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TÓM TẮT

Quản lý rủi ro tài chính là điều cần thiết đối với các doanh nghiệp vì nó giúp ngăn ngừa tổn thất và tối đa 
hóa lợi nhuận. Do quá trình này phụ thuộc nhiều vào việc ra quyết định dựa trên dữ liệu, học máy mang lại tiềm 
năng phát triển các phương pháp và công nghệ sáng tạo. Trong bài báo này, chúng tôi so sánh khả năng dự đoán 
của các mô hình học máy khác nhau và sử dụng phương pháp LIME để diễn giải cách chúng đưa ra quyết định. 
Dữ liệu được thu thập từ báo cáo tài chính của các công ty niêm yết từ năm 2009 đến năm 2023. Kết quả cho thấy 
Gradient Boosting và Random Forest đạt hiệu suất tốt nhất. Thêm vào đó, trọng số LIME chỉ ra rằng các yếu tố 
ảnh hưởng nhiều nhất đến dự đoán của các mô hình là tỷ lệ thanh khoản hiện hành, tỷ suất lợi nhuận trên tài sản, 
tỷ lệ nợ và tỷ lệ nợ trên vốn chủ sở hữu.

Từ khóa: Rủi ro tài chính, công ty niêm yết, mô hình học máy, phương pháp LIME.
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ABSTRACT

Financial risk management is essential for businesses as it helps prevent losses and maximize profits. Since 
this process depends heavily on data-driven decision-making, machine learning offers a promising avenue for 
developing innovative methods and technologies. In this paper, we compare the predictive capabilities of various 
machine learning models and use the LIME method to interpret how they make decisions. Data was collected 
from the financial statements of listed companies from 2009 to 2023. The results show that Gradient Boosting 
and Random Forest achieved the best performance. Additionally, LIME weights indicate that the most influential 
factors affecting the models' predictions are the current ratio, return on assets, debt ratio, and debt-to-equity ratio.
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1. INTRODUCTION 

Financial risk arises when there is a chance that 
an event will cause a company to underperform 
relative to its planned financial targets or 
established metrics.1 Examples of such financial 
metrics or values encompass earnings per share, 
return on equity, and cash flows. Financial risks 
encompass categories such as market risk, credit 
risk, market liquidity risk, operational risk, and 
legal risk. Financial risk assessment is critical for 
investors, regulators, and corporate managers to 
identify potential challenges and mitigate their 
impacts.  

Financial risk is often associated with the 
risk of bankruptcy or insolvency of a business. 
Traditional methods of financial risk assessment 

often rely on expert judgment and statistical 
models. Experts can leverage their domain 
knowledge to identify potential risks, assess 
the impact of external factors, and interpret the 
results of statistical models. However, expert 
judgment can be subjective and prone to bias, 
particularly when dealing with complex financial 
scenarios. Numerous statistical models have been 
proposed, such as Z-score, S-score, O-score, 
X-score, H-score, B-score,…2-7 In Vietnam, 
researchers have tested the Z-score model in 
forecasting corporate failure8 and bankruptcy,9 
applied the B-score in analyzing factors 
influencing financial risk,10 compared various 
models in measuring financial distress,11… 
Statistical models are straightforward in design, 
offer strong explanatory power, and require 
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relatively short training time. These methods, 
however, rely on several rigid preconditions that 
frequently prove to be impractical in real-world 
situations. These preconditions include, for 
example, the existence of linear relationships, 
consistent variance across data, and variable 
independence. If these preconditions are not met, 
the effectiveness of these statistical approaches 
in prediction can be diminished.12

In recent years, machine learning (ML) 
has emerged as a powerful tool for overcoming 
the limitations of traditional methods. ML 
algorithms can automatically learn complex 
patterns from large datasets, without relying on 
strict assumptions. This makes them well-suited 
for financial risk assessment, where data is 
often noisy, incomplete, and high-dimensional. 
Algorithms such as support vector machine 
(SVM), decision tree, and artificial neural 
network are applied to enhance the efficiency 
of traditional methods in volatility forecasting, 
bankruptcy prediction, credit scoring,…13-16 
Ensemble learning and hybrid models have been 
widely studied in this field.17 Research suggests 
that random forest algorithms may surpass other 
single or hybrid classifiers.18-21

In this article, we will construct and 
compare the performance of several advanced 
machine learning models, such as SVM, neural 
networks, random forests, gradient boosting,…
in forecasting the financial risks of listed 
companies on the Vietnamese stock market. 
Additionally, we also assess the importance of 
features using LIME to identify the key factors 
influencing financial risk and propose solutions 
to mitigate these risks. 

2. METHODOLOGY

2.1. Data collection and preprocessing

In this study, we utilize data extracted from the 
financial statements of 200 companies listed 
on the HOSE (Ho Chi Minh Stock Exchange), 
HNX (Hanoi Stock Exchange), and UPCOM 
(Unlisted Public Company Market). The dataset 
covers the period from 2009 to 2023 and includes 
balance sheets, income statements, and cash 
flow statements. While some companies have 
incomplete data for the full 15-year period, each 
has at least 8 years of available records.

This study applies machine learning 
models to predict financial risk, specifically 
bankruptcy risk, formulated as a classification 
problem. To identify companies at risk, we utilize 
five widely recognized bankruptcy prediction 
models: the Altman Z-score, Springate S-score, 
Zmijewski X-score, Taffler Z-score, and Grover 
G-score (Table 1). In the Z-score and Taffler 
Z-score models, predictions may fall into a gray 
area indicating uncertainty. To improve recall for 
identifying at-risk cases and ensure consistency 
with other models, we classify observations in 
this gray area as at-risk (y = 1). As a result, the 
decision rules differ slightly from those in the 
original models. A company is labeled as 1 (at 
risk) if the majority of the five models classify 
it as being at risk, and -1 otherwise. Regarding 
independent variables, based on several 
studies, we use 34 financial ratios as inputs 
for the machine learning models, as presented 
in Table 2. These ratios reflect various aspects 
of the company, such as liquidity, profitability, 
efficiency, and leverage. 

