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TOM TAT

Quan 1y rui ro tai chinh 14 diéu can thiét dbi v6i cac doanh nghiép vi né gitip ngin ngira ton that va téi da
hoéa lgi nhuan. Do qua trinh nay phu thudc nhiéu vao viéc ra quyét dinh dya trén dir liéu, hoc may mang lai tiém
nang phat trién cac phuong phap va cong nghé sang tao. Trong bai bao nay, chiing ti so sanh kha ning du doan
ctia cac md hinh hoc may khac nhau va sir dung phuong phap LIME dé dién giai cach chung dua ra quyét dinh.
Dit liéu dugc thu thap tir bao cdo tai chinh ciia cac cong ty niém yét tir nim 2009 dén nam 2023. Két qua cho thay
Gradient Boosting va Random Forest dat hi¢u suét t8t nhat. Thém vao do, trong $6 LIME chi ra réng cac yéu td
anh huong nhiéu nhét dén dy doan ciia cac mo hinh 14 ty 1¢ thanh khoan hién hanh, ty suét loi nhuén trén tai san,
ty 18 no va ty 18 ng trén von chu sé hiru.
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ABSTRACT

Financial risk management is essential for businesses as it helps prevent losses and maximize profits. Since

this process depends heavily on data-driven decision-making, machine learning offers a promising avenue for

developing innovative methods and technologies. In this paper, we compare the predictive capabilities of various

machine learning models and use the LIME method to interpret how they make decisions. Data was collected

from the financial statements of listed companies from 2009 to 2023. The results show that Gradient Boosting

and Random Forest achieved the best performance. Additionally, LIME weights indicate that the most influential

factors affecting the models' predictions are the current ratio, return on assets, debt ratio, and debt-to-equity ratio.

Keywords: Financial risk, listed companies, machine learning models, LIME method.

1. INTRODUCTION

Financial risk arises when there is a chance that
an event will cause a company to underperform
relative to its planned financial targets or
established metrics.'! Examples of such financial
metrics or values encompass earnings per share,
return on equity, and cash flows. Financial risks
encompass categories such as market risk, credit
risk, market liquidity risk, operational risk, and
legal risk. Financial risk assessment is critical for
investors, regulators, and corporate managers to
identify potential challenges and mitigate their
impacts.

Financial risk is often associated with the
risk of bankruptcy or insolvency of a business.
Traditional methods of financial risk assessment
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often rely on expert judgment and statistical
models. Experts can leverage their domain
knowledge to identify potential risks, assess
the impact of external factors, and interpret the
results of statistical models. However, expert
judgment can be subjective and prone to bias,
particularly when dealing with complex financial
scenarios. Numerous statistical models have been
proposed, such as Z-score, S-score, O-score,
X-score, H-score, B-score,...”” In Vietnam,
researchers have tested the Z-score model in
forecasting corporate failure® and bankruptcy,’
applied the B-score in analyzing factors
influencing financial risk,'® compared various
models in measuring financial distress,!!...
Statistical models are straightforward in design,
offer strong explanatory power, and require
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relatively short training time. These methods,
however, rely on several rigid preconditions that
frequently prove to be impractical in real-world
situations. These preconditions include, for
example, the existence of linear relationships,
consistent variance across data, and variable
independence. If these preconditions are not met,
the effectiveness of these statistical approaches
in prediction can be diminished.'?

In recent years, machine learning (ML)
has emerged as a powerful tool for overcoming
the limitations of traditional methods. ML
algorithms can automatically learn complex
patterns from large datasets, without relying on
strict assumptions. This makes them well-suited
for financial risk assessment, where data is
often noisy, incomplete, and high-dimensional.
Algorithms such as support vector machine
(SVM), decision tree, and artificial neural
network are applied to enhance the efficiency
of traditional methods in volatility forecasting,
bankruptcy prediction, credit scoring,...!>!6
Ensemble learning and hybrid models have been
widely studied in this field.!” Research suggests
that random forest algorithms may surpass other
single or hybrid classifiers.'®!

In this article, we will construct and
compare the performance of several advanced
machine learning models, such as SVM, neural
networks, random forests, gradient boosting,...
in forecasting the financial risks of listed
companies on the Vietnamese stock market.
Additionally, we also assess the importance of
features using LIME to identify the key factors
influencing financial risk and propose solutions
to mitigate these risks.

2. METHODOLOGY
2.1. Data collection and preprocessing

In this study, we utilize data extracted from the
financial statements of 200 companies listed
on the HOSE (Ho Chi Minh Stock Exchange),
HNX (Hanoi Stock Exchange), and UPCOM
(Unlisted Public Company Market). The dataset
covers the period from 2009 to 2023 and includes
balance sheets, income statements, and cash
flow statements. While some companies have
incomplete data for the full 15-year period, each
has at least 8§ years of available records.

