 

to achieve low practical deployment costs. For 

highly mobile IRS-aided wireless communication 

(IRS-aWC) systems, LS and LMMSE estimators 

remain particularly attractive due to their low 

computational complexity. Specifically, the 

hierarchical training reflection scheme proposed 

in33 employs LS estimation to sequentially 

acquire the CSI of the cascaded channel, showing 

that the training latency can be significantly 

reduced depending on the quality of the passive 

reflected signal. Furthermore, in,34 the authors 

study highly mobile IRS-aWC systems for 

intelligent transportation applications and 

propose low-complexity LS-based channel 

estimation methods capable of effectively 

tracking rapid channel variations. In,35 by 

exploiting the quasi-static nature of the BS-IRS 

channel HBS-IRS and modeling the time-varying 

User-IRS channel GUser-IRS using a first-order 

autoregressive  model, a Kalman filter is applied 

to track the temporal evolution of the cascaded 

User-IRS channel GUser-IRS under high mobility. 

In addition,83 proposes the parallel use of two 

Kalman filters to simultaneously track the time-

varying direct channel and the IRS-assisted 

cascaded channel. In,36 the quasi-static BS-IRS 

channel HBS-IRS is first estimated using a 

hierarchical search algorithm, after which an 

extended Kalman filter (EKF) is employed to 

efficiently estimate and track the dynamic User-

IRS channel GUser-IRS in highly mobile 

environments. 

2.2.2 Compressed sensing-based signal 

processing techniques for sparse IRS channel 

estimation
 

Signal processing methods based on compressed 

sensing (CS) are particularly well suited for 

channel estimation scenarios in which the 

wireless channel exhibits pronounced sparsity, as 

commonly observed in millimeter-wave 

(mmWave) systems and massive MIMO 

deployments. In such systems, due to severe path 

loss and a limited number of effective 

propagation paths, the channel typically contains 

only a small number of dominant components in 

the angular or delay domains, which makes CS-

based techniques highly attractive. In this 

context, channel estimators can exploit either the 

phase or amplitude characteristics of the received 

signals to accurately identify the time of arrival 

(ToA) or other geometry-related parameters of 

the propagation paths. By leveraging these sparse 

representations, CS-based approaches are capable 

of significantly reducing the required training 

overhead while maintaining high estimation 

accuracy. Nevertheless, it is important to note 

that the sparsity assumption does not always hold 

in practice. The degree of channel sparsity can 

vary substantially depending on the propagation 

environment, system configuration, and the 

geometry of the antenna arrays. In certain 

scenarios, such as densely scattering 

environments or array structures that do not 

induce a clearly sparse representation, the direct 

application of CS-based methods may provide 

limited performance gains or even degrade 

estimation accuracy. Therefore, the selection and 



design of CS-based channel estimators must be 

carefully tailored to the underlying channel 

characteristics and the specific deployment 

conditions of the IRS-aided system. 

For sparse channels (e.g., mmWave MIMO 

channels), the sparse channel matrix also referred 

to as the angular-domain channel matrix, 
B UM M

S


H , where MB and MU denote the 

numbers of antennas at the receiver and 

transmitter, respectively, contains the coefficients 

representing the physical path gains. The sparse 

channel matrix HS can be expressed as 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,
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U
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where each element hi,j represents the channel 

gain corresponding to a propagation path from a 

specific angle of departure (AoD) to a specific 

angle of arrival (AoA). Specifically, for practical 

propagation scenarios:37 

• The entries hi,j  are complex-valued and 

represent the path gain associated with the (i,j)-th 

propagation component; 

• If no physical propagation path exists 

between the corresponding AoD-AoA pair, then 

hi,j = 0. 

For sparse channels, the number of 

effective physical propagation paths is 

significantly smaller than the product MB×MU. As 

a result, the angular-domain channel matrix HS 

exhibits a high degree of sparsity, where the 

number of nonzero elements hi,j is equal to the 

number of actual propagation paths, while the 

remaining entries are zero or negligible. 

Consequently, identifying the locations and 

values of the nonzero elements in HS constitutes 

a sparse channel estimation problem. This 

problem can be efficiently addressed using 

compressed sensing (CS) algorithms, which 

explicitly exploit the inherent sparsity of the 

channel structure to substantially reduce the 

training overhead and computational complexity 

compared with conventional channel estimation 

methods. 

For IRS-aWC systems operating at high 

frequencies, such as the mmWave and THz 

bands, severe distance-dependent path loss and 

frequent blockages significantly limit the number 

of effective propagation paths between the IRS 

and the base station (IRS-BS channel) as well as 

between the IRS and Users (IRS-User channel). 

Consequently, the IRS-associated cascaded 

channels, formed by the combination of the IRS-

User channel and the IRS-BS channel at 

mmWave and THz frequencies, typically exhibit 

pronounced sparsity and low-rank characteristics 

in the spatial or angular domains. These 

structural properties can be effectively exploited 

in channel estimation to substantially reduce the 

required training overhead while maintaining 

high estimation accuracy. 

Specifically, let ,B B RM L N L

B R

 
 Π Π

 
and 

U UM L

U


Π  denote the dictionary matrices 

whose columns consist of array response 

(steering) vectors sampled over the possible 

angle-of-arrival (AoA) regions at the base station 

(BS) and the User, respectively, while LB, LR and 

LU denotes the dictionary matrix corresponding to 

the IRS. These dictionaries are constructed by 

discretizing the angular domains associated with 

the BS, IRS, and user arrays. Based on the 

geometric channel model, the IRS-BS channel 

HIRS-BS and the User-IRS channel GUser-IRS  can be 

expressed as,38,39  

( ) ( )*User IRS

R B Gvec − = G Π Π ρ
    

(14) 

( ) ( )*IRS BS

k U R kvec − = H Π Π ρ
     

(15) 

where, 1B RL L

G

ρ  and 1R UL L

k


ρ  

are sparse vectors 

with sparsity levels dG and dH, respectively. The 

parameters dG and dk  denote the numbers of 

dominant spatial propagation paths in the User-

IRS channel GUser-IRS  and the IRS-BS channel 

,IRS BS

k

−
H  respectively. It is worth noting that dG 

≪ LBLR and dk ≪ LRLU, which highlights the 

strong angular-domain sparsity of the IRS-

assisted channels. 

By substituting (14) and (15) into (2), the 

resulting cascaded channel exhibits pronounced 

sparsity in the corresponding representation 

domain. Consequently, constructing an 

appropriate signal representation model that 

matches the inherent sparsity level of the channel 

is a key requirement for effectively exploiting the 

intrinsic structure of the channel estimation 

problem. In this context, compressed sensing 

(CS) algorithms have emerged as a highly 

promising tool for sparse IRS channel estimation, 

owing to their ability to efficiently leverage the 

sparsity of wireless propagation channels to 

substantially reduce both training overhead and 

computational complexity. By reformulating the 

channel estimation task within the CS 

framework, the dominant channel parameters can 

be accurately recovered even when the number of 

training observations is severely limited. In the 



following, we provide an overview of 

representative recent studies on CS-based 

channel estimation, with a particular focus on 

sparse IRS channel models and the corresponding 

signal recovery techniques. 

For IRS-aided wireless communication 

(IRS-aWC) systems operating in scenarios where 

the propagation channels exhibit pronounced 

sparsity, the cascaded channel estimation 

problem can be equivalently reformulated as a 

sparse signal recovery problem, as demonstrated 

in.38-40 Solving this problem using compressed 

sensing (CS) techniques has been shown to 

achieve superior estimation accuracy while 

significantly reducing training overhead, as 

reported in.41-45 In particular, studies in,46,47 reveal 

that, due to the sparse nature of the HIRS-BS 

channel, the cascaded channel matrices 

corresponding to all Users in the system tend to 

share a common block-wise sparsity structure 

across both row and column dimensions. 

Motivated by this observation, a variety of CS 

based channel estimation methods have been 

developed to jointly recover the cascaded channel 

state information (CSI) of multiple users with 

low training cost, making them especially 

attractive for large-scale multiuser IRS-aWC 

systems. For THz-band MIMO systems, the 

channel sparsity level has been observed to 

increase significantly, often nearly doubling 

compared to lower-frequency bands, across both 

the angular and delay domains. This property has 

been effectively exploited in,48 opening up a 

promising research direction for wideband CS-

based channel estimation with substantially 

reduced training requirements. Moreover, 

fundamental performance limits of sparse 

channel estimation have been investigated 

through the Cramér-Rao lower bound (CRLB) 

in,49,50 providing important theoretical 

benchmarks for evaluating and comparing CS-

based estimators in IRS-aWC systems. By 

exploiting the inherent sparsity of IRS-aided 

channels, a wide range of CS algorithms have 

been developed to efficiently address the IRS 

channel estimation problem. Among them, 

Orthogonal Matching Pursuit (OMP) stands out 

as a low-complexity algorithm that iteratively 

selects the most relevant projections matching the 

received measurements. OMP has been widely 

adopted in,38,40-41 for estimating cascaded 

channels in the beamspace or angular domain. In 

addition, approximate message passing (AMP)-

based algorithms have been proposed in,45,52-54 

where the cascaded channel estimation problem 

is formulated using probabilistic graphical 

models and solved via iterative inference, 

enabling the exploitation of statistical channel 

structures to further enhance estimation 

performance. Beyond these approaches, several 

advanced CS techniques have also been applied 

to IRS channel estimation, including Adaptive 

Grid Matching Pursuit (AGMP),39 Atomic Norm 

Minimization (AnM),41 Iterative Reweighted 

Methods (IRM),42 Iterative Atomic-Pruning 

Subspace Pursuit (IAPSP),43 manifold 

optimization-based methods,44 and Sparse 

Bayesian Learning (SBL).55 In a recent 

contribution, to address the high control overhead 

and computational complexity associated with 

OMP and SBL based estimation algorithms, the 

authors in,56  proposed an online channel 

estimation scheme based on the Variable Step-

Size Zero-Attracting Least Mean Square (VSS-

ZALMS) algorithm for IRS-assisted hybrid 

mmWave MIMO systems. In that work, 

analytical expressions were derived for the 

admissible ranges of the adaptive step size and 

the regularization parameter, leading to 

simultaneous improvements in estimation 

accuracy and convergence speed. 

Despite the superior estimation 

performance demonstrated by compressed 

sensing-based methods, these approaches 

typically incur high computational complexity, 

particularly in large-scale systems or multiuser 

scenarios. Consequently, achieving an effective 

trade-off between computational cost and 

estimation performance for CS-based algorithms 

in IRS-aided wireless communication systems 

remains an open research problem, calling for 

further theoretical analysis and algorithmic 

innovation. 

2.2.3 Matrix Factorization/Decomposition-based 

channel estimation methods 

For fully passive IRSs, the cascaded User-IRS-

BS channel is estimated at the base station (BS) 

or at the user side as the product of the User-IRS 

channel GUser-IRS  and the IRS-BS channel HIRS-BS, 

in the presence of noise. As a result, the channel 

estimation problem in such systems can be 

formulated as a bilinear channel estimation 

problem. Compared with the conventional linear 

channel estimation problem encountered in IRS-

free wireless systems, this bilinear estimation 

problem is considerably more challenging, 

mainly due to the high dimensionality of the 

cascaded channel and the multiplicative coupling 

between its constituent channel components. To 

address these challenges, several approaches 

have been proposed to decompose the high 

dimensional cascaded channel into multiple 

lower  imensional subchannels, thereby enabling 



channel estimation with reduced training 

overhead and more manageable computational 

complexity. However, a fundamental challenge 

of matrix factorization and matrix decomposition 

based approaches lies in the scaling ambiguity 

between the constituent channel components. 

Specifically, decomposing the cascaded channel 

into the IRS-BS channel HIRS-BS and the User-IRS 

channel GUser-IRS is generally identifiable only up 

to an unknown scalar factor, which makes the 

accurate recovery of each individual channel 

component difficult. Therefore, to fully resolve 

this issue, additional constraints must be 

incorporated into the estimation framework, such 

as power normalization, statistical prior 

information, sparsity constraints, or array 

geometric information, to eliminate the scaling 

ambiguity and enhance the accuracy of channel 

estimation. 

To further clarify this issue, consider an 

invertible diagonal matrix N NΛ  . It always 

holds that 

1

,

IRS BS User IRS IRS BS User IRS

k k

IRS BS User IRS

k

− − − − −

− −

=

 =

H ΘG H ΛΘΛ G

H ΘG
      (16) 

where IRS BS IRS BS− − =H H Λ and 
1User IRS User IRS

k k

− − − =G Λ G  denote the corresponding 

constituent channel matrices, respectively. This 

relationship shows that the product of the two 

channel matrices remains invariant under the 

transformation induced by the invertible diagonal 

matrix Λ. 

Based on the received signal model in (1), 

it is not possible to uniquely solve the channel 

estimation problem for the individual constituent 

channels HIRS-BS  and GUser-IRS independently, due 

to the inherent scaling ambiguity in bilinear 

channel estimation problems. In other words, 

multiple pairs of constituent channel solutions 

may result in the same observed cascaded 

channel at the receiver. Nevertheless, it is worth 

noting that, in many passive beamforming design 

scenarios at the IRS, completely resolving this 

scaling ambiguity is not always necessary. In 

practice, as long as the overall cascaded channel 

is accurately estimated, IRS phase shift design 

strategies can still achieve optimal or near-

optimal performance, even when the individual 

constituent channels are identifiable only up to an 

unknown scalar factor. In the remainder of this 

subsection, we review representative studies on 

IRS channel estimation based on matrix 

factorization theory and matrix decomposition 

techniques, with a focus on how scaling 

ambiguity is addressed and the associated trade 

offs among estimation accuracy, training 

overhead, and computational complexity. In,57 

the authors proposed two cascaded channel 

estimation methods based on parallel factor 

tensor modeling of the received signals. 