Table 1. Bankruptcy prediction models for defining the target variable.

Model Formula Conclusion

Z-score (1968) Z = 1.2Z1 + 1.4Z2 + 3.3Z3+ 0.6Z4 + 1.0Z5
Z1 = Working capital / Total assets 
Z2 = Retained earnings / Total assets 
Z3 = EBIT / Total assets 
Z4 = Market value of equity / Total liabilities 
Z5 = Sales / Total assets

Z < 2.99: y = 1  
Z ≥ 2.99: y = _1 
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S-score (1978) S = 1.03S1 + 3.07S2 + 0.66S3 + 0.4S4
S1 = Working capital / Total assets
S2 = EBIT / Total assets
S3 = Profit before tax / Current liabilities
S4 = Sales / Total assets

S < 0.862: y = 1
S ≥ 0.862: y = _1

X-score (1984) X = -4.336 – 4.513X1 + 5.679X2 – 0.004X3
X1 = Net income / Total assets
X2 = Total liabilities / Total assets
X3 = Current assets / Current liabilites

X ≥ 0: y = 1 
X < 0: y = _1

Taffler Z-score 
(1983)

T = 3.20 + 12.18T1 + 2.50T2 – 10.68T3 + 0.029T4
T1 = Profit before tax / Current liabilities
T2 = Current assets / Total liabilities
T3 = Current liabilities / Total assets
T4 = No-credit interval

T ≤ 0.3: y = 1 
T > 0.3: y = _1

G-score (2001) G = 1.6505G1 + 3.404G2 – 0.016G3 + 0.057
G1 = Working capital / Total asssets
G2 = EBIT / Total assets
G3 = ROA 

G ≤ 0.01: y = 1 
G > 0.01: y = _1

Table 2. Financial ratios (features) for assessing financial risk.

Symbol Ratio name Symbol Ratio name

X1 Price-to-earnings ratio X18 EV-to-EBIT ratio

X2 Price-to-sale ratio X19 Price-to-operating- cash-flow ratio

X3 Price-to-book ratio X20 Debt ratio

X4 Earnings per share X21 Price-to-cash-flow ratio

X5 Return on equity X22 Book value per share

X6 Return on assets X23 Cash ratio

X7 Return on invested capital X24 Return on capital employed

X8 Operating margin X25 Return on sales

X9 Gross margin X26 Cash return on invested capital

X10 Net margin X27 Cash return on equity

X11 EBIT margin X28 Cash return on assets

X12 Current ratio X29 Free cash flow margin

X13 Quick ratio X30 Operating cash flow margin

X14 Debt-to-equity ratio X31 Total asset turnover ratio

X15 Operating cash flow ratio X32 Equity ratio

X16 EV-to-EBITDA ratio X33 Fixed asset turnover ratio

X17 EV-to-sales ratio X34 Receivables turnover ratio
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Table 3 presents the descriptive statistics 
of the independent variables used in this study. 
All attributes contain missing data. Some 
variables have negative values, even though 
they are theoretically not supposed to, indicating 
potential errors in the input data due to manual 
entry mistakes or measurement inaccuracies. In 
addition, several variables such as X1, X4, X16, 
and X21 exhibit standard deviations that are 
significantly higher than their means, suggesting 
considerable variation across observations. The 
large differences between the mean and median 
of certain variables (e.g., X1) indicate skewed 
distributions, while extremely high maximum 
values in variables such as X4 and X22 suggest 
the presence of outliers.

The dataset consists of 2774 observations, 
including 598 observations with y = 1 and 2176 
observations with y = _1. Before performing 
preprocessing steps, the data is split into training 
and testing sets at an 8:2 ratio to prevent data 
leakage. Data leakage in machine learning arises 
when a model, during its training phase, utilizes 
data that would not be accessible when making 
actual predictions. This form of leakage creates a 
deceptive appearance of model accuracy, which 
is only revealed to be false upon deployment. 
In practice, such models produce unreliable 
outcomes, resulting in flawed decision-making 
and misleading conclusions. The dataset is then 
cleaned by removing outliers and imputing 
missing values. 

Table 3. Descriptive statistics of independent variables.

Variable Count Mean
Standard 
deviation

Min Median Max

X1 2611 49.48 676.04 -21296.64 11.63 20255.87

X2 2605 18.82 396.28 -100.67 0.87 19022.45

X3 2611 1.58 1.91 -10.48 1.10 25.04

X4 2611 1952.95 3910.52 -9363.37 1104.73 144517.65

X5 2629 0.11 0.30 -7.50 0.09 5.23

X6 2629 0.05 0.08 -0.99 0.04 0.84

X7 2537 0.02 0.07 -2.80 0.01 0.45

X8 2745 0.31 9.84 -65.81 0.08 498.81

X9 2612 0.21 0.44 -12.04 0.18 3.18

X10 2612 0.21 6.82 -74.13 0.07 323.09

X11 2612 0.02 1.57 -69.81 0.08 10.30

X12 2633 2.69 7.71 0.06 1.42 136.47

X13 2633 1.75 7.39 0.01 0.80 136.21

X14 2633 1.81 5.53 -31.06 1.14 162.31

X15 2751 0.20 2.30 -62.15 0.11 162.31

X16 2611 -200.51 10827.27 -552344.73 8.71 8988.12

X17 2579 18.84 385.70 -2359.82 1.30 18252.28

X18 2594 -8.48 1708.51 -81777.76 11.56 15055.58

X19 2600 -36.90 1305.46 -59515.61 3.37 1860.59

X20 2769 0.51 0.22 0.00 0.53 1.29
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X21 2402 -45.62 3515.88 -78359.49 5.56 43561.17