This study applies machine learning
models to predict financial risk, specifically
bankruptcy risk, formulated as a classification
problem. To identify companies at risk, we utilize
five widely recognized bankruptcy prediction
models: the Altman Z-score, Springate S-score,
Zmijewski X-score, Taffler Z-score, and Grover
G-score (Table 1). In the Z-score and Taffler
Z-score models, predictions may fall into a gray
area indicating uncertainty. To improve recall for
identifying at-risk cases and ensure consistency
with other models, we classify observations in
this gray area as at-risk (y = 1). As a result, the
decision rules differ slightly from those in the
original models. A company is labeled as 1 (at
risk) if the majority of the five models classify
it as being at risk, and -1 otherwise. Regarding
independent variables, based on several
studies, we use 34 financial ratios as inputs
for the machine learning models, as presented
in Table 2. These ratios reflect various aspects
of the company, such as liquidity, profitability,
efficiency, and leverage.

Table 1. Bankruptcy prediction models for defining the target variable.

Z3 = EBIT / Total assets

Z5 = Sales / Total assets

Model Formula Conclusion
Z-score (1968) | Z=1.2Z1+1.422 +3.3Z3+ 0.6Z4 + 1.0Z5 7<299:y=1
Z1 = Working capital / Total assets 7>299:y=-1

Z2 = Retained earnings / Total assets

Z4 = Market value of equity / Total liabilities
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S-score (1978) S =1.03S1 +3.07S2 + 0.66S3 + 0.4S4 S<0.862:y=1
S1 = Working capital / Total assets S>0.862: y=-1
S2 = EBIT / Total assets

S3 = Profit before tax / Current liabilities
S4 = Sales / Total assets

X-score (1984) | X =-4.336—-4.513X1 +5.679X2 — 0.004X3 X>0:y=1
X1 = Net income / Total assets X<0:y=-1
X2 = Total liabilities / Total assets

X3 = Current assets / Current liabilites

Taffler Z-score | T=3.20+ 12.18T1 +2.50T2 — 10.68T3 + 0.029T4 T<03:y=1
(1983) T1 = Profit before tax / Current liabilities T>03:y=-1
T2 = Current assets / Total liabilities
T3 = Current liabilities / Total assets
T4 = No-credit interval

G-score (2001) | G =1.6505G1 +3.404G2 - 0.016G3 + 0.057 G<0.0L:y=1
G1 = Working capital / Total asssets G>0.0l:y=-1
G2 = EBIT / Total assets
G3 =ROA

Table 2. Financial ratios (features) for assessing financial risk.

Symbol Ratio name Symbol Ratio name

X1 Price-to-earnings ratio X18 EV-to-EBIT ratio

X2 Price-to-sale ratio X19 Price-to-operating- cash-flow ratio
X3 Price-to-book ratio X20 Debt ratio

X4 Earnings per share X21 Price-to-cash-flow ratio

X5 Return on equity X22 Book value per share

X6 Return on assets X23 Cash ratio

X7 Return on invested capital X24 Return on capital employed
X8 Operating margin X25 Return on sales

X9 Gross margin X26 Cash return on invested capital
X10 Net margin X27 Cash return on equity

X11 EBIT margin X28 Cash return on assets

X12 Current ratio X29 Free cash flow margin

X13 Quick ratio X30 Operating cash flow margin
X14 Debt-to-equity ratio X31 Total asset turnover ratio

X15 Operating cash flow ratio X32 Equity ratio

X16 EV-to-EBITDA ratio X33 Fixed asset turnover ratio

X17 EV-to-sales ratio X34 Receivables turnover ratio

https://doi.org/10.52111/qn;js.2025.19401
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The dataset consists of 2774 observations,
including 598 observations with y = 1 and 2176
observations with y = —1. Before performing
preprocessing steps, the data is split into training
and testing sets at an 8:2 ratio to prevent data
leakage. Data leakage in machine learning arises
when a model, during its training phase, utilizes
data that would not be accessible when making
actual predictions. This form of leakage creates a
deceptive appearance of model accuracy, which
is only revealed to be false upon deployment.
In practice, such models produce unreliable
outcomes, resulting in flawed decision-making
and misleading conclusions. The dataset is then
cleaned by removing outliers and imputing
missing values.

Table 3. Descriptive statistics of independent variables.

Table 3 presents the descriptive statistics
of the independent variables used in this study.
All attributes contain missing data. Some
variables have negative values, even though
they are theoretically not supposed to, indicating
potential errors in the input data due to manual
entry mistakes or measurement inaccuracies. In
addition, several variables such as X1, X4, X16,
and X21 exhibit standard deviations that are
significantly higher than their means, suggesting
considerable variation across observations. The
large differences between the mean and median
of certain variables (e.g., X1) indicate skewed
distributions, while extremely high maximum
values in variables such as X4 and X22 suggest
the presence of outliers.