Essentially, these approaches extend the 

modeling of the three-dimensional (3D) MIMO 

cascaded channel into two corresponding two-

dimensional (2D) MIMO channels associated 

with GUser-IRS and HIRS–BS , thereby enabling 

effective separation and estimation of the 

constituent channels in IRS-aWC systems. By 

exploiting the tensor structure of the training 

signals, these methods significantly reduce 

training overhead while maintaining high 

estimation accuracy. Moreover, by interchanging 

the roles of the multi-antenna base station and the 

Users, the main methods and results based on 

parallel factor tensor modeling can be readily 

extended to the downlink scenario, where all 

users perform parallel estimation of their 

respective cascaded BS-related channels, as 

reported in.58 This approach highlights the 

flexibility of tensor-based models in 

accommodating both uplink and downlink 

transmission scenarios in IRS-assisted systems. 

In addition, in,59 IRS-assisted MIMO channels 

are modeled as keyhole MIMO channels. Based 

on this model, a cascaded channel estimation 

method relying on singular value decomposition 

(SVD) was proposed, in which the cascaded 

channel matrix is decomposed into a sum of 

rank-one matrices, each corresponding to the 

contribution of an individual IRS element. This 

approach effectively exploits the inherent low-

rank structure of the cascaded channel, thereby 

simplifying the channel estimation problem. 

Beyond low-rank channel models, the works 

in,52-54,60 investigated IRS channel estimation 

under the assumption that the cascaded MIMO 

channel is sparse, and accordingly developed 

sparse matrix analysis and recovery techniques. 

These methods jointly exploit the sparsity and the 

cascaded structure of the channel to enhance 

estimation performance, particularly in mmWave 

and THz systems, where the number of effective 

propagation paths is inherently limited. 

Although tensor decomposition and 

singular value decomposition (SVD), based 

channel estimation methods have demonstrated 

significant effectiveness in exploiting the multi-

dimensional and low rank structures of IRS-

assisted cascaded channels, they still suffer from 

several inherent limitations. First, tensor-based 

methods, such as parafac and Tucker 

decomposition, typically require a sufficiently 

large number of training samples to satisfy 



identifiability conditions and guarantee solution 

uniqueness, which may substantially increase 

training overhead in large scale systems or highly 

mobile environments. In addition, the 

computational complexity of tensor 

decomposition and SVD algorithms generally 

grows rapidly with the tensor order and system 

dimensions, especially when the number of IRS 

elements and BS antennas becomes large, posing 

serious challenges for real-time implementation. 

Moreover, under strong noise or model mismatch 

conditions, the performance of these methods 

may degrade significantly, as they rely heavily on 

assumptions regarding low-rank structure or 

linear tensor models. Furthermore, scaling and 

permutation ambiguities may still persist, 

particularly in general tensor models, unless 

additional constraints or prior information are 

incorporated into the estimation framework. 

From a broader perspective, existing IRS channel 

estimation approaches can be broadly categorized 

into three main classes: (i) tensor/SVD based 

methods, (ii) compressed sensing (CS)-based 

methods, and (iii) alternating least squares based 

methods (ALS/BALS), each exhibiting distinct 

advantages and limitations. Tensor and SVD-

based approaches are particularly well suited for 

systems with pronounced multi-dimensional 

structures and low rank channels, as they enable 

the joint exploitation of multiple domains (e.g., 

spatial, temporal, and frequency) and can achieve 

high estimation accuracy. However, their 

superior performance often comes at the cost of 

high computational complexity and stringent 

training requirements, which limit their 

applicability in large scale or high-mobility 

systems. In contrast, CS based methods capitalize 

on the sparsity of wireless channels and are 

especially effective in mmWave, THz, and 

massive MIMO systems. These approaches can 

significantly reduce training overhead and 

achieve reliable estimation performance even 

with limited observations. Nevertheless, CS 

algorithms are typically sensitive to sparsity 

assumptions and array geometry, and often entail 

high computational complexity or require careful 

parameter tuning. Meanwhile, ALS/BALS-based 

methods serve as an intermediate solution, 

offering relatively simple structures, ease of 

implementation, and lower computational 

complexity. Such methods are suitable for 

systems of moderate size and scenarios requiring 

fast channel updates. However, their performance 

is often constrained by slow convergence, 

sensitivity to initialization, and limited estimation 

accuracy in complex propagation environments 

or under severe noise conditions. 

In summary, there is no single IRS channel 

estimation method that is universally optimal 

across all scenarios. The choice of an appropriate 

estimation technique must be carefully 

determined based on channel characteristics (e.g., 

sparsity or low-rank structure), system scale, 

mobility level, and the trade-off between 

estimation performance and computational 

complexity. Recent research trends increasingly 

favor hybrid estimation frameworks that combine 

the strengths of tensor-based methods, 

compressed sensing, and ALS type algorithms to 

achieve high estimation accuracy with practical 

implementation costs. Despite the substantial 

progress made in channel estimation for IRS-

aWC systems, this problem remains 

fundamentally challenging due to its bilinear 

nature, large-scale dimensions, and the 

increasingly stringent requirements of next-

generation wireless networks. Several promising 

research directions and key open challenges can 

be identified:  

(i) Performance–complexity trade-off: 

One of the most critical challenges is balancing 

estimation accuracy against computational and 

training overhead. Advanced techniques such as 

tensor decomposition and compressed sensing 

often achieve superior performance but at the 

expense of high computational complexity, 

which hinders real-time deployment. 

Consequently, the development of low 

complexity approximate, adaptive, or online 

algorithms that can maintain near optimal 

performance represents an important research 

direction. 

(ii) Hybrid estimation frameworks: 

Current research increasingly focuses on hybrid 

approaches that integrate complementary 

estimation paradigms, such as combining 

compressed sensing with tensor decomposition to 

jointly exploit sparsity and low-rank structures; 

incorporating CS or Bayesian constraints into 

ALS/BALS to improve convergence and mitigate 

scaling ambiguity; or fusing model-based 

estimation with machine learning techniques to 

enhance robustness and adaptability in practical 

environments. While these hybrid frameworks 

are promising in terms of performance and 

training efficiency, their convergence behavior 

and stability properties require further theoretical 

investigation. 

(iii) Channel estimation in high-mobility 

and non-stationary environments: In high-

mobility scenarios (e.g., V2X communications, 

UAV-assisted networks, and intelligent 

transportation systems), IRS-assisted channels 



vary rapidly over time, rendering quasi-static 

channel assumptions ineffective. This motivates 

the development of time adaptive estimation 

techniques, such as Kalman filtering, particle 

filtering, and online learning algorithms. At the 

same time, accurately modeling the non-

stationary behavior of cascaded IRS channels 

remains an open and challenging problem. 

2.2.3 Deep learning-based IRS channel 

estimation 

Deep learning (DL) has emerged as a powerful 

mathematical tool for solving high-dimensional 

nonlinear mapping problems and has therefore 

attracted significant attention in channel 

estimation for IRS-aWC systems. In this context, 

deep learning techniques can be employed to 

estimate IRS-related channels by learning an 

implicit mapping from input training data to 

output channel state information (CSI), including 

both individual CSI components and cascaded 

CSI. 

Specifically, suppose that the transmitted 

pilot symbols  ( )

1
,

tt

k t



=
x the IRS-reflected training 

signals  ( )

1
,

T
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t=
θ , and the corresponding desired 

channel impulse responses (CIRs)  
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ˆ ,
K
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used as the training dataset for a deep learning 

model. The CSI estimation problem can then be 

formulated as a supervised learning task, in 

which the deep learning model is trained to 

accurately reconstruct the CSI from the observed 

received signals. In general, applying deep 

learning to CSI estimation requires the 

construction and storage of a fingerprint 

database, which captures the mapping between 

observed signal patterns and the corresponding 

channel states under diverse propagation 

environments. Based on this paradigm, the 

following subsection reviews and analyzes 

representative studies that exploit deep learning 

techniques for IRS channel estimation, and 

discusses the advantages, limitations, and future 

potential of this data-driven approach. 

In,61,62 a deep neural network (DNN) and a 

convolutional neural network (CNN) were 

respectively exploited to estimate the cascaded 

channels in IRS-aided wireless communication 

systems, with the primary objective of reducing 

real-time training overhead. The reported results 

demonstrate that deep learning models are 

capable of effectively learning the nonlinear 

mapping between the received signals and the 

CSI, thereby achieving significantly improved 

estimation accuracy compared to conventional 

model-based approaches. Subsequently, in,63,64 

two CNN-based cascaded channel estimation 

methods were proposed, where the estimation 

process was formulated as a denoising problem. 

These approaches were shown to approximate the 

optimal minimum mean square error (MMSE) 

solution and to outperform traditional linear 

channel estimators across a wide range of 

operating scenarios. Moreover, in,65 the cascaded 

channel estimation problem was, for the first 

time, formulated as a sparse signal recovery 

problem for IRS-assisted MIMO systems 

operating in the THz band. Based on this 

formulation, an efficient deep learning-based 

estimation scheme was developed, in which the 

neural network learns to directly map the 

received signals to the channel vectors by 

exploiting the path gain information of the 

cascaded channel. Simulation results indicate that 

the proposed method can accurately reconstruct 

the CSI even under low signal-to-noise ratio 

(SNR) conditions. Beyond single-User 

scenarios,66 employed CNNs to simultaneously 

estimate both the direct and cascaded channels in 

multi-user IRS-assisted systems, demonstrating 

the scalability of deep learning-based approaches 

in more complex network environments. 

Furthermore, in,67 CNNs were applied to estimate 

the channel frequency response (CFR) of both 

direct and cascaded links in an IRS-assisted 

MISO-OFDM system. In this work, an offline 

training database was constructed to enable the 

CNN to learn the statistical characteristics of the 

channel, thereby enhancing estimation 

performance during practical deployment. In ,68 

the cascaded channel estimation problem in 

multi-user IRS-assisted systems was, for the first 

time, investigated from a denoising perspective. 

Based on this formulation, a residual deep 

learning framework built upon CNNs was 

proposed, in which the network is trained to 

refine the channel coefficients from noisy pilot 

observations. The results demonstrate that the 

proposed method can substantially improve 

estimation accuracy compared with conventional 

estimators, particularly in low signal-to-noise 

ratio (SNR) regimes. By exploiting the inherent 

angular-domain sparsity of mmWave channels, 

the authors in69 developed an individual channel 

estimation method based on a deep denoising 

neural network. This approach effectively 

leverages the intrinsic sparse structure of 

mmWave channels, thereby reducing the required 

number of training samples while maintaining 

high estimation performance. Beyond 

conventional CNN and DNN-based models, a 

variety of other deep learning paradigms have 



also been applied to channel estimation in IRS-

aided wireless communication systems, including 

federated learning, supervised learning, and 

reinforcement learning, as reported in.70-72 These 

approaches enable flexible adaptation to diverse 

system requirements, such as user data privacy 

preservation, reduction of CSI feedback 

overhead, and optimization of IRS control 

strategies. Moreover, depending on the system 

architecture and design objectives, these 

learning-based methods can be employed to 

estimate either individual CSI components or 

cascaded CSI. 

A comprehensive review of existing 

studies indicates that deep learning (DL) has 

emerged as a highly promising tool for channel 

estimation in IRS-aWC systems, particularly in 

scenarios where conventional model-based 

approaches face inherent limitations. Owing to its 

strong capability to learn complex nonlinear 

mappings from observed data to channel state 

information (CSI), DL-based methods are able to 

achieve superior estimation performance, even 

under low signal to noise ratio (SNR) conditions, 

highly scattering environments, or channel 

structures that are difficult to model accurately 

using analytical frameworks. One notable 

advantage of DL-based approaches lies in their 

ability to reduce real-time training overhead, as 

the majority of computational complexity can be 

shifted to an offline training phase. Furthermore, 

DL techniques can simultaneously exploit 

multiple channel characteristics, such as sparsity, 

spatial temporal correlation, and multi-

dimensional structural features, without relying 

on stringent mathematical modeling assumptions. 

This endows DL-based channel estimation with 

enhanced flexibility and scalability, making it 

particularly attractive for large-scale or multi-

user IRS-assisted systems. Nevertheless, DL-

based methods also suffer from several 

fundamental limitations. First, their performance 

is highly dependent on the quality and diversity 

of training data, which may lead to degraded 

generalization capability when real-world 

channel conditions deviate significantly from 

those represented in the training dataset. Second, 

most DL models lack physical interpretability, 

thereby complicating theoretical analysis, 

reliability assessment, and performance 

guarantees. In addition, the storage, maintenance, 

and updating of large-scale fingerprint databases 

pose non-negligible challenges, especially in 

dynamic or large-scale deployment scenarios. 

Looking ahead, the role of deep learning in 

IRS channel estimation is expected to further 

expand toward a tighter integration with model-

based signal processing techniques. Promising 

research directions include model-driven deep 

learning, hybrid DL-CS-tensor frameworks, as 

well as online learning, federated learning, and 

reinforcement learning paradigms, which aim to 

enhance adaptability, data privacy, and 

deployment efficiency. Rather than fully 

replacing conventional channel estimation 

methods, deep learning is more appropriately 

viewed as a strategic complementary component 

that helps bridge the gap between theoretical 

channel models and practical deployment 

conditions. By embedding domain knowledge 

and physical constraints into learning 

architectures, DL-based approaches can achieve 

improved robustness, interpretability, and 

generalization, thereby enabling reliable and 

scalable channel estimation for next-generation 

IRS-aided wireless communication systems. 