X22 2575 16910.34 9113.65 -7688.75 14486.85 190111.03

X23 2769 0.57 4.19 0.00 0.16 133.47

X24 2764 0.10 0.20 -7.16 0.07 1.94

X25 2745 0.02 1.54 -69.81 0.03 10.30

X26 2751 -0.09 4.37 -229.29 -0.08 1.42

X27 2751 -0.02 1.13 -13.78 -0.17 49.92

X28 2751 -0.01 0.14 -1.13 -0.07 0.89

X29 2730 -0.39 21.07 -464.72 -0.16 907.89

X30 2730 0.08 23.12 -367.10 -0.03 1101.74

X31 2568 0.76 0.73 0.00 0.26 6.69

X32 2769 0.49 0.22 -0.29 0.32 0.99

X33 2564 31.16 664.32 -84.94 1.14 32540.83

X34 2568 7.70 20.43 -0.03 1.55 674.56

unexplained variance in ANOVA. This method 
is particularly useful when one variable is 
numerical and the other is categorical, such as 
numerical input features and a categorical target 
variable in classification tasks. The results of 
ANOVA can be applied in feature selection 
by identifying and removing features that are 
independent of the target variable, helping to 
refine the dataset for better model performance.

2.3. Machine learning models to predict 
financial risk

In this study, we implement and compare the 
effectiveness of statistical and machine learning 
models, including Logistic Regression (LR), 
Support Vector Machine (SVM), Random 
Forest (RF), Adaptive Boosting (AdaBoost), 
Gradient Boosting, and Multi-layer Perceptron 
(MLP). These models were selected based on 
their widespread application in classification 
problems, particularly in the context of financial 
risk assessment. Logistic Regression serves 
as a strong baseline due to its simplicity and 
interpretability. SVM is effective for high-
dimensional data. Ensemble models such 
as Random Forest, AdaBoost, and Gradient 
Boosting are known for their robustness and 
ability to handle complex feature interactions. 

Therefore, the dataset needs to be 
preprocessed through several steps: removing 
observations with excessive missing values, 
handling outliers using the IQR method, 
imputing the remaining missing values using the 
k-Nearest Neighbors technique with k = 5 , and 
standardizing the variables so that they have a 
mean of 0 and a standard deviation of 1.

2.2. Dimensionality reduction

Dimensionality reduction involves decreasing 
the number of features to enable efficient 
model development. It has two main methods: 
feature selection and feature extraction. Feature 
selection chooses the most important original 
features. Feature extraction makes new features 
by combining or changing the originals.

Here, we will use the feature selection to 
retain the original meaning of the variables in 
the dataset. Our data has numerical attributes, 
and the target variable is categorical, so we will 
use the ANOVA F-test technique.22 ANOVA, or 
“analysis of variance”, is a parametric test to 
check if means of two or more samples come 
from the same distribution. It's an F-test, a type 
of statistical test that compares variances, like 
variance across samples or explained versus 
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Meanwhile, MLP, a type of neural network, is 
included to explore the potential of deep learning 
in capturing nonlinear patterns in the data.

2.3.1. Logistic regression

Logistic regression is a widely used statistical 
method for binary outcome prediction.23 In this 
study, it is applied to determine financial risk 
status. The model produces an output Pn , which 
represents the probability of being at risk based 
on the input variables X. This probability is 
derived using Equation (1). 

       

Logistic regression often serves as 
a baseline in studies designed to measure 
the performance of alternative forecasting 
approaches. Its primary strength lies in the 
simplicity and clarity of its results, making 
them accessible and easy to interpret for most 
users. This high level of interpretability makes 
logistic regression a popular choice in practical 
applications, particularly within financial 
institutions.

The loss function for logistic regression 
algorithm which is called log-loss (cross-entropy 
loss), is represented as follows:

where N is the size of training set, C is the 
number of classes in the problem, yji is actual 
one-hot label of ith sample and aji is predicted 
probability for class j of ith sample. This loss 
function penalizes wrong classifications more 
heavily when the model is confident but incorrect, 
which makes it highly effective for probabilistic 
interpretation. As a convex function, log-loss 
ensures a single global minimum, enhancing 
the stability and convergence of gradient-based 
optimization methods. During training, as the 
model is updated over epochs, the loss typically 
decreases smoothly, especially when a suitable 
learning rate is chosen. The loss function's 
stability makes logistic regression robust against 
small fluctuations in the data loop and batch size.

2.3.2. Support Vector Machine

Support Vector Machine (SVM) is a robust 
machine learning algorithm designed for both 
classification and regression tasks.24 In this 
study, it is employed to classify data points into 
distinct categories based on input features X. 
The model constructs an optimal hyperplane that 
maximizes the margin between support vectors. 
The classification process will take place 
according to Equation (3): 

SVM is particularly effective in handling 
high-dimensional data and is often combined 
with kernel functions to address non-linear 
problems. Its main advantage lies in its ability 
to generalize well, even with limited data, 
making it a standard choice in applications like 
image classification, bioinformatics, and text 
categorization.

In the case of SVM algorithm, the loss 
function is shown as:

where N is the size of training set, yi is actual 
label of ith sample and wTxi + b is predicted 
value of ith sample. The hinge loss used in SVM 
is not differentiable at the margin boundary but 
remains convex, which guarantees the existence 
of a global minimum. Unlike probabilistic 
models, SVM does not output probabilities but 
focuses on maximizing the margin. This can lead 
to more stable generalization, especially when 
the dataset is not noisy. However, if the data is 
not linearly separable or if the margin is narrow, 
the loss may plateau early, requiring careful 
tuning of hyperparameters such as C (penalty 
term) to ensure effective convergence.