2.2.4 Summary of signal processing methods for 

IRS channel estimation 

As summarized in Table 2, representative studies 

on channel estimation for IRS-aWC can be 

systematically classified according to their 

underlying signal processing frameworks and the 

corresponding channel/signal modeling 

assumptions. Such a classification not only 

clarifies the applicable scenarios of different 

approaches, but also highlights the fundamental 

trade-offs among estimation accuracy, 

computational complexity, and practical 

deployability. 

First, least squares (LS) and linear 

minimum mean square error (LMMSE) methods 

are among the most widely adopted techniques in 

IRS-aWC, owing to their low computational 

complexity, transparent algorithmic structure, 

and flexible implementation across a broad range 

of scenarios, including narrowband/wideband 

systems, SISO/SIMO/MISO/MIMO 

configurations, as well as single-user and multi-

user settings. These methods are particularly 

suitable for over-determined linear signal models 

and wireless environments with moderate 

channel dynamics. However, in scenarios 

involving large scale IRS deployments, multiple 

IRSs, or high mobility, the performance of 

LS/LMMSE estimators is often limited, as they 

fail to exploit the intrinsic structural properties of 

cascaded IRS channels. In contrast, compressed 

sensing (CS)-based approaches are specifically 

designed to address under-determined linear 

estimation problems, where the number of 

training observations is insufficient relative to the 



number of unknown channel parameters. By 

leveraging channel sparsity or low-rank 

characteristics, CS-based methods are especially 

effective in mmWave and THz systems, where 

propagation channels typically consist of only a 

few dominant paths. Nevertheless, the 

performance of CS techniques is highly 

dependent on the validity of sparsity assumptions 

and array geometry, and often comes at the cost 

of high computational complexity and sensitivity 

to model mismatch. Matrix and tensor 

factorization/decomposition methods represent an 

intermediate class of approaches that exploit low-

rank structures, keyhole MIMO characteristics, or 

multi-dimensional correlations of the cascaded 

IRS channel. These methods can alleviate scaling 

ambiguities and improve channel identifiability 

in large-scale MIMO or multi-user systems. 

However, they generally require a large number 

of training samples, incur significant 

computational overhead, and may exhibit 

reduced robustness in low-SNR environments or 

when the assumed channel model deviates from 

practical conditions. Finally, deep learning (DL)-

based approaches extend IRS channel estimation 

to nonlinear signal models, where conventional 

linear assumptions are no longer adequate. By 

learning direct nonlinear mappings from 

observed pilot signals to channel state 

information (CSI), DL-based methods can be 

applied to a wide variety of scenarios, including 

narrowband/wideband systems, single-user and 

multi-user settings, and highly complex channel 

structures. Despite their promising performance, 

these methods typically require large-scale 

training datasets, entail high offline training 

costs, and still lack rigorous theoretical 

performance guarantees and generalization 

analysis. 

 

Table 2. Comparison of representative channel estimation methods for IRS-aWC systems. 

Signal 

Processing 

Method 

Underlying 

Channel / 

Signal Model 

Typical Application 

Scenarios 
Advantages Limitations 

Least 

Squares (LS) 

/ Minimum 

Mean-

Squared 

Error 

(LMMSE) 

•General channel 

models (flat 

fading and 

frequency-

selective fading)  

•Over-

determined 

linear signal 

model 

•Narrowband and 

broadband systems  

•SISO/SIMO/MISO/

MIMO  

•Single-user and 

multi-user scenarios  

•Moderately dynamic 

environments 

•Low 

computational 

complexity 

•Simple 

implementation  

•Well-understood 

theoretical 

properties 

• Limited 

performance in 

under-determined 

settings  

• Inefficient for 

large-scale IRS  

• Does not exploit 

sparsity or low-rank 

structures 

Compressed 

Sensing (CS) 

•Sparse or low-

rank channel 

model  

•Under-

determined 

linear signal 

model 

•mmWave and THz 

communications  

• Massive MIMO  

•Sparse angular-

delay domain 

channels 

•Significant 

training overhead 

reduction  

•High estimation 

accuracy for sparse 

channels 

• Sensitive to sparsity 

assumptions  

• High computational 

complexity  

• Performance 

degradation under 

model mismatch 

Matrix / 

Tensor 

Factorization 

•Low-rank or 

structured 

channel model  

•Keyhole MIMO 

or cascaded 

channel model 

• MIMO and multi-

user IRS systems  

• Multi-dimensional 

training signals 

•Exploits low-rank 

and multi-

dimensional 

structures  

•Reduced scaling 

ambiguity under 

certain conditions 

•High computational 

cost  

•Requires sufficient 

training samples  

•Potential 

identifiability and 

convergence issues 

Deep • Nonlinear • Narrowband and • Learns nonlinear • Requires large 



Learning 

(DL) 

signal model • 

Data-driven 

channel 

representation 

broadband systems • 

Single-user and 

multi-user scenarios • 

Complex or poorly 

modeled channels 

channel mappings  

• Reduced real-time 

estimation cost  

• Flexible and 

scalable 

training datasets  

• Limited 

interpretability  

• Generalization and 

robustness concerns 

Based on the above analysis, it can be 

concluded that the performance and practical 

applicability of signal processing based methods 

for IRS-aWC channel estimation are highly 

dependent on the degree of compatibility 

between the employed methodology and the 

underlying channel and signal models. In 

particular, this dependency is governed by: (i) the 

channel characteristics (sparse versus dense, low-

rank versus full-rank); (ii) the signal model 

(linear versus nonlinear); (iii) the level of 

problem determinacy (over-determined versus 

under-determined); and (iv) the system scale and 

practical deployment requirements. 

Consequently, a promising future research 

direction lies in the development of adaptive and 

hybrid channel estimation frameworks that can 

dynamically switch or jointly exploit 

LS/LMMSE, compressed sensing, matrix/tensor 

factorization, and deep learning techniques, 

depending on channel conditions and available 

system resources. Such flexible frameworks are 

expected to play a pivotal role in enhancing IRS 

channel estimation performance, while 

simultaneously ensuring practical feasibility and 

scalability for deployment in next generation 

wireless communication systems. 

2.3 Channel estimation for semi passive and 

fully passive IRS architectures 

In this section, we investigate the channel 

estimation problem in IRS-aWC systems from 

the perspective of IRS hardware configurations, 

focusing on two representative architectures: 

semi-passive IRS and fully passive IRS. We first 

analyze the architectural characteristics and 

signal acquisition mechanisms of each IRS type, 

thereby clarifying the fundamental differences in 

channel observability and estimation feasibility. 

Subsequently, the key factors that critically affect 

channel estimation performance are highlighted, 

including training overhead, channel 

observability, and signal processing complexity. 

Finally, we systematically summarize and 

compare the representative signal processing 

techniques developed for each IRS configuration, 

and identify the corresponding channel models 

and transmission scenarios for which these 

methods are most suitable. 

2.3.1 Individual channel estimation with semi-

passive IRS 

A semi-passive IRS, also referred to as a Hybrid 

Reconfigurable Intelligent Surface, represents an 

intermediate architecture between a fully passive 

IRS and a fully active transceiver. In this 

configuration, the IRS is equipped with NS  

dedicated low-power RF sensing elements 

capable of receiving signals, where typically     

NS ≪ N, with N denoting the total number of IRS 

reflecting elements. Thanks to the presence of 

these sensing elements, the individual channels 

from the base station (BS) or the User to the IRS 

can be directly estimated at the IRS, based on 

pilot signals transmitted by the BS or the User. 

This capability enables the decoupled estimation 

of the constituent channels, namely the BS-IRS 

and User-IRS links, rather than relying solely on 

the cascaded channel observation. The channel 

estimation mechanism for semi-passive IRS 

architectures is illustrated in Fig. 2(a). 

Under this framework, the system is 

particularly well suited to time-division 

duplexing (TDD) operation, since the inherent 

wireless channel reciprocity can be directly 

exploited to infer the channel state information 

(CSI) of the reverse links, i.e., from the IRS to 

the base station (BS) or from the IRS to the User. 

This mechanism enables a substantial reduction 

in both training overhead and CSI feedback 

signaling, while maintaining reliable channel 

estimation accuracy in static or quasi-static 

propagation environments. In contrast, under 

frequency-division duplexing (FDD) operation, 

the channel reciprocity assumption no longer 

holds. As a result, channel estimation methods 

based on semi passive IRS architectures cannot 

be directly applied, unless the sensing devices 

embedded in the IRS are capable of both 

receiving and transmitting pilot signals to support 

bidirectional channel estimation. However, such 

functionality would significantly increase the 

hardware cost and power consumption, thereby 

undermining the intrinsic energy efficiency 

advantages of IRSs. To strike a balance between 

channel estimation performance and 

implementation cost, a practical and widely 

considered approach is to equip the semi-passive 

IRS with only a small number of low cost sensing 

elements. In particular, these sensing units may 



employ low-resolution analog-to-digital 

converters (ADCs) to acquire pilot signals with 

minimal hardware complexity and energy 

consumption. Although the reduced ADC 

resolution inevitably degrades the quality of the 

observed signals, existing studies have 

demonstrated that, with appropriately designed 

channel estimation algorithms, the resulting 

performance loss can be effectively mitigated.  

Considering the illustrative configuration 

shown in Fig. 2(a), let 
S
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G denote the channel matrices 

from the base station (BS) and the k-th User to 

the NS sensing elements embedded in the IRS, 

respectively. Furthermore, let 
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denote the pilot signal matrices 

transmitted by the BS and the k-th User, 

respectively, where Σt represents the number of 

pilot symbols used within one channel sensing 

interval. 

The received signal at the NS sensing 

elements of the IRS can be modeled as 
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(17) 

here, ℚ(.) denotes the quantization function, 

which depends on the resolution of the analog-to-

digital converters (ADCs); BP  and PU denote the 

transmit powers at the base station (BS) and the 

User, respectively; and ΣS tN

S


n  

represents the 

additive white Gaussian noise (AWGN) matrix at 

the sensing elements. 

From (17), it can be observed that the 

received signal matrix at the IRS, YS , depends 

jointly on the training signal matrix transmitted 

by the base station, XB, and the training signal 

matrix transmitted by User k, Xk. Consequently, 

the core challenge of individual channel 

estimation at the IRS lies in ensuring accurate 

channel state information (CSI) for the links from 

the BS or the user to the IRS reflecting elements. 

In practice, the accuracy of such CSI is 

determined by the signal parameter 

measurements in (17), which depend directly on 

the number, spatial placement, and quality of the 

RF sensing elements integrated into the IRS. As a 

result, to obtain high-accuracy CSI for the BS-

IRS or User-IRS links, it is necessary to design 

efficient signal processing techniques capable of 

interpolating or extrapolating channel 

information from the observation matrix YS , 

particularly in scenarios where the number of 

sensors NS is much smaller than the total number 

of reflecting elements N. Along this line of 

research, many existing works exploit the 

statistical properties and intrinsic structures of 

wireless channels-such as low rankness, sparsity, 

and spatial correlation which commonly arise in 

high-frequency communication systems 

operating in the mmWave band, 73 or the THz 

band.74 

However, to achieve highly accurate and 

robust CSI estimation, future studies need to go 

beyond idealized channel models by explicitly 

accounting for practical non-idealities, including 

quantization errors induced by low-resolution 

ADCs, environmental noise, as well as hardware 

nonlinearities and impairments in RF circuits. 

Proper modeling and compensation of these 

measurement distortions play a pivotal role in 

narrowing the gap between theoretical analysis 

and practical deployment of semi-passive IRS 

architectures. For semi-passive IRSs, several 

representative approaches for individual channel 

estimation have been proposed in the existing 

literature. Specifically: 

• When the sensing elements on the IRS are 

arranged in an L-shaped array, the work in,75 

proposed a low-complexity method for 

estimating the individual BS-IRS and User-IRS 

channels by jointly estimating the angle of arrival 

(AoA) and the corresponding path gains. 

• When the sensing devices are randomly 

distributed over the IRS, a configuration 

commonly considered in narrowband systems, a 

variety of signal processing techniques have been 

developed to estimate the individual CSI from the 

BS or the user to the IRS. In particular, 

compressed sensing–based methods have been 

investigated in,55,69,70,76 while deep learning–

based approaches were studied in70-71  to further 

enhance estimation accuracy under scenarios 

with a limited number of sensing elements. 

• For broadband communication systems, the 

works in,69,71 proposed channel estimation 

methods that improve training efficiency by 

exploiting the angular domain sparsity of 

mmWave MIMO channels, thereby significantly 

reducing the training overhead compared with 

conventional approaches. 

Although encouraging preliminary results 

have been reported, more systematic and 

comprehensive investigations are still required, 

particularly with respect to: (i) the design of 

optimal pilot sequences at the base station (BS) 

and/or user terminals; (ii) the development of 

suitable sensing architectures and hardware for 

semi-passive IRSs; and (iii) the design of 



efficient signal processing and channel sensing 

algorithms capable of achieving high estimation 

accuracy with low hardware cost and short 

channel sensing durations. In practice, despite the 

potential of semi-passive IRSs to deliver superior 

system performance, their relatively complex 

architecture and higher deployment cost have 

hindered extensive investigation and 

commercialization. This, in turn, opens up a wide 

range of important research opportunities for 

future studies. 