2.3.3. Random Forest

Random Forest is a highly effective ensemble 
algorithm frequently employed for both 
classification and regression. This method builds 
a collection of decision trees during training 
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probability for class   of  th sample. This loss 
function penalizes wrong classifications more 
heavily when the model is confident but 
incorrect, which makes it highly effective for 
probabilistic interpretation. As a convex 
function, log-loss ensures a single global 
minimum, enhancing the stability and 
convergence of gradient-based optimization 
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methods. During training, as the model is 
updated over epochs, the loss typically decreases 
smoothly, especially when a suitable learning 
rate is chosen. The loss function's stability 
makes logistic regression robust against small 
fluctuations in the data loop and batch size. 

2.3.2. Support Vector Machine 

Support Vector Machine (SVM) is a robust 
machine learning algorithm designed for both 
classification and regression tasks.24 In this 
study, it is employed to classify data points into 
distinct categories based on input features  . 
The model constructs an optimal hyperplane that 
maximizes the margin between support vectors. 
The classification process will take place 
according to Equation (3):  
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 SVM is particularly effective in handling 
high-dimensional data and is often combined 
with kernel functions to address non-linear 
problems. Its main advantage lies in its ability to 
generalize well, even with limited data, making 
it a standard choice in applications like image 
classification, bioinformatics, and text 
categorization. 

 In the case of SVM algorithm, the loss 
function is shown as: 
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label of  th sample and        is predicted 
value of  th sample. The hinge loss used in SVM 
is not differentiable at the margin boundary but 
remains convex, which guarantees the existence 
of a global minimum. Unlike probabilistic 
models, SVM does not output probabilities but 
focuses on maximizing the margin. This can 
lead to more stable generalization, especially 
when the dataset is not noisy. However, if the 
data is not linearly separable or if the margin is 
narrow, the loss may plateau early, requiring 
careful tuning of hyperparameters such as C 
(penalty term) to ensure effective convergence. 

2.3.3. Random Forest 

Random Forest is a highly effective ensemble 
algorithm frequently employed for both 
classification and regression. This method builds 
a collection of decision trees during training and 
then synthesizes their outputs to improve 
prediction accuracy and limit overfitting.25 Each 
tree is trained on a random subset of data, and 

only a random subset of features is considered 
for splitting at each node, enhancing diversity 
among the trees. The final prediction is made 
through majority voting (for classification) or 
averaging (for regression). Known for its 
robustness and ability to handle high-
dimensional, non-linear data, Random Forest is 
widely applied in areas like financial risk 
assessment, medical diagnosis, and image 
classification. 

 The loss function used by the Random 
Forest algorithm, known as ―Gini Impurity‖, is 
presented below: 
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the current node. Gini Impurity is used as a 
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rather than being minimized through a global 
loss function. Therefore, it does not operate over 
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rather than minimizing a differentiable loss. This 
results in lower variance and a reduction in 
overfitting, making it inherently stable during 
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Boosting constructs a model on training data, 
then creates another model to fix the first 
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errors diminish and data prediction is accurate. 
Boosting combines multiple weak models into a 
strong model for the final result. 

 AdaBoost works by initially assigning 
equal weights to all samples in the training 
dataset.26 The algorithm then iterates for a 
predefined number of iterations or until a 
stopping criterion is met. In each iteration, a 
weak classifier  ̂  (e.g., a one-level decision tree) 
is trained on the data. The weights of the 
samples are updated, giving higher weights to 
misclassified examples to focus more on them in 
subsequent iterations. The weak classifiers are 
evaluated based on their errors, with lower-error 
classifiers receiving higher weights. The sample 
weights are then normalized to sum up to 1. The 
final prediction is made by combining the 
predictions of all   weak classifiers using a 
weighted majority vote: 
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criterion for splitting nodes in decision trees, 
rather than being minimized through a global 
loss function. Therefore, it does not operate over 
epochs or follow a traditional gradient-based 
optimization loop. The model's stability derives 
from aggregating over many uncorrelated trees 
rather than minimizing a differentiable loss. This 
results in lower variance and a reduction in 
overfitting, making it inherently stable during 
training. 

2.3.4. Adaptive Boosting 

Boosting constructs a model on training data, 
then creates another model to fix the first 
model's errors. This technique is repeated until 
errors diminish and data prediction is accurate. 
Boosting combines multiple weak models into a 
strong model for the final result. 

 AdaBoost works by initially assigning 
equal weights to all samples in the training 
dataset.26 The algorithm then iterates for a 
predefined number of iterations or until a 
stopping criterion is met. In each iteration, a 
weak classifier  ̂  (e.g., a one-level decision tree) 
is trained on the data. The weights of the 
samples are updated, giving higher weights to 
misclassified examples to focus more on them in 
subsequent iterations. The weak classifiers are 
evaluated based on their errors, with lower-error 
classifiers receiving higher weights. The sample 
weights are then normalized to sum up to 1. The 
final prediction is made by combining the 
predictions of all   weak classifiers using a 
weighted majority vote: 
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and then synthesizes their outputs to improve 
prediction accuracy and limit overfitting.25 Each 
tree is trained on a random subset of data, and 
only a random subset of features is considered for 
splitting at each node, enhancing diversity among 
the trees. The final prediction is made through 
majority voting (for classification) or averaging 
(for regression). Known for its robustness and 
ability to handle high-dimensional, non-linear 
data, Random Forest is widely applied in areas 
like financial risk assessment, medical diagnosis, 
and image classification.

The loss function used by the Random 
Forest algorithm, known as “Gini Impurity”, is 
presented below:

where S is training set at the current node, C 
is the number of classes in the classification 
problem and pc is the probability of class c at 
the current node. Gini Impurity is used as a 
criterion for splitting nodes in decision trees, 
rather than being minimized through a global 
loss function. Therefore, it does not operate over 
epochs or follow a traditional gradient-based 
optimization loop. The model's stability derives 
from aggregating over many uncorrelated trees 
rather than minimizing a differentiable loss. 
This results in lower variance and a reduction 
in overfitting, making it inherently stable during 
training.