2.3.2 Cascaded channel estimation for fully 

passive IRSs 

For fully passive IRS architectures, the reflecting 

elements are not equipped with any RF sensing 

or processing components; as a result, the IRS is 

incapable of receiving or processing signals. 

Consequently, the individual channels associated 

with the BS-IRS and User-IRS links cannot be 

estimated separately. Instead, channel estimation 

in this architecture can only be carried out in the 

form of cascaded channel estimation, i.e., 

estimating the composite channel that jointly 

accounts for signal propagation from the user to 

the IRS and from the IRS to the BS (User-IRS-

BS). This estimation is typically performed at 

one end of the communication system, most 

commonly at the BS, where sufficient signal 

processing capability and computational 

resources are available. The underlying 

mechanism of cascaded channel estimation for 

fully passive IRSs is illustrated in Fig. 2(b). 

Unlike the separate channel estimation 

problem in semi-passive IRS architectures, 

cascaded channel estimation can be applied in 

both time-division duplexing (TDD) and 

frequency-division duplexing (FDD) systems. 

Specifically, in TDD systems, the channel state 

information (CSI) can be estimated in one 

transmission direction and reused for both the 

uplink and downlink by exploiting the reciprocity 

of the wireless channel. In contrast, in FDD 

systems, channel reciprocity does not hold 

between the two transmission directions; hence, 

the CSI must be estimated and fed back 

separately for the uplink and downlink, which 

leads to increased signaling overhead and 

feedback latency. From a practical 

implementation perspective, cascaded channel 

estimation for fully passive IRSs is generally 

regarded as a more attractive approach than 

separate channel estimation, primarily due to the 

significantly lower hardware cost and energy 

consumption at the IRS, as no active sensing 

devices are required. However, this advantage 

comes at the expense of increased estimation 

complexity, since the cascaded channel is 

typically high-dimensional, bilinear in nature, 

and subject to inherent ambiguities in channel 

decomposition. As a result, more advanced signal 

processing techniques are required to achieve the 

desired channel estimation accuracy. 

As illustrated in Fig. 2(b), this subsection 

considers the uplink channel training process, in 

which the user transmits pilot signals and the 

received signals are processed at the base station 

(BS). This approach is well suited to fully passive 

IRS architectures, where the IRS is incapable of 

sensing or processing signals; consequently, the 

entire channel estimation procedure is carried out 

at one end of the communication system, 

typically at the BS. For analytical convenience 

and to clearly highlight the characteristics of the 

cascaded channel estimation problem, we reuse 

the signal models established in (1), (2), and (3) 

in section 2.2.1, while keeping the underlying 

assumptions and notations consistent. Based on 

these models, the cascaded channel estimation 

methods for fully passive IRS-aided systems will 

be presented and analyzed in the subsequent 

sections. 

From (2) and (3), it can be observed that 

the cascaded User-IRS-BS channel involves a 

substantially larger number of channel 

coefficients to be estimated than in the case of 

separately estimating the individual BS-IRS and 

User-IRS channels. This significant increase in 

the degrees of freedom of the cascaded channel 

results in much higher training overhead, in terms 

of both the required pilot sequence length and the 

signal processing complexity at the base station. 

Consequently, the design of efficient channel 

training and estimation strategies that can scale to 

large-size IRS deployments has become one of 

the central challenges in fully passive IRS-aided 

systems. In recent years, the cascaded channel 

estimation problem has attracted considerable 

attention from the research community, leading 

to a growing body of literature aimed at reducing 

training overhead and improving estimation 

accuracy under various system settings. Within 

the scope of this paper, our objective is not to 

exhaustively survey all existing results, but rather 

to discuss a number of representative and 

effective works. Through this focused discussion, 

we aim to elucidate the fundamental design 

principles and provide a structured overview that 

serves as a basis for the subsequent analysis and 

discussion. 

First, the most straightforward and 

intuitive approach to cascaded channel estimation 

can be interpreted as a sequential estimation 



process, in which the channel components 

associated with individual IRS elements are 

estimated one by one based on the received 

signal observations at the receiver, which in the 

considered model is the base station (BS). To 

realize and further develop this approach, a 

number of studies have been reported in.13-15,24-25 

Specifically, cascaded channel estimation can be 

carried out by applying on/off training reflection 

patterns at the IRS, while pilot sequences are 

transmitted from the user side. To further 

improve training efficiency, the works in34-36 

proposed the use of specially structured reflection 

matrices, such as discrete Fourier transform 

(DFT) matrices, Hadamard matrices, or circulant 

matrices constructed from Zadoff-Chu sequences, 

to control the IRS training reflection patterns 

such that all reflecting elements remain in the 

“on” state. The results in these studies 

demonstrate that the accuracy of cascaded 

channel estimation can be significantly enhanced 

by exploiting the full aperture gain of the IRS, 

rather than relying on discrete on/off 

configurations. Moreover, in,15,26 the authors 

investigated the joint design of IRS training 

reflection patterns and transmitter side pilot 

sequences in order to achieve full orthogonality 

among the reflected signals from the IRS. Owing 

to this orthogonality property, inter-component 

interference in the cascaded channel is effectively 

mitigated, thereby substantially improving the 

channel estimation accuracy at the BS. In 

addition to the aforementioned training-signal 

design based methods, a variety of other works 

have proposed the joint estimation of the direct 

channel and the cascaded channel at the receiver 

by leveraging widely used and advanced signal 

processing techniques, including least squares 

(LS), linear minimum mean-square error 

(LMMSE), compressed sensing, and deep 

learning, as discussed in detail in the preceding 

sections. 

In summary, cascaded channel estimation 

methods  
1

ˆ
K

k
k=

G  in fully passive IRS systems 

fundamentally revolve around three core design 

components: (i) the pilot sequences transmitted 

from the transmitter side (the User); (ii) the 

training reflection patterns configured at the IRS; 

and (iii) the signal processing algorithms 

employed at the receiver, typically the base 

station (BS). This framework can be naturally 

extended to the estimation of the direct channel 

Dk, with the overarching objective of achieving 

the highest possible estimation accuracy while 

incurring minimal training overhead. Such design 

principles are particularly well suited to practical 

large-scale IRS deployments, where scalability 

and training efficiency are of paramount 

importance. 

2.3.3. Comparison and hybridization of channel 

estimation methods for semi-passive and fully 

passive IRS 

As summarized in Table 3, both individual-

channel estimation and cascaded channel 

estimation in IRS-aided wireless communication 

(IRS-aWC) systems exhibit their own advantages 

and limitations. In,77 the authors conducted a 

quantitative comparison between these two 

approaches based on fundamental performance 

metrics, including estimation accuracy, hardware 

cost, and energy consumption. Their results 

indicate that cascaded channel estimation can 

achieve higher estimation accuracy while 

maintaining lower hardware cost and energy 

consumption than individual-channel estimation 

in many practical scenarios. Nevertheless, it 

should be emphasized that the accuracy of the 

channel state information (CSI), as well as the 

associated performance–cost trade-offs of these 

two approaches, strongly depends on multiple 

factors, such as the adopted signal processing 

techniques, channel models, training sequence 

design, and hardware constraints. Therefore, a 

more systematic and comprehensive comparison 

of these issues remains necessary and constitutes 

an important direction for future research.  

In the existing literature, individual 

channel estimation and cascaded-channel 

estimation are typically investigated separately, 

under different assumptions and optimization 

objectives. However, combining or hybridizing 

these two approaches to exploit their respective 

advantages and thereby achieve superior overall 

channel estimation performance has recently 

emerged as a promising research direction. It is 

worth noting that, in IRS-aWC systems, the BS-

IRS channel matrix HBS-IRS  is usually of large 

dimension, due to the large number of antennas 

equipped at the base station (BS), but remains 

quasi-static, since the locations of the BS and the 

IRS are generally fixed. In contrast, the User-IRS 

channels are much more dynamic owing to user 

mobility, yet their channel matrices are of 

significantly smaller dimensions, as the number 

of antennas at each user device is typically 

limited.28-29 

Based on these characteristics, a 

reasonable strategy is to first estimate the quasi-

static BS-IRS channel using individual-channel 

estimation methods, which can be efficiently 

performed by the sensing devices integrated into 



the IRS. Subsequently, the dynamic User-IRS 

channels can be estimated or tracked in real time 

at the base station (BS) through cascaded channel 

estimation, by exploiting the previously obtained 

BS-IRS channel information. This approach 

naturally leads to a hybrid or combined channel 

estimation framework, as illustrated in Fig. 4, 

which enables a substantial reduction in real-time 

training overhead while extending the 

applicability to both TDD and FDD systems. 
 

Figure. 4. Hybrid or combined framework integrating 

individual-channel estimation and cascaded channel 

estimation. 

Table 3. Comparison between channel estimation for semi-passive IRS and fully passive IRS. 

Criterion Semi-passive IRS Fully passive IRS 

Hardware configuration 
Equipped with a small number 

of RF sensors/ADCs (NS ˂˂ N) 
No RF sensors, fully passive 

Signal acquisition capability 

at IRS 

Yes, via embedded sensing 

elements 
No 

Type of channel that can be 

estimated 

Individual channels: BS-IRS 

and User-IRS 

Only cascaded channel: User-

IRS-BS 

Location of CSI estimation At the IRS (and/or at the BS) At the BS 

Supported duplexing mode 

Mainly TDD (exploiting 

channel reciprocity); limited 

support for FDD 

Supports both TDD and FDD 

Training overhead Low to moderate 

High, increases significantly 

with the number of IRS 

elements 

Channel estimation 

complexity 

Moderate (linear or near-linear 

estimation problems) 

High (large-scale bilinear 

estimation problem) 

Typical signal processing 

methods 

LS/LMMSE, AoA-based 

methods, CS, DL 

LS/LMMSE, CS, tensor 

decomposition, DL 

CSI estimation accuracy 

Higher (due to direct 

observation of individual 

channels) 

Lower, highly dependent on 

training design 

Energy consumption at the 

IRS 

Higher (due to sensors and 

ADCs) 
Very low 

Scalability Limited for very large IRS sizes 
Good, suitable for large-scale 

IRS deployments 

Practical deployment 

feasibility 

Moderate (higher hardware 

cost) 

High (simple architecture, low 

cost) 

Suitable application 

scenarios 

Scenarios requiring accurate 

CSI and quasi-static 

environments 

Large-scale deployments with 

strict energy-efficiency 

requirements 

One of the earliest representative works 

along the line of hybrid channel estimation was 

reported in,78 where the authors investigated a 

hybrid IRS architecture comprising both passive 

reflecting elements and embedded sensing 

devices. Based on this architecture, two 

independent subproblems were formulated to 

estimate the User-IRS channel and the BS-IRS 

channel, respectively. By exploiting the inherent 

sparsity of the wireless channel, the training 

signals were modeled as a multidimensional 

tensor and decomposed via Canonical Polyadic 

Decomposition (CPD). Dedicated algebraic 

algorithms were then developed to solve the 

resulting tensor decomposition problem and to 

recover the multipath channel parameters. 

Simulation results demonstrated that the 

proposed approach achieves superior channel 

estimation performance with relatively low 

computational complexity, even when only a 



limited number of sensing elements on the IRS 

are active. More recently, in,79 the authors 

investigated an Integrated Sensing and 

Communication (ISAC) system supported by a 

self-sensing IRS. Unlike a fully passive IRS, a 

self-sensing IRS is capable of significantly 

reducing path loss in sensing-related links. The 

authors proposed a two-phase transmission 

scheme, in which coarse and refined sensing and 

channel estimation results are obtained in the first 

phase (using scanning-based IRS reflection 

coefficients) and the second phase (using 

optimized IRS reflection coefficients), 

respectively. For each phase, an angle-domain 

turbo variational Bayesian inference (AS-TVBI) 

algorithm was developed by integrating 

variational Bayesian inference (VBI), message 

passing, and expectation-maximization (EM) 

techniques. This algorithm effectively exploits 

the partial overlapping structured sparsity and 

two-dimensional (2D) block sparsity inherent in 

sensing and communication (SAC) channels, 

thereby substantially improving the overall 

estimation performance. Based on the initial 

estimation results, a Cramér–Rao bound (CRB) 

minimization problem was formulated to 

optimize the IRS reflection coefficients, and a 

low-complexity manifold-based optimization 

algorithm was proposed to solve this problem 

efficiently. 

Although initial results have demonstrated 

the significant potential of hybrid channel 

estimation approaches, the design and practical 

realization of such architectures in an efficient, 

flexible, and cost-effective manner remain open 

research problems. Addressing these challenges 

requires more in-depth investigations, 

particularly for large-scale IRS deployments, 

highly dynamic environments, and scenarios 

involving integrated sensing and communication 

(ISAC) requirements. 

2.4. IRS channel estimation under different 

system configurations 

In practical deployments of IRS-assisted wireless 

communication systems (IRS-aWC), the 

requirements on channel state information (CSI) 

are highly dependent on the specific system 

configuration. Key influencing factors include 

the number of users (single-user versus multi-

user), the number and size of IRSs, the number of 

antennas at the base station (BS) and user 

devices, user mobility characteristics (low versus 

high mobility), as well as the nature of the 

propagation channel (narrowband versus 

wideband). Different system configurations 

impose distinct requirements in terms of CSI 

accuracy, training overhead, and signal 

processing complexity. As a result, no single 

channel estimation method can be universally 

optimal across all scenarios. Therefore, the 

selection and design of appropriate IRS channel 

estimation schemes tailored to specific system 

configurations play a critical role in achieving 

high training efficiency while maintaining 

reliable CSI accuracy, particularly in large-scale 

IRS deployments. In this subsection, we 

systematically classify and review representative 

IRS channel estimation methods according to 

different system configurations, thereby 

highlighting the fundamental design principles 

and configuration-dependent challenges. 

Specifically, we first consider narrowband IRS-

aided systems with a single fully passive IRS and 

one or multiple users, which represent the most 

fundamental and widely studied scenarios in 

early works. We then extend the discussion to 

wideband systems, where frequency-selective 

fading significantly increases the number of 

channel coefficients to be estimated, 

necessitating more sophisticated training 

strategies and signal processing techniques. 

Finally, we address multi-IRS systems involving 

two or more IRSs, an emerging research direction 

in which the presence of inter-IRS channels 

substantially increases the complexity of channel 

modeling and estimation algorithms. 

2.4.1 Single-User system with a single IRS 

For a single-user system assisted by a single fully 

passive IRS, the effective channel observed at the 

receiver is formed by the superposition of the 

direct propagation link and the reflected 

components via the IRS, where each IRS element 

contributes an individual reflected path. 

Specifically, in the single-user case (i.e., K = 1), 

the user index kkk can be omitted in the 

mathematical expressions for notational 

simplicity. Accordingly, the cascaded User-IRS-

BS channel can be explicitly expanded as 

1 2
ˆ , ,..., Nh h h 

 G
           

(18) 

From (5), it can be observed that achieving 

perfect channel state information (CSI) of the 

cascaded channel requires a training overhead 

that grows linearly with the number of reflecting 

elements N. When N is large, which is a defining 

characteristic of large-scale IRS-assisted systems, 

this results in substantial training latency and a 

pronounced degradation in spectral efficiency, 

especially in fast time-varying channel scenarios. 

Consequently, a central research question in 

single-user IRS-aided wireless communication 

systems is how to effectively reduce the training 



overhead while maintaining an acceptable level 

of CSI estimation accuracy. In the following, we 

review and discuss representative works that 

address this fundamental challenge. Depending 

on the antenna configuration of the downlink 

transmission, i.e., the link from the base station 

(BS) to the IRS and subsequently to the user, 

existing studies on IRS channel estimation for 

single-user (point-to-point) systems can be 

broadly classified into three main categories: 

single-input single-output (SISO), multiple-input 

single-output (MISO), and multiple-input 

multiple-output (MIMO). 

First, several representative works in,13-15,24-25 

investigated IRS channel estimation under SISO 

and MISO configurations, where the channel 

state information (CSI) of either the direct link or 

the cascaded link is independently estimated at 

one or multiple antennas of the base station (BS), 

based on IRS training reflection patterns and pilot 

sequences transmitted from a single user antenna. 

However, these approaches are difficult to scale 

effectively to general MIMO configurations due 

to the intricate coupling among multiple transmit 

and receive antennas, which necessitates the 

simultaneous estimation of a large number of 

channel coefficients. To overcome this limitation, 

as discussed in previous sections, a substantial 

body of research has focused on cascaded 

channel estimation for single-user IRS-aided 

MIMO systems by exploiting the inherent 

sparsity and low-rank structures of the channel at 

mmWave and THz frequency bands, primarily 

through compressed sensing–based algorithms, as 

exemplified in.38-45,49 These methods significantly 

reduce the training overhead while maintaining 

high CSI estimation accuracy. In parallel, deep 

learning–based signal processing techniques have 

emerged as a promising alternative, enabling the 

learning of nonlinear mappings from pilot 

observations or training data to CSI without 

explicit channel modeling. Specifically, deep 

learning approaches have been successfully 

applied to single-user IRS-aided systems with 

MISO configurations in,61-64 and MIMO 

configurations in,65 demonstrating superior 

performance compared with conventional linear 

estimators across a wide range of scenarios. In 

addition, several studies, including,52,57,59 have 

leveraged matrix and tensor 

factorization/decomposition techniques to reduce 

the effective dimensionality of the cascaded 

MIMO channel matrix, thereby simplifying the 

channel estimation problem and lowering the 

computational complexity in single-user IRS-

aided MIMO systems. Beyond the 

aforementioned mainstream approaches, IRS 

channel estimation has also been investigated 

under more specialized scenarios. For instance,80 

considered an IRS-assisted backscatter 

communication system and proposed a least-

squares (LS)-based channel estimation method 

for the SISO configuration. Moreover, in highly 

mobile environments with large-scale IRS 

deployments, various protocols and channel 

tracking algorithms have been developed to 

dynamically track the CSI of both direct and 

cascaded channels over time, covering SISO,34 

MISO,35 and MIMO configurations.36,81,82 

In broadband communication systems, 

wireless channels are typically frequency-

selective and time-varying with rich multipath 

propagation, rendering the channel model 

substantially more complex than in the 

narrowband case. In this context, channel 

modeling, computation, and estimation in IRS-

aided wireless communication (IRS-aWC) 

systems become particularly challenging, due to 

the dramatic increase in the degrees of freedom 

of the cascaded channel as well as the need to 

track channel state information (CSI) across both 

time and frequency domains. Although several 

preliminary studies have been reported, existing 

IRS channel estimation methods for broadband 

systems remain limited, both in quantity and in 

methodological maturity. Consequently, the 

development of accurate and tractable channel 

models, together with efficient channel 

estimation algorithms that are scalable and 

adaptive to time–frequency–selective channel 

variations, remains an open and highly promising 

research direction that warrants further in-depth 

investigation. 

2.4.2 Multi-User systems with a single IRS 

Next, we consider the channel estimation 

problem in multi-User IRS-aided wireless 

communication (IRS-aWC) systems with a single 

IRS, where multiple Users are simultaneously 

served by a common IRS (or, equivalently, 

multiple IRSs are deployed in a distributed 

manner within the same service area). In this 

analysis, we continue to adopt the received signal 

model introduced in (3) as the basis for 

characterizing the channel estimation properties 

in the multi-User scenario. It is worth noting that, 

in the presence of multiple users, directly 

applying channel estimation methods originally 

designed for the single-user case is generally 

inefficient. This inefficiency arises from inter-

User interference as well as the substantial 

increase in the number of channel parameters to 

be estimated. This issue has been clearly 

identified and analyzed in ,25,83,84 which 



highlights the necessity of developing dedicated 

channel estimation strategies for multi-User IRS-

aWC systems. Such strategies should be capable 

of exploiting the shared structure of the cascaded 

channels while effectively reducing the overall 

training overhead. 

To further elucidate the characteristics of 

the channel estimation problem in the multi-user 

scenario with a single IRS, we revisit the 

received signal model presented in (3), which can 

be compactly rewritten as 

( ) ( )( ) ( ) ( )

,
ˆ ,

B

T tt t t
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y x I G θ n  (19) 

with k =1,…, K. Similar to the single-User case 

presented in (4), the composite channel state 

information (CSI) of each User can, in principle, 

be estimated individually based on each 
( )

,

t

B ky  in 

(19) without incurring co-channel interference 

(CCI). However, this approach leads to a training 

duration that increases linearly with the number 

of users, and thus becomes impractical when the 

number of users K is large. Therefore, to achieve 

training-efficient operation in multi-User IRS-

aWC systems, the key challenge lies in the design 

of more efficient channel estimation and signal 

processing strategies, including: (i) multi-User 

pilot sequences at the transmit side, 

(ii) training reflection patterns at the IRS, and 

(iii) channel estimation algorithms specifically 

tailored to the multi-User scenario. These 

components must be jointly designed to minimize 

the overall training overhead while maintaining 

reliable CSI estimation accuracy in the presence 

of noise and inter-User interference. In the multi-

User IRS-aWC system illustrated in Fig. 5, all 

Users share a common IRS–BS channel, denoted 

by HBS-IRS, whereas each user experiences an 

individual composite User-IRS-BS channel, 

denoted by  
1

ˆ
K

k
k=

G . This shared channel structure 

induces strong correlations among the composite 

channels of different Users, thereby enabling the 

exploitation of common structural properties, 

such as angular-domain sparsity or low-rank 

characteristics, to design more efficient multi-

User channel estimation algorithms. In the 

following, we summarize and discuss 

representative recent studies on channel 

estimation for multi-user IRS-aWC systems, 

highlighting the main methodological approaches 

and the remaining open challenges. 

 

Figure 5. Uplink channel estimation in IRS-aided 

multi-User wireless communication systems. 

Motivated by practical deployment 

considerations, the authors in,27 proposed a 

representative User based channel estimation 

strategy. Specifically, the cascaded channel state 

information (CSI) of a representative User, for 

example, 
1Ĝ
 
corresponding to the first User, is 

first estimated at the base station (BS). Exploiting 

the shared channel structure, the cascaded CSI of 

the remaining Users, denoted by  
2

ˆ
K

k=
G , can then 

be inferred with only marginal additional training 

overhead. Under this framework, the multi-User 

IRS-assisted system can be equivalently 

transformed into a multi-User IRS-aided MISO 

system, thereby significantly reducing the overall 

channel training cost. This approach effectively 

exploits the correlation among the cascaded 

channels of different users, particularly in 

wideband propagation environments. The 

channel estimation performance of the method 

in27 was further improved in85 by jointly 

estimating both the direct channels and the 

cascaded channels in a multi-user IRS-aided 

MISO system, which enhances CSI accuracy and 

improves the overall system performance. 

Moreover, in many practical scenarios, as 

discussed earlier, the IRS-BS channel is quasi-

static or varies much more slowly over time 

compared to user-related channels. Leveraging 

this property, the authors in,28,29 proposed to first 

estimate the quasi-static IRS-BS channel    HBS-

IRS, and subsequently utilize this information to 

estimate the dynamic IRS-User channels 

 
1
,

K

k k=
G  in real time with low training overhead, 

making the approach particularly suitable for 

multi-User IRS-aided MISO systems. 

For the problem of cascaded channel 

estimation in fully passive IRS-assisted systems, 

a wide range of approaches have been proposed 

for multi-User IRS-aided wireless 

communication (IRS-aWC) MISO systems by 

exploiting advanced signal processing 

techniques. Specifically, methods based on 

matrix/tensor factorization and decomposition 

have been investigated in;57,58 compressed 



sensing based approaches that exploit the 

inherent sparsity of wireless channels have been 

proposed in;53-55 meanwhile, deep learning-based 

techniques have been applied to directly learn the 

cascaded channel state information (CSI) from 

training data in.66,68 channel estimation problem, 

the authors in26,53 proposed to shift to downlink 

channel training, However, in multi-User 

scenarios, each User still needs to feed back 

either its direct CSI or especially in large-scale 

where the base station (BS) is required to jointly 

estimate the CSI of the direct channels in which 

each user It is worth noting that most of the 

aforementioned channel estimation methods are 

designed for uplink channel training, cascaded 

CSI to a central BS. Consequently, although 

downlink training can alleviate the processing 

burden at the BS, it incurs a significantly 

increased CSI feedback overhead, training 

reflection patterns. and/or cascaded channels 

from multiple users, resulting in high 

computational complexity and substantial 

training overhead. To simplify the joint uplink 

independently estimates its own CSI including 

the direct channel Dk and the cascaded channel 

 ˆ
k

G based on pilot signals transmitted by the BS 

and reflected by the IRS using different systems 

with a large number of Users. On the other hand, 

for semi-passive IRS architectures, where 

dedicated sensing elements are integrated directly 

into the IRS, several efficient channel estimation 

methods have been developed for multi-User 

IRS-aWC MISO systems. In particular, 

approaches based on Sparse Bayesian Learning 

(SBL)55 and Canonical Polyadic Tensor 

Decomposition (CPD)76 have been proposed for 

both flat-fading and frequency-selective fading 

channels. In these methods, the IRS-BS channel 

(shared channel) and the User-IRS channels 

(User-specific channels) are estimated in parallel 

directly at the sensing elements embedded in the 

IRS, thereby significantly reducing the training 

overhead, system latency, and computational 

burden at the BS. 

2.4.3 Channel estimation for systems with two or 

more IRSs 

Most existing studies on IRS channel estimation 

have primarily focused on IRS-aWC systems 

assisted by a single IRS, or on scenarios 

involving multiple IRSs but considering only a 

single effective reflection path, as illustrated in 

Fig. 6(a). 

 

Figure 6. IRS-aWC system with different IRS deployments: 

a) Single-IRS aided communicatin system, b) Multi-IRS aided communicatin system. 

In these models, inter-IRS reflected signals 

are typically neglected in order to simplify 

channel modeling and reduce the computational 

complexity of the channel estimation problem. 

Recently, however, the considerable potential of 

forming cooperative passive signal flows among 

multiple IRSs has attracted growing research 

interest. In particular, the works in,30,86-88 have 

demonstrated that deploying two or more 

coordinated IRSs can achieve significantly higher 

passive beamforming gains than systems assisted 

by a single IRS. These gains arise from enhanced 

energy focusing, extended coverage, and 

improved effective channel quality enabled by 

multi-hop reflection paths. Nevertheless, while 

cooperative multi-IRS architectures offer clear 

performance advantages, they simultaneously 

introduce new and more severe challenges for 

channel estimation. Specifically, the emergence 

of inter-IRS link channels, together with the 

substantial increase in the number of channel 

parameters to be estimated, renders the channel 

model considerably more complex than that of 

single-IRS systems. Consequently, the 

development of appropriate channel models and 

scalable, efficient channel estimation algorithms 

tailored for multi-IRS systems remains an 

important open research direction, warranting 

further in-depth investigation in future work.  