2.3.4. Adaptive Boosting

Boosting constructs a model on training data, 
then creates another model to fix the first 
model's errors. This technique is repeated until 
errors diminish and data prediction is accurate. 
Boosting combines multiple weak models into a 
strong model for the final result.

AdaBoost works by initially assigning 
equal weights to all samples in the training 
dataset.26 The algorithm then iterates for a 
predefined number of iterations or until a 
stopping criterion is met. In each iteration, a 
weak classifier fi (e.g., a one-level decision 

tree) is trained on the data. The weights of the 
samples are updated, giving higher weights to 
misclassified examples to focus more on them 
in subsequent iterations. The weak classifiers 
are evaluated based on their errors, with lower-
error classifiers receiving higher weights. The 
sample weights are then normalized to sum up 
to 1. The final prediction is made by combining 
the predictions of all p weak classifiers using a 
weighted majority vote:

This process repeats until the specified 
number of iterations is completed or the stopping 
criterion is satisfied.

In the following, the loss function for 
AdaBoost is illustrated.

where N  is the size of training set, p is the 
number of weak classifiers, yi is actual label of 
ith sample, αj is weight of jth weak classifier  
and fi(xi) is predicted value made by jth weak 
classifier for ith sample. The exponential loss 
in AdaBoost increases rapidly for misclassified 
samples, which causes the model to focus on 
hard-to-classify examples. While this often 
improves performance, it also introduces 
instability—particularly when the dataset 
contains noise or outliers, as the loss may 
disproportionately prioritize these instances. 
AdaBoost typically does not use epochs in the 
traditional sense but follows a fixed number of 
boosting rounds. During each iteration, the loss 
function drives reweighting of samples, and 
convergence depends heavily on the number of 
weak learners and their diversity.

2.3.5. Gradient Boosting

Gradient Boosting, a powerful boosting 
algorithm, creates strong learners by combining 
weak ones. It trains each new model to minimize 
the previous model's loss—like mean squared 
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where   is the size of training set,   is the 
number of weak classifiers,    is actual label of 
 th sample,    is weight of  th weak classifier  
and  ̂ (    is predicted value made by  th weak 
classifier for  th sample. The exponential loss in 
AdaBoost increases rapidly for misclassified 
samples, which causes the model to focus on 
hard-to-classify examples. While this often 
improves performance, it also introduces 
instability—particularly when the dataset 
contains noise or outliers, as the loss may 
disproportionately prioritize these instances. 
AdaBoost typically does not use epochs in the 
traditional sense but follows a fixed number of 
boosting rounds. During each iteration, the loss 
function drives reweighting of samples, and 
convergence depends heavily on the number of 
weak learners and their diversity. 

2.3.5. Gradient Boosting 

Gradient Boosting, a powerful boosting 
algorithm, creates strong learners by combining 
weak ones. It trains each new model to minimize 
the previous model's loss—like mean squared 
error or cross-entropy—using gradient descent. 
In each step, the algorithm calculates the loss 
function's gradient against the ensemble's 
predictions and trains a new weak model to 
reduce this gradient.27 The ensemble is built 
incrementally by adding predictions from each 
new model, a process that continues until a 
stopping point is reached. Different from 
AdaBoost which adjusts sample weights, 
Gradient Boosting focuses on training each new 
predictor to target the residual errors from the 
previous one, using these residuals as the 
learning objective. Gradient Boosted Trees, a 
well-known implementation, is based on CART 
(Classification and Regression Trees). 

 Gradient Boosting uses the same loss 
function as logistic regression (log-loss – (2)). In 
gradient boosting, the loss function not only 
guides the performance of each individual 
learner but also influences how residuals are 
calculated and targeted in subsequent rounds. 
Although log-loss provides stability due to its 
convex nature, gradient boosting can become 
unstable if learning rates are too high or if too 
many trees are added, leading to overfitting. 
Therefore, the number of boosting rounds, 
learning rate, and tree depth must be carefully 
balanced to maintain convergence and loss 
stability over iterations. 

2.3.6. Multi-layer Perceptron (MLP) 

Multi-layer Perceptron (MLP) is the most 
common neural network architecture, composed 
of input, hidden, and output layers.28 For each 
neuron in a hidden layer, the operation involves 
taking a weighted sum of its inputs. This sum is 
then subjected to a non-linear activation, 
examples of which include the Rectified Linear 
Unit (ReLU), Sigmoid, and Hyperbolic Tangent 
(Tanh). 

 During training, MLP utilizes a two-step 
learning process: forward propagation and 
backpropagation. In forward propagation, the 
output of a neuron is computed as follows: 

 (    (   (      (  (  
 (    ( (  ) (   

where  (   and  (   are the weight matrix and 
bias vector for layer  ,  (     is the input from 
the previous layer, and  (   is the activation 
function. The backpropagation algorithm then 
updates the network‘s weights by computing 
gradients of the loss function with respect to the 
weights using the chain rule. The gradient 
descent optimization technique, often with 
variations such as Stochastic Gradient Descent 
(SGD) or Adam, is applied to minimize the loss 
iteratively. 

 MLP is widely used in classification and 
regression tasks due to its ability to learn 
complex patterns in data. It serves as a 
foundation for more advanced deep learning 
models and is particularly effective in 
applications such as image recognition, speech 
processing, and time series prediction. 
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Therefore, the number of boosting rounds, 
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balanced to maintain convergence and loss 
stability over iterations. 

2.3.6. Multi-layer Perceptron (MLP) 

Multi-layer Perceptron (MLP) is the most 
common neural network architecture, composed 
of input, hidden, and output layers.28 For each 
neuron in a hidden layer, the operation involves 
taking a weighted sum of its inputs. This sum is 
then subjected to a non-linear activation, 
examples of which include the Rectified Linear 
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where  (   and  (   are the weight matrix and 
bias vector for layer  ,  (     is the input from 
the previous layer, and  (   is the activation 
function. The backpropagation algorithm then 
updates the network‘s weights by computing 
gradients of the loss function with respect to the 
weights using the chain rule. The gradient 
descent optimization technique, often with 
variations such as Stochastic Gradient Descent 
(SGD) or Adam, is applied to minimize the loss 
iteratively. 