To further clarify the above discussion, we 

consider a communication system assisted by two 



IRSs, as illustrated in.86 Specifically, in addition 

to the original IRS (denoted as IRS1) deployed in 

proximity to the user devices, a second IRS 

(IRS2) is placed near the base station (BS) to 

further enhance the controllability of passive 

signal propagation. In this configuration, besides 

the channel matrices already present in single-

IRS systems, including the IRS1-BS channel HBS-

IRS1  and the User-IRS1 channel 1User IRS

k

−
G , 

additional channels arise due to the introduction 

of IRS2. In particular, BS IRS−H  and
 

User IRS

k

−G  

denote the channels from IRS2 to the BS and 

from user kkk to IRS2, respectively. Moreover, 

in a two-IRS system, there exists an inter-IRS 

link channel, denoted by S, which captures the 

signal interaction and mutual reflection between 

IRS1 and IRS2. Consequently, the effective 

channel between User k and the BS is no longer a 

simple superposition of a single reflected path 

and the direct link, but rather a composite of 

multiple components, including 

,

BS IRS User IRS

k k

BS IRS User IRS

k

BS IRS User IRS

k k

− −

− −

− −

= +

+ +

+ +

E H ΘSΘG

H ΘG

H ΘG D

      (20) 

where ( )diag=Θ θ and ( )diag=Θ θ  denote the 

reflection coefficient matrices of IRS1 and IRS2, 

respectively;  

BS IRS User IRS

k

− −
H ΘSΘG  

represents the double-reflection signal 

component, while 

( )BS IRS User IRS BS IRS User IRS

k k

− − − −+H ΘG H ΘG  

denotes the component; and Dk corresponds to 

the direct channel from user kkk to the base 

station (BS). 

According to (20) and as illustrated in Fig. 

6(b), IRS-assisted propagation paths with 

different reflection orders including single- and 

double-reflection components are superimposed 

and intricately coupled, which leads to a 

substantial increase in the number of channel 

coefficients to be estimated. Consequently, 

channel estimation techniques originally 

developed for systems with a single IRS are, in 

general, not directly applicable to systems with 

two or more IRSs, either from a channel 

modeling perspective or in terms of algorithmic 

complexity. Therefore, the development of new 

channel estimation frameworks capable of 

exploiting the distinctive structural properties of 

multi-IRS channels and scaling efficiently with 

multiple reflection orders has become an urgent 

and critical requirement. In the following, we 

review and discuss the most recent research 

advances on channel estimation for wireless 

communication systems assisted by two or more 

IRSs, highlighting the current methodological 

approaches as well as the open challenges that 

remain. 

In,87 the authors investigated a single-User 

SISO system assisted by two semi-passive IRSs, 

where the individual channels between each IRS 

and the base station (BS) or the user are directly 

estimated via sensing devices integrated into the 

IRSs. In this model, the inter-IRS channel is 

assumed to be line-of-sight (LoS) and primarily 

determined by geometric relationships, which 

significantly simplifies the channel estimation 

problem. For the case of two fully passive IRSs, 

the problem of cascaded channel estimation 

through dual IRSs was studied in30 for a single-

User SISO system. Specifically, by assuming that 

the direct link is blocked and that a single 

dominant reflected path exists, the authors in30 

[proposed two efficient channel estimation 

schemes to recover the double-reflection 

channels through the two IRSs, under the 

condition that both the common IRS–BS channel 

and the inter-IRS channel are LoS-dominated. To 

achieve a practically low training overhead in 

multi-antenna systems, the authors in,31 proposed 

an effective channel estimation method based on 

on–off reflection training patterns at the IRSs, 

which enables the acquisition of the cascaded 

channel state information (CSI) for both single-

reflection and double-reflection links in a two-

IRS-assisted multi-User MISO IRS-aWC system. 

This approach demonstrates the potential to 

significantly reduce training overhead while 

maintaining acceptable channel estimation 

performance. 

Furthermore, to overcome the limitations 

associated with error propagation and reflected 

power loss caused by the on-off reflection control 

employed in,31 the authors in,32 developed an 

improved effective channel estimation scheme, in 

which the IRS elements remain continuously 

active (always on reflection) throughout the 

training phase. This strategy enables the 

simultaneous estimation of the cascaded CSI for 

both single and double-reflection paths, thereby 

fully exploiting the reflective power gain of the 

IRSs and leading to a substantial improvement in 

channel estimation accuracy for two IRS-assisted 

multi-User MISO IRS-aWC systems. Notably, 

both dual-IRS channel estimation schemes 

proposed in,31-32 can achieve a training overhead 

comparable to that of single IRS systems. This 

result is made possible by exploiting the intrinsic 



relationships between single- and double-

reflection channels, as well as the shared 

structural properties of the cascaded channels 

across multiple users, which effectively reduces 

the number of degrees of freedom to be 

estimated. However, for systems assisted by 

more than two cooperating IRSs, comprehensive 

studies on the accurate and efficient estimation of 

cascaded channels involving two or higher-order 

reflections are still largely lacking. The primary 

reason lies in the exponential growth in the 

number of channel coefficients as the number of 

IRSs increases, which renders both channel 

modeling and estimator design particularly 

challenging. Consequently, the development of 

scalable channel estimation frameworks for 

large-scale multi-IRS systems, capable of 

achieving However, for systems assisted by more 

than two cooperating IRSs, comprehensive 

studies on the accurate and efficient estimation of 

cascaded channels involving two or higher-order 

reflections are still largely lacking. The primary 

reason lies in the exponential growth in the 

number of channel coefficients as the number of 

IRSs increases, which renders both channel 

modeling and estimator design particularly 

challenging. Consequently, the development of 

scalable channel estimation frameworks for 

large-scale multi-IRS systems, capable of 

achieving acceptable training overhead and 

computational complexity, remains a critical 

open research direction that warrants substantial 

attention in future studies., remains a critical 

open research direction that warrants substantial 

attention in future studies. 

2.4.4 Channel estimation for wideband IRS-aided 

systems with a single IRS 

In practical deployments, a highly important and 

practically relevant issue is channel estimation 

for wideband multicarrier IRS-aWC systems, in 

which the propagation channels typically exhibit 

frequency-selective fading. Compared with 

narrowband systems, channel estimation in the 

wideband scenario becomes significantly more 

challenging due to the substantial increase in the 

channel degrees of freedom, as well as the need 

to track channel state information (CSI) across 

both the time and frequency domains. 

Specifically, in narrowband systems, the 

cascaded User-IRS-BS channel on each 

transmission link can be represented as a simple 

matrix product of the User-IRS and IRS-BS 

channels, as shown in (2). In contrast, in 

wideband systems, the effective cascaded 

channel is no longer characterized by a 

straightforward matrix multiplication, but rather 

by the convolution of the User-IRS and IRS-BS 

channels across multiple multipath components. 

This convolutional structure gives rise to inter-

delay-path interference, which further 

complicates both channel modeling and channel 

estimation for IRS-assisted systems. As a result, 

channel estimation methods developed for 

narrowband systems cannot be directly applied to 

wideband scenarios. Instead, they must be 

extended or redesigned to exploit the intrinsic 

structural properties of frequency-selective 

channels, such as delay-angle sparsity, inter-

subcarrier correlation, or low-rank structures in 

appropriate transform domains. These issues will 

be discussed in greater detail in the subsequent 

subsection. 

Specifically, let LG and LH denote the 

numbers of delay taps of the time-domain 

channel impulse responses (CIRs) corresponding 

to the User-IRS and IRS-BS links, respectively. 

In this setting, to clearly elucidate the 

fundamental nature of the channel estimation 

problem in wideband IRS-assisted systems, we 

consider a simple yet representative scenario, 

namely a single-User single-base-station-single-

IRS system with a SISO configuration, i.e., K = 

MB = MU = 1. Restricting the model to the SISO 

case does not compromise the generality of the 

subsequent analysis; rather, it enables a more 

transparent exposition of the convolutional 

relationship between the User-IRS and IRS-BS 

channels in the time domain, as well as the 

resulting increase in the number of channel 

coefficients to be estimated in wideband IRS-

aWC systems. Based on this baseline model, the 

derived results can be systematically extended to 

MISO or MIMO configurations by incorporating 

the corresponding antenna dimensions. 

Similarly, 
1HL

n


g  and 

1HL

n

h   denote 

the time-domain channel impulse responses 

(CIRs) from the n-th IRS element to the User and 

to the base station (BS), respectively. 

Consequently, the effective cascaded channel 

from the user to the BS via each IRS element nnn 

can be expressed as the convolution of the User-

IRS channel, the IRS reflection coefficient, and 

the IRS-BS channel, which can be written as 

, 1,...,n n n n n n n n n N  =  = =h θ g θ h g θ q     (21) 

where 
( 1) 1H GL L

n n n

+ − 
 q h g denotes the cascaded 

User-IRS-BS channel associated with the n-th 

IRS element (without accounting for the IRS 

phase-shift effect), and (∗) denotes the 

convolution operator. 



Due to multipath propagation in wideband 

systems, the number of channel coefficients to be 

estimated for the cascaded User-IRS-BS channels 

 
1

N

n n=
q  increases significantly compared to the 

narrowband case. Specifically, each IRS-assisted 

reflected link is characterized by a time-domain 

channel impulse response (CIR) with multiple 

delay taps, which leads to a substantial increase 

in the degrees of freedom of the effective 

cascaded channel. This, in turn, results in higher 

training overhead and increased computational 

complexity for channel estimation algorithms. 

Moreover, in wideband multicarrier systems 

employing orthogonal frequency-division 

multiplexing (OFDM), it is important to note that 

the reflection coefficients of passive IRS 

elements are typically frequency-flat over the 

entire operating bandwidth. As a consequence, 

the IRS reflection coefficients affect the channel 

frequency response (CFR) identically across all 

OFDM subcarriers. This property eliminates the 

inherent frequency-domain flexibility of OFDM 

and significantly limits the ability to design 

frequency-selective IRS reflection patterns or 

subcarrier-dependent channel training strategies. 

As a result, channel estimation methods 

developed for narrowband IRS-aWC systems, 

which generally rely on the assumptions of 

frequency flat fading and a limited number of 

channel parameters, cannot be directly applied to 

wideband systems with frequency-selective 

fading. This observation highlights an urgent 

need for more efficient wideband IRS channel 

estimation solutions that are capable of exploiting 

the underlying time-frequency correlation 

structures of the cascaded channels, while 

simultaneously controlling the training overhead 

and computational complexity. Based on these 

considerations, the following subsection provides 

a systematic review and discussion of existing 

research results on IRS channel estimation for 

wideband systems, and further highlights the 

remaining open challenges and promising 

research directions in the context of next-

generation wireless communications. 

First, in two pioneering works,13-14 the 

authors investigated the channel estimation 

problem for single-user IRS-aided OFDM 

wireless communication systems. In these 

studies, comb-type pilot designs were proposed 

in conjunction with IRS training reflection 

patterns operating in on–off and always-on 

modes. Such designs enable the separation of the 

contributions of IRS-assisted reflected paths in 

the frequency domain, thereby facilitating the 

estimation of the cascaded channels under 

frequency-selective fading conditions. However, 

due to the large number of OFDM subcarriers 

and the increase in OFDM symbol duration with 

bandwidth, these methods still suffer from 

considerable training latency. To address this 

limitation, the work in,15 proposed two more 

efficient training pattern structures, in which both 

the OFDM pilot signaling at the transmitter and 

the IRS training reflection patterns were jointly 

redesigned. This joint design significantly 

shortens the training duration while maintaining 

high channel estimation accuracy. These results 

clearly demonstrate that the joint optimization 

across the time–frequency domain of OFDM 

signals and the spatial domain of the IRS plays a 

crucial role in wideband IRS channel estimation. 

Extending the analysis to the multi-user scenario, 

the authors in,15 further proposed an efficient 

channel estimation method for multi-User IRS-

aided OFDM systems by multiplexing the pilots 

of different users in the frequency domain over 

disjoint subsets of OFDM subcarriers. This 

strategy enables more efficient utilization of 

frequency resources and substantially reduces the 

overall training overhead compared to 

conventional User-by-User sequential training 

schemes. In addition, by exploiting the angular 

delay sparsity inherent in wideband channels, 

which is a typical characteristic of mmWave 

systems, the Orthogonal Matching Pursuit (OMP) 

algorithm was applied in,51 to an IRS-aided 

MISO-OFDM system to jointly estimate the 

wideband direct channels and cascaded channels 

for multiple users. In this model, the BS-IRS 

channel is assumed to be dominated by a line-of-

sight (LoS) component, which significantly 

reduces the dimensionality of the estimation 

problem and enhances the effectiveness of 

compressed sensing-based algorithms, as 

discussed in previous sections. 

In,48 the authors proposed a two-stage 

wideband channel estimation framework for IRS-

aided massive MIMO systems operating in the 

THz band. Specifically, the first stage performs 

coarse channel estimation in the downlink to 

extract the fundamental structural information of 

the channel, while the second stage conducts 

refined channel estimation in the uplink for the 

multi-User scenario. This two-stage design 

effectively balances estimation accuracy and 

training overhead in the presence of severe path 

loss and highly directional propagation 

characteristics inherent to THz channels. In IRS-

aided OFDM systems, deep learning-based 

channel estimation methods have also attracted 

increasing attention in recent years. In 

particular,67 exploited convolutional neural 



networks (CNNs) to learn nonlinear mappings 

from the received pilot signals to the direct 

channel state information (CSI) or the cascaded 

CSI for both MISO and MIMO configurations. 