 MLP is widely used in classification and 
regression tasks due to its ability to learn 
complex patterns in data. It serves as a 
foundation for more advanced deep learning 
models and is particularly effective in 
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error or cross-entropy—using gradient descent. 
In each step, the algorithm calculates the loss 
function's gradient against the ensemble's 
predictions and trains a new weak model to 
reduce this gradient.27 The ensemble is built 
incrementally by adding predictions from 
each new model, a process that continues until 
a stopping point is reached. Different from 
AdaBoost which adjusts sample weights, 
Gradient Boosting focuses on training each 
new predictor to target the residual errors from 
the previous one, using these residuals as the 
learning objective. Gradient Boosted Trees, a 
well-known implementation, is based on CART 
(Classification and Regression Trees).

Gradient Boosting uses the same loss 
function as logistic regression (log-loss – (2)). 
In gradient boosting, the loss function not only 
guides the performance of each individual learner 
but also influences how residuals are calculated 
and targeted in subsequent rounds. Although 
log-loss provides stability due to its convex 
nature, gradient boosting can become unstable if 
learning rates are too high or if too many trees 
are added, leading to overfitting. Therefore, the 
number of boosting rounds, learning rate, and 
tree depth must be carefully balanced to maintain 
convergence and loss stability over iterations.

2.3.6. Multi-layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is the most 
common neural network architecture, composed 
of input, hidden, and output layers.28 For each 
neuron in a hidden layer, the operation involves 
taking a weighted sum of its inputs. This sum 
is then subjected to a non-linear activation, 
examples of which include the Rectified Linear 
Unit (ReLU), Sigmoid, and Hyperbolic Tangent 
(Tanh).

During training, MLP utilizes a two-
step learning process: forward propagation and 
backpropagation. In forward propagation, the 
output of a neuron is computed as follows:

where W (l) and b(l) are the weight matrix and 
bias vector for layer l , x (l-1) is the input from the 
previous layer, and f (.) is the activation function. 
The backpropagation algorithm then updates 
the network’s weights by computing gradients 
of the loss function with respect to the weights 
using the chain rule. The gradient descent 
optimization technique, often with variations 
such as Stochastic Gradient Descent (SGD) or 
Adam, is applied to minimize the loss iteratively.
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where   is the size of training set,   is the 
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 th sample,    is weight of  th weak classifier  
and  ̂ (    is predicted value made by  th weak 
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function as logistic regression (log-loss – (2)). In 
gradient boosting, the loss function not only 
guides the performance of each individual 
learner but also influences how residuals are 
calculated and targeted in subsequent rounds. 
Although log-loss provides stability due to its 
convex nature, gradient boosting can become 
unstable if learning rates are too high or if too 
many trees are added, leading to overfitting. 
Therefore, the number of boosting rounds, 
learning rate, and tree depth must be carefully 
balanced to maintain convergence and loss 
stability over iterations. 

2.3.6. Multi-layer Perceptron (MLP) 

Multi-layer Perceptron (MLP) is the most 
common neural network architecture, composed 
of input, hidden, and output layers.28 For each 
neuron in a hidden layer, the operation involves 
taking a weighted sum of its inputs. This sum is 
then subjected to a non-linear activation, 
examples of which include the Rectified Linear 
Unit (ReLU), Sigmoid, and Hyperbolic Tangent 
(Tanh). 

 During training, MLP utilizes a two-step 
learning process: forward propagation and 
backpropagation. In forward propagation, the 
output of a neuron is computed as follows: 

 (    (   (      (  (  
 (    ( (  ) (   

where  (   and  (   are the weight matrix and 
bias vector for layer  ,  (     is the input from 
the previous layer, and  (   is the activation 
function. The backpropagation algorithm then 
updates the network‘s weights by computing 
gradients of the loss function with respect to the 
weights using the chain rule. The gradient 
descent optimization technique, often with 
variations such as Stochastic Gradient Descent 
(SGD) or Adam, is applied to minimize the loss 
iteratively. 

 MLP is widely used in classification and 
regression tasks due to its ability to learn 
complex patterns in data. It serves as a 
foundation for more advanced deep learning 
models and is particularly effective in 
applications such as image recognition, speech 
processing, and time series prediction. 

Figure 1. F-statistics of 34 features in descending order.
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MLP is widely used in classification 
and regression tasks due to its ability to learn 
complex patterns in data. It serves as a foundation 
for more advanced deep learning models and 
is particularly effective in applications such as 
image recognition, speech processing, and time 
series prediction.

In the same manner as logistic regression, 
MLP makes use of log-loss (2) as its loss 
function. Although MLP uses the same loss 
function, training stability can be affected 
by several factors such as learning rate, 
weight initialization, and batch size. Log-loss 
contributes to smooth gradient signals during 
backpropagation, especially when combined 
with softmax activation in the output layer. 
However, as the network depth increases, loss 
landscapes may become non-convex, leading 
to potential local minima or saddle points. 
Techniques such as learning rate decay, batch 
normalization, and early stopping are often 
employed to stabilize training and ensure the 
loss consistently decreases across epochs.

2.4. Local Interpretable Model-agnostic 
Explanations (LIME)

Local Interpretable Model-agnostic Explanations 
(LIME) is an algorithmic approach designed 
to elucidate the predictions of any classifier or 
regressor. It achieves this by creating a locally 
faithful approximation using an interpretable 
model.29

Often classified as a “surrogate model” 
approach, the LIME explainability model is 
constructed through a step-by-step procedure. 
First, to generate a substitute dataset, the LIME 
algorithm subtly alters the feature values of the 
original dataset – the very data that trained the 
black-box model. Next, these newly created 
samples are assigned weights that reflect their 
similarity to the particular instance under 
explanation. Lastly, an inherently understandable 
model, like a decision tree or logistic regression, 
is employed as a surrogate machine learning 
model and trained on this weighted, artificially 

created dataset. The learned model should be 
a good approximation of the machine learning 
model predictions locally, but it does not have 
to be a good global approximation. This kind 
of accuracy is also called local fidelity. The 
explanation produced by LIME is obtained by 
the following:

LIME explains instance x with a model 
g (like linear regression) that minimizes a loss    
    (e.g., mean squared error). Loss     measures 
how well g mimics the original model f (e.g., 
AdaBoost) predictions, while keeping g simple 
(low (Ω(g)). G is the set of possible g models, 
for example, all linear regressions. πx defines the 
neighborhood size around x used for explanation.

3. RESULTS AND DISCUSSION

3.1. Dimensionality reduction and 
multicollinearity check

Figure 1 shows the descending F-statistics of 34 
features obtained through ANOVA. X14 (debt-
to-equity ratio) appears to be the most relevant, 
and 16 out of 34 features have significantly 
higher scores compared to the rest. We will retain 
these top 16 features and remove the other 18. 

Before feeding these 16 features into the 
models, we calculated the Variance Inflation 
Factor (VIF), which indicates the presence of 
multicollinearity in the model. A VIF value 
below 10 is considered acceptable. Table 4 
shows that there is no multicollinearity, as all 16 
selected features have VIF values below 10.

Table 4. VIF values of the selected features.

Feature VIF Feature VIF
X4 9.21 X13 3.06
X5 6.57 X14 4.04
X6 9.45 X20 9.33
X8 8.09 X22 2.13
X9 2.65 X23 1.73
X10 8.74 X24 4.17
X11 6.34 X25 6.34
X12 3.16 X32 9.15
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 3.2. Performance of machine learning models

When training a machine learning model, we 
fit the model's parameters. However, before 
the model begins learning, certain parameters 
are pre-set—these are called hyperparameters. 
We can improve the model's performance 
by tuning these hyperparameters. There are 
several hyperparameter tuning methods, such 
as grid search, random search, and Bayesian 
optimization. Among them, grid search is widely 
used. Grid search works by building a grid of all 
hyperparameter settings. Then, it trains and tests 
the model with each setting and picks the best 

one. This complete search of hyperparameters 
makes sure every option is checked. Moreover, 
grid search is typically used with cross-
validation, specifically k-fold cross-validation. 
Here, the training set is divided into k parts. In 
each iteration, k _ 1 parts are used to train the 
model, while the remaining part is used for 
validation. The best set of hyperparameters is the 
one that yields the highest average performance. 
Finally, the models with the optimal set of 
hyperparameters are tested on the test set using 
various metrics. Table 5 presents the hyper-
parameter settings and the evaluation of the 
models on different metric.

Table 5. Performance of the models on test set.

Models Hyperparameter settings Accuracy Precision Recall F1 Score AUC

Logistic 
Regression

C=1, max_iter=300, penalty=‘1’, 
solver= ‘saga’

0.9331 0.8861 0.8952 0.8901 0.9693

SVM
C=1, degree=2, gamma=‘scale’, 

kernel=‘rbf’
0.8642 0.7799 0.8729 0.8097 0.9534

Random 
Forest

bootstrap=False, max_depth=10,  
max_features=‘sqrt’, min_samples_

split=20, n_estimators=100
0.9484 0.9133 0.9166 0.9149 0.9836

AdaBoost learning_rate=1, n_estimators=500 0.9331 0.8904 0.8873 0.8888 0.9780

Gradient 
Boosting

learning_rate=0.5, loss=‘log_loss’, 
max_depth=7, max_features=‘sqrt’, 

min_samples_split=20,  
n_estimators=100

0.9579 0.9276 0.9344 0.9309 0.9870

MLP
activation=‘relu’, alpha=0.01,  

hidden_layer_sizes=(100,),  
learning_rate=‘adaptive’, solver=‘adam’

0.9312 0.8785 0.9020 0.8896 0.9788

Gradient Boosting achieved the best 
performance across all metrics, indicating 
high predictive accuracy and a good balance 
between precision and recall. Random Forest 
ranked second with high accuracy and AUC, 
demonstrating strong and consistent classification 
ability. MLP also showed good results across all 
metrics, particularly in AUC.

AdaBoost and Logistic Regression 
had similar performance with accuracy but 
showed lower precision and recall compared 
to Gradient Boosting and Random Forest. 
SVM had the lowest performance across all 

metrics, particularly in precision and F1 score, 
indicating difficulties in accurate classification 
and balancing precision and recall.

Gradient Boosting performs best in this 
financial risk prediction task due to several key 
advantages. First, Gradient Boosting effectively 
captures complex, non-linear relationships and 
interactions among financial ratios, which are 
common in real-world financial data. Second, 
it automatically emphasizes important features 
while minimizing the impact of irrelevant or 
noisy ones, which is crucial given the large 
number of input variables. Third, it handles 
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class imbalance effectively, which is particularly 
relevant in our dataset where the class y = _1  
accounts for nearly 80% of the observations. 
The model can be adapted using customized 
loss functions or sample weighting strategies to 
better learn the characteristics of the minority 
class and improve predictive performance for 
underrepresented cases.

3.3. Interpretations of results

We used LIME to interpret the two best-
performing models: Gradient Boosting and 
Random Forest. A random instance from the test 
set was selected to generate a local explanation 
for this specific instance (Figure 2, 3).

Figure 2. A local explaination of Gradient Boosting.

Figure 3. A local explaination of Random Forest.