Meanwhile, to reduce the communication 

overhead associated with training data exchange 

and to preserve user privacy, the authors in,72 

proposed the application of federated learning to 

the channel estimation problem in IRS-aided 

OFDM systems. In this framework, local models 

are trained in a distributed manner at edge nodes, 

and only learned model parameters are shared, 

rather than raw data. For semi-passive IRS 

architectures, where signals can be directly 

acquired by sensors integrated into the IRS, 

dedicated channel estimation methods have been 

proposed for single-user SISO-OFDM systems 

in.70 These methods combine deep learning and 

compressed sensing to effectively exploit the 

inherent sparsity of mmWave channels. 

Furthermore, by employing deep denoising 

neural networks and leveraging angular-domain 

sparsity, the work in,76 developed an efficient 

decoupled channel estimation approach for IRS-

aided MIMO-OFDM systems, demonstrating the 

significant potential of deep learning techniques 

in wideband and multi-antenna scenarios. 

In Table 4, we summarize the most recent 

research works on IRS channel estimation across 

different system configurations. 

 

Table 4. Channel estimation methods for IRS-aWC systems under different system configurations 

IRS 

Configuration 
Bandwidth Users 

Antenna 

Setup 

(DL) 

Representative Channel Estimation Methods and 

Key Features 

Single IRS Narrowband Single-

User 

SISO 

Progressive cascaded channel estimation under discrete 

phase-shift models;33,39 cascaded channel estimation 

for IRS-assisted backscatter communications;80 

compressed sensing (CS)-based estimation exploiting 

channel sparsity with CRB analysis;50 channel 

estimation for high-mobility scenarios with vehicle-

mounted IRS;34 separate channel estimation using a 

single RF chain at IRS.40 

MISO 

Cascaded channel estimation using on/off IRS training 

reflection patterns;24 full-on reflection training 

exploiting entire IRS aperture;25 CS-based methods 

leveraging mmWave channel sparsity;40 deep learning 

(DL)-based cascaded channel estimation;49,62-64 Kalman 

filter–based tracking for high-mobility channels .3581 

MIMO 

CS-based cascaded channel estimation exploiting low-

rank and sparse structures of mmWave channels;38-39,41-

45,49 matrix factorization/decomposition-based 

methods,52,57,59 DL-based cascaded channel estimation 

for THz channels;65 channel estimation for high-

mobility IRS-aided systems.36,82 

Multi-

User 

MISO 

Successive User-by-User cascaded channel 

estimation;84  exploitation of common IRS–BS channel 

and additional channel sparsity;27,46-47 uplink IRS–BS 

channel estimation (offline) followed by online IRS–

user channel estimation;28-29 LMMSE-based downlink 

estimation;26 matrix factorization and tensor-based 

methods;53-54,57-58,60 DL-based multi-user channel 

estimation using CNNs.66,68 

Broadband 

(OFDM) 
Single-

User 
SISO 

Cascaded channel estimation with ON/OFF IRS 

reflection patterns and element grouping strategies;13 

DFT-based and circulant training reflection patterns;14 

fast (sampling-wise) full-ON training strategies;15 

DL/CS-based separate channel estimation for mmWave 



IRS 

Configuration 
Bandwidth Users 

Antenna 

Setup 

(DL) 

Representative Channel Estimation Methods and 

Key Features 

channels.70 

MISO 
Cascaded channel estimation using single CNN 

architectures to reduce training complexity.67 

MIMO 

Deep denoising neural network-based cascaded 

channel estimation for mmWave channels;69 joint 

estimation of direct and IRS-assisted channels in 

OFDM systems.14 

Multi-

User 
MISO 

OMP-based cascaded channel estimation exploiting 

common sparsity across users and subcarriers;51 

separate channel estimation using canonical polyadic 

decomposition (CPD).76 

Narrowband 

MIMO 

DL-based cascaded channel estimation with federated 

learning;72 CS-based methods exploiting dual sparsity 

in THz MIMO channels.48 

Single IRS Single-

User 
SISO 

Double-IRS cascaded channel estimation under Rician 

fading with inter-IRS channels;30 exploitation of 

channel relationships between single- and double-

reflection links.31 

MISO 
Double-IRS channel estimation exploiting common 

BS–IRS channels and inter-IRS links.32 

Multi-

User 
MISO 

Double-IRS channel estimation leveraging common 

BS-IRS and inter-IRS channels as well as channel 

correlations among Users.31-32 

As summarized in Table 4, research on 

IRS channel estimation has evolved along four 

major and progressively challenging dimensions: 

from single-IRS to multi-IRS architectures, from 

narrowband to broadband transmission, and from 

model-based to learning-based approaches. Early 

studies primarily focused on single-IRS 

narrowband systems, in which the cascaded 

channel can be effectively estimated using 

structured training reflection patterns and 

classical signal processing techniques, such as 

LS/LMMSE, compressed sensing, and matrix or 

tensor factorization. In these scenarios, the 

dominant challenges stem from the large number 

of IRS elements and the resulting training 

overhead, which are commonly alleviated by 

exploiting channel sparsity, angular-domain 

structure, or low-rank properties. More recently, 

research attention has shifted toward multi-IRS 

systems, where multiple passive surfaces 

cooperate to enhance passive beamforming gains 

and coverage. While multi-IRS deployments 

enable higher-order reflection diversity and 

increased array gains, they also significantly 

complicate channel estimation due to the 

emergence of inter-IRS channels and multi-hop 

cascaded links. Existing works mainly rely on 

exploiting common BS–IRS channels, geometric 

line-of-sight (LoS) dominance, or intrinsic 

relationships between single- and double-

reflection links to keep the training overhead 

manageable. Nevertheless, scalable and 

generalizable channel estimation solutions for 

systems involving more than two cooperating 

IRSs remain largely unexplored. Another 

important research direction concerns the 

extension from narrowband to broadband 

(OFDM-based) IRS-aided systems, where 

frequency-selective fading and multipath 

propagation substantially increase the number of 

channel parameters to be estimated. In such 

systems, the convolutional structure of cascaded 

channels in the time domain, together with the 

frequency-flat nature of IRS reflection 

coefficients across subcarriers, introduces 

additional challenges. To address these issues, 

recent works leverage structured pilot designs, 

common sparsity across subcarriers, and joint 

delay–angle domain representations to reduce 

training latency and computational complexity. 



Finally, learning-based channel estimation has 

emerged as a promising paradigm, particularly 

for large-scale MIMO, mmWave/THz 

communications, and highly dynamic 

environments where accurate analytical channel 

models are difficult to obtain. By learning 

nonlinear mappings directly from pilot 

observations to CSI, data-driven approaches offer 

improved robustness to model mismatch and 

hardware impairments, albeit at the cost of 

increased data requirements and training 

complexity. Deep learning techniques, including 

convolutional neural networks (CNNs), denoising 

neural networks, and federated learning, are 

capable of approximating complex nonlinear 

mappings between pilot observations and channel 

state information (CSI) without relying on 

explicit analytical channel models. While 

learning-based approaches have demonstrated 

superior estimation accuracy and enhanced 

robustness in challenging propagation 

environments, their effectiveness critically 

depends on the availability and diversity of 

training data, generalization capability across 

deployment scenarios, and the associated training 

and communication overheads. These factors 

remain key obstacles to large-scale and real-time 

practical deployment. Overall, the evolution of 

IRS channel estimation-from single-IRS to multi-

IRS architectures, from narrowband to broadband 

transmission, and from model-driven to data-

driven methodologies reflects a clear trend 

toward increasingly realistic yet significantly 

more complex IRS-aided wireless systems. In 

this context, the development of scalable, low-

overhead, and robust channel estimation 

frameworks that effectively integrate model-

based physical insights with the adaptability of 

learning-based techniques constitutes a critical 

and promising research direction for future IRS-

assisted wireless communications. 

3. IMPACT OF PRACTICAL IRS 

HARDWARE IMPAIRMENTS ON 

CHANNEL ESTIMATION 

Early studies on intelligent reflecting surface 

(IRS)-assisted wireless communications typically 

assume idealized IRS hardware models and 

transceiver chains in order to simplify the 

channel estimation problem. However, in 

practical deployment scenarios, IRS hardware 

architectures are subject to various non-idealities 

and physical constraints, such as finite phase 

resolution, amplitude attenuation, hardware 

noise, and nonlinearities in the control circuitry. 

These impairments can lead to noticeable 

performance degradation in IRS-aWC systems if 

they are not properly accounted for. Recognizing 

the gap between idealized models and practical 

implementations, recent research efforts have 

increasingly focused on developing IRS channel 

estimation methods and passive beamforming 

designs that explicitly incorporate hardware 

imperfections. By accounting for realistic IRS 

hardware constraints, these approaches aim to 

improve the robustness, reliability, and practical 

applicability of IRS-aWC systems, especially in 

large-scale deployments and dynamic wireless 

environments. 

3.1 Impact of discrete phase and amplitude 

control on IRS channel estimation 

Ideal IRS reflection models, in which each 

reflecting element can continuously control both 

phase shift and amplitude, have proven useful in 

theoretical studies for optimizing passive 

beamforming and characterizing the fundamental 

performance limits of IRS-assisted systems. 

However, in practical deployments, realizing 

high-resolution phase shifters or amplitude 

controllers is highly challenging due to the high 

hardware cost, increased power consumption, and 

the complexity of circuit design and control. As a 

result, a more practical approach is to design IRS 

hardware architectures with a finite number of 

control bits per reflecting element, so as to 

achieve a reasonable trade-off between system 

performance and implementation cost. In this 

context, IRS models with discrete phase control 

(e.g., two-level phase shifts of 0 or π) and/or 

discrete amplitude control (e.g., reflecting versus 

absorbing states) have attracted considerable 

research interest. Although the number of 

available control levels is limited, such IRS 

architectures can still provide substantial 

performance gains when appropriately designed 

and exploited. In the following, we summarize 

and analyze representative studies addressing IRS 

channel estimation and passive beamforming 

design under discrete hardware constraints, 

highlighting the proposed signal processing 

techniques as well as the associated 

performance–complexity trade-offs. 

Suppose that the numbers of quantization 

bits for controlling the reflection amplitude and 

phase are 2 and 2β θ
d d

β θN N= = , respectively. 

Accordingly, the sets of discrete reflection 

amplitude and phase values at each IRS element 

can be expressed as in (21) and (22), 

respectively, 

 1 2, ..., ,
ββ NR β β β=   (21),  



 1 2, ...,
θθ NR θ θ θ=

  
(22) 

Compared with ideal reflection models 

featuring continuous valued amplitude and phase 

control, the estimation of quantized reflection 

parameters in (21) and (22) becomes 

considerably more challenging. This is because 

the corresponding channel estimation problem is 

no longer a continuous linear estimation task, but 

instead turns into a discrete estimation problem, 

in which the IRS reflection parameters are 

constrained to a finite set of quantization levels. 

Such discrete constraints significantly increase 

the algorithmic complexity of channel estimation 

and may also lead to noticeable performance 

degradation if conventional signal processing 

methods are not properly adapted to account for 

practical hardware limitations. 

In,33,39 the problem of cascaded channel 

estimation in IRS-aWC systems was investigated 

under discrete phase-shift constraints at the IRS. 

Specifically, the authors constructed nearly 

orthogonal training reflection matrices based on 

DFT and Hadamard matrices, combined with 

appropriate quantization strategies to mitigate the 

channel estimation errors induced by limited 

phase resolution. The results demonstrate that, 

although discrete phase constraints inevitably 

degrade performance compared with ideal 

continuous-phase models, properly designed 

training reflection matrices can still achieve 

acceptable channel estimation accuracy. This line 

of work was further extended in,91 where a block 

coordinate descent (BCD) based optimization 

framework was proposed to iteratively refine 

individual elements of the training reflection 

matrix, initialized from a DFT-Hadamard 

structure. This approach enables further reduction 

of estimation error while maintaining practical 

feasibility for IRS architectures with finite phase 

resolution. In addition to discrete phase control, 

two-level (on-off) amplitude control models have 

also been investigated for IRS channel estimation 

in .13,24 In these works, IRS elements operate only 

in two states reflection or absorption which 

significantly simplifies hardware implementation 

and training signal design. However, since only a 

subset of IRS elements is activated during each 

training interval, the effective reflected power is 

substantially reduced compared with always-on 

IRS schemes, resulting in a clear trade-off 

between channel estimation accuracy and overall 

reflection efficiency. 

3.2 Impact of phase-amplitude coupling on 

IRS channel estimation 

Most existing studies on intelligent reflecting 

surfaces (IRSs) commonly assume that the 

reflection amplitude and phase shift of each IRS 

element can be controlled independently, which 

significantly simplifies channel modeling, pilot 

signal design, and passive beamforming 

optimization. However, recent experimental 

studies reported in,92-93 have demonstrated that 

this assumption does not hold for practical IRS 

hardware architectures. In real implementations, 

the reflection amplitude of each IRS element is 

inherently dependent on the applied phase shift, 

due to the physical characteristics of the 

underlying tunable components and control 

circuits. 

 

Figure 7. Reflection amplitude versus phase shift for 

the practical IRS reflecting element.92 

Specifically, as illustrated in Fig. 7 of  the 

reflection amplitude typically attains its 

minimum value when the phase shift is zero, and 

then increases monotonically, asymptotically 

approaching its maximum value of one as the 

phase shift approaches −π or π. This phase 

amplitude dependence fundamentally breaks the 

ideal linear reflection model, rendering the 

cascaded User-IRS-BS channel a nonlinear 

function of the IRS control parameters. 

Consequently, channel estimation methods 

developed under the assumption of independent 

phase and amplitude control are no longer 

applicable, or can only achieve limited 

performance in practical scenarios. The presence 

of a strong nonlinear coupling between the 

reflection phase and amplitude significantly 

complicates the IRS channel estimation problem, 

as the feasible control parameter space becomes 

highly constrained and nonconvex. To address 

this challenge, the authors in,91 proposed 

customized IRS training reflection patterns, in 

which the reflection coefficients are directly 

optimized under the phase-amplitude coupling 

constraint using a block coordinate descent 

(BCD) method. Simulation results demonstrate 



that this approach achieves substantially 

improved channel estimation performance 

compared to conventional training designs that 

assume independent phase and amplitude control. 

Although BCD based optimization 

methods have demonstrated a certain level of 

effectiveness, they typically rely on accurate 

hardware modeling, incur high computational 

complexity, and suffer from limited convergence 

scalability in large-scale IRS configurations. 

These limitations have motivated a promising 

research direction that leverages deep learning 

techniques to directly handle the inherent 

nonlinearities and complex hardware constraints, 

such as phase quantization, discrete amplitude 

control, and phase-amplitude coupling. By 

learning the mapping from received training 

signals to the CSI or to optimal reflection 

parameters without requiring explicit channel or 

hardware modeling, deep learning-based 

approaches are expected to provide enhanced 

robustness against hardware impairments, while 

simultaneously reducing the design complexity 

and implementation burden of practical IRS-WC 

systems. 

3.3. Impact of mutual coupling among 

reflecting elements on IRS channel estimation 

When the spacing between adjacent IRS 

reflecting elements is smaller than the signal 

wavelength, the phenomenon of mutual coupling 

becomes inevitable. In this case, the effective 

impedance of each reflecting element is no longer 

independent but is influenced by the impedances 

of its neighboring elements, resulting in complex 

coupled reflection coefficients across the IRS 

array.94-95 This behavior stands in sharp contrast 

to ideal IRS hardware models, which typically 

assume independent reflection control for each 

element, and consequently renders the IRS 

channel estimation problem significantly more 

challenging. For IRS-assisted systems affected by 

mutual coupling, a fundamental challenge in 

channel estimation lies in accurately identifying 

the channel components associated with 

individual reflecting elements, given that their 

electromagnetic responses are no longer 

independent. In the existing literature, IRS 

channel estimation under mutual coupling effects 

has not yet been systematically investigated, 

particularly for large-scale IRS deployments. A 

practical and tractable approach is to group 

adjacent IRS elements among which mutual 

coupling is typically strong into multiple sub-

surfaces.13-14 Under this architecture, the mutual 

coupling within each sub-surface is absorbed into 

an equivalent composite reflection model, while 

the coupling between different sub-surfaces is 

assumed to be weak or negligible. As a result, the 

channel estimation problem is shifted from the 

element level to the sub-surface level, 

substantially reducing model complexity, 

mitigating the adverse effects of mutual coupling, 

and lowering training overhead, while still 

maintaining acceptable channel estimation 

performance. 

However, for the sub-surface grouping 

strategy to be truly effective, further in-depth 

investigations are required to gain a 

comprehensive understanding of the underlying 

mutual coupling mechanisms among reflecting 

elements, as well as to determine optimal 

grouping strategies that account for the IRS 

geometry, inter-element spacing, and 

electromagnetic characteristics. The key 

objective is to mitigate or suppress the 

detrimental effects of mutual coupling while 

preserving high channel estimation accuracy and 

passive beamforming performance. This remains 

an open and challenging problem, particularly for 

large-scale and wideband IRS systems, calling 

for more accurate modeling approaches and 

robust, scalable channel estimation techniques in 

future research. 

3.4 Impact of low-resolution ADCs and RF 

impairments on IRS channel estimation 

performance 

Similar to conventional wireless communication 

systems without IRS, various hardware 

impairments persist in IRS-aWC systems, 

including distortions originating from the 

transmitter, the receiver, and the IRS itself. These 

impairments can lead to unstable system 

performance and a significant degradation in 

channel estimation accuracy. Common sources of 

hardware impairments include IRS phase noise,96-

98 transmitter/receiver RF impairments,99-104 

quantization errors caused by low-resolution 

analog-to-digital converters (ADCs),105,106-109 

power amplifier nonlinearities,110 as well as other 

non-ideal hardware effects. In particular, IRS 

phase noise, which arises from discrete phase 

control and/or intrinsic imperfections of the 

hardware circuitry, has been modeled in the 

literature mainly from two perspectives. First, 

phase noise can be treated as independent and 

identically distributed random noise, uniformly 

distributed across IRS reflecting elements.96 

Second, more sophisticated models assume 

Gaussian-distributed phase noise, where the noise 

power increases with the distance from the center 

of the IRS, taking into account calibration effects 

and hardware non-uniformities among reflecting 



elements.97 These models more accurately 

capture the non-ideal characteristics of large-

scale IRS deployments in practical systems. 

The aggregated effects of RF impairments 

at the transmitter and receiver, including 

oscillator phase noise, I/Q imbalance, automatic 

gain control (AGC) noise, and amplifier 

nonlinearities, are commonly characterized using 

the extended error vector magnitude (EVM) 

model.113,114 In this framework, hardware 

impairments are modeled as zero-mean Gaussian 

noise whose variance is proportional to the power 

of the undistorted transmitted or received 

signal.111 The EVM-based model provides a 

unified approach to evaluating the impact of 

multiple hardware impairment sources on system 

performance and channel state information (CSI) 

estimation accuracy.115-116 Given that hardware 

impairments are inevitable in practical systems, 

IRS channel estimation methods that explicitly 

account for hardware degradations have attracted 

significant research interest in recent years. 

Representative works have focused on the 

development of robust channel estimation 

algorithms, adaptive training strategies, and 

hardware impairment compensation techniques at 

the transmitter, receiver, and IRS, as presented 

and discussed in.96,98-110,112 These studies play a 

crucial role in enhancing the feasibility and 

performance of IRS-aWC systems in practical 

deployment scenarios. In,99-100 the authors 

proposed cascaded channel estimation schemes 

based on the linear minimum mean square error 

(LMMSE) criterion for IRS-aWC systems under 

hardware impairments. Specifically, signal 

distortions at the transmitter and receiver are 

modeled as Gaussian random variables, while 

phase deviations at the IRS are characterized 

using circular distributions. This modeling 

framework enables a comprehensive analysis of 

the combined effects of hardware impairments on 

channel estimation accuracy.  

Moreover, in IRS-aWC architectures 

particularly at massive MIMO base stations 

(BSs) or semi-passive IRSs equipped with 

sensing capabilities the use of high-resolution 

analog-to-digital converters (ADCs) throughout 

the entire receive chain is impractical due to the 

rapidly increasing hardware cost, power 

consumption, and circuit complexity as the 

number of antennas or sensing elements grows. 

Consequently, low-resolution ADCs (typically 1-

3 bits) are widely regarded as a practical and 

energy-efficient solution.117,118 To address the 

challenges induced by coarse quantization, 

several recent works have modeled low-

resolution ADCs using the Bussgang 

decomposition,119 whereby the quantized signal is 

approximated as a linearly attenuated version of 

the input signal plus an uncorrelated Gaussian 

noise term. Based on this model, channel 

estimation schemes that explicitly account for 

quantization noise have been developed and 

shown to significantly outperform approaches 

that ignore ADC effects. However, the accuracy 

of the Bussgang-based approximation degrades 

substantially in extreme low-resolution scenarios 

(e.g., 1-bit ADCs), thereby necessitating 

nonlinear estimation techniques or machine 

learning-based approaches. In,106,107  the authors 

investigated IRS-assisted receivers employing 

low-resolution ADCs and proposed efficient 

cascaded channel estimation schemes that 

explicitly incorporate quantization errors during 

signal acquisition. The results demonstrate that, 

with appropriately designed algorithms, 

acceptable channel estimation performance can 

still be achieved even when using severely 

resolution-constrained hardware. 

To better reflect practical deployment 

conditions, recent studies on channel estimation 

for IRS-aWC have increasingly taken into 

account various hardware impairments and 

constraints at the IRS as well as at the transmitter 

and receiver. These non-idealities not only 

invalidate the idealized channel models 

commonly assumed in early works, but also have 

a direct impact on the design of training signals, 

the structure of the IRS reflection matrix, and the 

performance of channel estimation algorithms. In 

practice, hardware-induced degradations may 

originate from multiple components of the 

system, including phase and/or amplitude 

quantization at the IRS, the intrinsic coupling 

between reflection amplitude and phase shift, 

mutual coupling effects among adjacent 

reflecting elements, as well as RF impairments at 

the transmitter and receiver. 

When low-resolution ADCs and RF 

impairments coexist, their impact on IRS channel 

estimation is inherently non-additive and may 

mutually reinforce each other, leading to a 

compounded degradation in estimation 

performance. This interplay makes the design of 

practical IRS channel estimators particularly 

challenging. Promising research directions to 

address this issue include: (i) the joint design of 

pilot sequences, IRS training reflection patterns, 

and channel estimators that explicitly account for 

both low-resolution ADCs and RF impairments; 

(ii) the development of nonlinear estimators as 

well as deep learning–based and hybrid model-



driven learning algorithms capable of directly 

learning hardware-induced distortions from 

training data; and (iii) the exploitation of inherent 

channel structures, such as sparsity, low-rank 

characteristics, and spatial correlation in IRS 

channels, to compensate for the loss of 

observation quality caused by non-ideal 

hardware. 

Finally, to systematize existing research 

results and clarify the relationship between 

different sources of hardware impairments and 

their effects on IRS channel estimation, Table 5 

provides a comprehensive classification of 

typical hardware non-idealities in IRS-aided 

wireless communication systems along with their 

corresponding impacts on channel estimation 

performance. 

Table 5. Typical hardware impairments in IRS-aWC systems and their impact on channel estimation. 

Hardware 

impairment source 
Location Main impact on IRS channel estimation 

Discrete phase control IRS elements 

Reduces the orthogonality of IRS training reflection matrices; 

increases cascaded CSI estimation error, especially with low 

phase resolution 

On-off or discrete 

amplitude control 
IRS elements 

Degrades effective reflection power; reduces received SNR; 

slows down the convergence of channel estimators 

Phase-dependent 

reflection amplitude 
IRS elements 

Violates the independent phase–amplitude control assumption; 

distorts the linear channel model, leading to systematic CSI 

estimation errors 

Mutual coupling 

among IRS elements 

Dense IRS 

deployments 

Causes interdependence among reflection coefficients; prevents 

element-wise independent channel estimation; significantly 

increases training overhead 

Low-resolution ADCs 
BS or semi-passive 

IRS 

Introduces non-Gaussian quantization noise; degrades 

LS/LMMSE estimators; leads to performance saturation at high 

SNR 

RF impairments at 

transmitter/receiver 
BS/User 

Generates signal-dependent distortion noise; reduces CSI 

accuracy and increases estimation error variance 

Oscillator phase noise BS/User/IRS 
Causes time-varying phase drift in CSI; degrades CSI reuse 

efficiency and breaks channel reciprocity 

IRS calibration errors IRS 
Induces spatially non-uniform estimation errors; severely affects 

large-scale IRS deployments 

Power amplifier 

nonlinearity 
BS/User 

Distorts pilot signals; introduces bias in CSI used for estimation 

and learning-based algorithms 

AGC noise and 

synchronization errors 
BS/User 

Causes instability in pilot signal amplitudes; degrades CSI 

estimation performance in multi-user systems 

Although initial progress has been made, 

the joint impact and mutual interactions among 

multiple types of hardware impairments, such as 

IRS phase noise, transmitter/receiver RF 

distortions, quantization errors, and power 

amplifier nonlinearities, have not yet been 

comprehensively modeled and analyzed in the 

existing literature on IRS channel estimation. As 

a result, the development of unified hardware 

impairment models, together with robust channel 

estimation techniques and model-mismatch-

resilient algorithms, remains an important and 

open research direction for future IRS-aided 

wireless communication systems. 

4. CONCLUSION AND FUTURE 

RESEARCH DIRECTIONS 

This paper has presented a comprehensive and 

up-to-date survey of IRS-aWC systems, with a 

particular focus on the key practical challenges 

hindering their real-world deployment, namely 

IRS channel acquisition/estimation and 

hardware-related constraints and impairments. 

We first reviewed representative IRS channel 



models and systematically examined state-of-the-

art channel estimation techniques under different 

IRS architectures and system configurations, 

including fully passive and semi-passive IRS 

designs, single and multi-User scenarios, 

narrowband and wideband transmissions, as well 

as systems with single and multiple cooperating 

IRSs. The main signal processing paradigms 

employed for IRS channel estimation-ranging 

from classical LS/LMMSE approaches to 

compressed sensing, matrix/tensor factorization, 

and learning-based methods were discussed and 

comparatively analyzed. 

Furthermore, this survey explicitly 

addressed the impact of practical hardware 

constraints and impairments at both the IRS and 

wireless transceivers, such as discrete phase and 

amplitude quantization, phase-dependent 

reflection amplitudes, mutual coupling among 

IRS elements, RF impairments, phase noise, and 

low-resolution data converters. Their effects on 

channel estimation accuracy, training overhead, 

and overall system performance were critically 

discussed, highlighting the gap between idealized 

theoretical models and practical IRS 

implementations. By consolidating fragmented 

research results into a unified and structured 

framework, this survey aims to serve as a timely 

and valuable reference for researchers and 

practitioners working on IRS-aWC technologies. 

We hope that the insights, comparative 

discussions, and identified open research 

directions provided in this paper will facilitate the 

design of practical, scalable, and robust IRS 

channel estimation schemes, and ultimately 

accelerate the integration of IRS into future 

wireless systems beyond 5G and toward 6G. 
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