The chosen instance has a true label of  
y = _1, indicating no risk. Both models identified 
features X12 and X24 as the most influential. 
Specifically, X12 contributes to the model's 
prediction of y = _1, as indicated by its negative 
weight (shown in red), whereas X24 supports the 
prediction of the opposite class with a positive 

weight (shown in green). For Gradient Boosting, 
the impact of features decreases noticeably from 
top to bottom, highlighting the model’s tendency 
to focus on the most important features. In 
contrast, Random Forest distributes influence 
more evenly across features, reflecting its 
nature of aggregating predictions from multiple 
independent decision trees. 

Local explanations are valuable for 
understanding the reasoning behind individual 
predictions. However, analyzing a single instance 
does not provide a comprehensive understanding 
of the model's overall behavior. To gain deeper 
insights into the model's decision-making 
process, we can aggregate local explanations 
across multiple predictions. Specifically, by 
combining the LIME weights of numerous 
instances and visualizing them through various 
types of charts, we can better capture the model's 
general patterns and feature importance.

The first aggregation can help us 
understand which of the features are most 
important. Features with either high positive 
or negative LIME weights had a larger impact 
on a prediction. For each feature, we take the 
absolute mean of all the LIME weights. Features 
with large mean weights have, in general, made 
large contributions to the predictions. Figure 4 
and Figure 5 shows the average weights of the 
features in the two models. It can be observed 
that the important features are relatively similar 
across both models. These features are the 
current ratio (X12), return on assets (X6), debt 
ratio (X20), and debt-to-equity ratio (X14).

Figure 4. Absolute mean of LIME weights of features 
in Gradient Boosting.

Figure 6. Feature trends for the four most important features.
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weight (shown in green). For Gradient Boosting, 
the impact of features decreases noticeably from 
top to bottom, highlighting the model’s tendency 
to focus on the most important features. In 
contrast, Random Forest distributes influence 
more evenly across features, reflecting its 
nature of aggregating predictions from multiple 
independent decision trees. 

Local explanations are valuable for 
understanding the reasoning behind individual 
predictions. However, analyzing a single instance 
does not provide a comprehensive understanding 
of the model's overall behavior. To gain deeper 
insights into the model's decision-making 
process, we can aggregate local explanations 
across multiple predictions. Specifically, by 
combining the LIME weights of numerous 
instances and visualizing them through various 
types of charts, we can better capture the model's 
general patterns and feature importance.

The first aggregation can help us 
understand which of the features are most 
important. Features with either high positive 
or negative LIME weights had a larger impact 
on a prediction. For each feature, we take the 
absolute mean of all the LIME weights. Features 
with large mean weights have, in general, made 
large contributions to the predictions. Figure 4 
and Figure 5 shows the average weights of the 
features in the two models. It can be observed 
that the important features are relatively similar 
across both models. These features are the 
current ratio (X12), return on assets (X6), debt 
ratio (X20), and debt-to-equity ratio (X14).

Figure 4. Absolute mean of LIME weights of features 
in Gradient Boosting.

Figure 6. Feature trends for the four most important features.

Figure 5. Absolute mean of LIME weights of features 
in Random Forest.

Next, we analyze how the values of key 
features affect the model’s predictions by plotting 
their corresponding LIME weights (Figure 6). A 
higher LIME weight suggests that the feature 
contributes more strongly to predicting a case as 
“At risk” (y = 1). Figure 6 illustrates that as the 
values of X12 and X6 rise, their LIME weights 
shift from positive to negative. X12, representing 
the current ratio, assesses a company's short-term 
liquidity. A low current ratio suggests potential 
liquidity problems, which increase financial risk 
and result in a positive LIME weight. In contrast, 
a high current ratio indicates a stronger ability 
to meet debt obligations, reducing financial 
risk and producing a negative LIME weight. 
This negative weight decreases the probability 
of being classified as risky (y = 1). Meanwhile, 
X6, which measures return on assets (ROA), 
reflects how efficiently a company generates 

profit from its assets. A low ROA indicates weak 
profitability and higher financial risk, leading 
to a positive LIME weight. Conversely, a high 
ROA signifies effective asset management and 
lower risk, resulting in a negative LIME weight.

On the other hand, the LIME weights 
for X20 and X14 increase as their values grow. 
X20, the debt ratio, indicates the proportion of 
a company’s assets financed through debt. A 
high debt ratio suggests significant reliance on 
borrowed funds, which raises financial leverage 
and risk due to fixed interest obligations. 
Similarly, X14, the debt-to-equity ratio, compares 
total debt to shareholders' equity. A high value 
for X14 indicates a greater dependence on 
debt compared to equity, leading to increased 
financial burden and risk.

4. CONCLUSIONS

In this study, we developed and compared 
advanced machine learning models to predict 
the financial risk of companies listed on the 
Vietnamese stock market. Based on financial 
ratios, various models were constructed, 
hyperparameters were optimized, and 
evaluations were conducted using different 
metrics. The two best-performing models 
were Gradient Boosting and Random Forest, 
achieving over 94% accuracy and more than 
91% recall. This demonstrates the superiority of 
ensemble learning methods over single models. 
Furthermore, the LIME method was utilized to 

Figure 6. Feature trends for the four most important features.
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explain the models' predictions and the influence 
of different features on their decisions. The 
results indicate that to reduce financial risk, 
businesses should improve their current ratio 
(X12) by efficiently managing inventory and 
accelerating receivables collection, thereby 
reducing the likelihood of liquidity issues. 
Additionally, enhancing return on assets (ROA 
- X6) through optimized production processes 
can lower financial risk. Companies should also 
closely monitor the debt ratio (X20) and debt-
to-equity ratio (X14) by avoiding excessive 
borrowing and increasing equity financing to 
reduce interest burdens. Moreover, diversifying 
funding sources by balancing debt and equity 
financing will optimize the capital structure and 
minimize financial risk in the long term. The 
findings of this study provide a foundation for 
businesses to manage risks more effectively, 
make safer business decisions, and optimize 
their strategies. 
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