Variable Count Mean Standard Min Median Max
deviation

X1 2611 49.48 676.04 -21296.64 11.63 20255.87
X2 2605 18.82 396.28 -100.67 0.87 19022.45
X3 2611 1.58 1.91 -10.48 1.10 25.04
X4 2611 1952.95 3910.52 -9363.37 1104.73 144517.65
X5 2629 0.11 0.30 -7.50 0.09 5.23
X6 2629 0.05 0.08 -0.99 0.04 0.84
X7 2537 0.02 0.07 -2.80 0.01 0.45
X8 2745 0.31 9.84 -65.81 0.08 498.81
X9 2612 0.21 0.44 -12.04 0.18 3.18
X10 2612 0.21 6.82 -74.13 0.07 323.09
X11 2612 0.02 1.57 -69.81 0.08 10.30
X12 2633 2.69 7.71 0.06 1.42 136.47
X13 2633 1.75 7.39 0.01 0.80 136.21
X14 2633 1.81 5.53 -31.06 1.14 162.31
X15 2751 0.20 2.30 -62.15 0.11 162.31
X16 2611 -200.51 10827.27 -552344.73 8.71 8988.12
X17 2579 18.84 385.70 -2359.82 1.30 18252.28
X18 2594 -8.48 1708.51 -81777.76 11.56 15055.58
X19 2600 -36.90 1305.46 -59515.61 3.37 1860.59
X20 2769 0.51 0.22 0.00 0.53 1.29
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X21 2402 -45.62 3515.88 -78359.49 5.56 43561.17
X22 2575 16910.34 9113.65 -7688.75 14486.85 190111.03
X23 2769 0.57 4.19 0.00 0.16 133.47
X24 2764 0.10 0.20 -7.16 0.07 1.94
X25 2745 0.02 1.54 -69.81 0.03 10.30
X26 2751 -0.09 4.37 -229.29 -0.08 1.42
X217 2751 -0.02 1.13 -13.78 -0.17 49.92
X28 2751 -0.01 0.14 -1.13 -0.07 0.89
X29 2730 -0.39 21.07 -464.72 -0.16 907.89
X30 2730 0.08 23.12 -367.10 -0.03 1101.74
X31 2568 0.76 0.73 0.00 0.26 6.69
X32 2769 0.49 0.22 -0.29 0.32 0.99
X33 2564 31.16 664.32 -84.94 1.14 32540.83
X34 2568 7.70 20.43 -0.03 1.55 674.56

Therefore, the dataset needs to be
preprocessed through several steps: removing
observations with excessive missing values,
handling outliers using the IQR method,
imputing the remaining missing values using the
k-Nearest Neighbors technique with k=5, and
standardizing the variables so that they have a
mean of 0 and a standard deviation of 1.

2.2. Dimensionality reduction

Dimensionality reduction involves decreasing
the number of features to enable efficient
model development. It has two main methods:
feature selection and feature extraction. Feature
selection chooses the most important original
features. Feature extraction makes new features
by combining or changing the originals.

Here, we will use the feature selection to
retain the original meaning of the variables in
the dataset. Our data has numerical attributes,
and the target variable is categorical, so we will
use the ANOVA F-test technique.”> ANOVA, or
“analysis of variance”, is a parametric test to
check if means of two or more samples come
from the same distribution. It's an F-test, a type
of statistical test that compares variances, like
variance across samples or explained versus

https://doi.org/10.52111/qn;js.2025.19401

unexplained variance in ANOVA. This method
is particularly useful when one variable is
numerical and the other is categorical, such as
numerical input features and a categorical target
variable in classification tasks. The results of
ANOVA can be applied in feature selection
by identifying and removing features that are
independent of the target variable, helping to
refine the dataset for better model performance.

2.3. Machine learning models to predict
financial risk

In this study, we implement and compare the
effectiveness of statistical and machine learning
models, including Logistic Regression (LR),
Support Vector Machine (SVM), Random
Forest (RF), Adaptive Boosting (AdaBoost),
Gradient Boosting, and Multi-layer Perceptron
(MLP). These models were selected based on
their widespread application in classification
problems, particularly in the context of financial
risk assessment. Logistic Regression serves
as a strong baseline due to its simplicity and
interpretability. SVM is effective for high-
dimensional data. Ensemble models such
as Random Forest, AdaBoost, and Gradient
Boosting are known for their robustness and
ability to handle complex feature interactions.
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Meanwhile, MLP, a type of neural network, is
included to explore the potential of deep learning
in capturing nonlinear patterns in the data.

2.3.1. Logistic regression

Logistic regression is a widely used statistical
method for binary outcome prediction.” In this
study, it is applied to determine financial risk
status. The model produces an output P, , which
represents the probability of being at risk based
on the input variables X. This probability is
derived using Equation (1).

1
1+e—(BotB1X1++ByXy) @

Ry =1|X) =

Logistic regression often serves as
a baseline in studies designed to measure
the performance of alternative forecasting
approaches. Its primary strength lies in the
simplicity and clarity of its results, making
them accessible and easy to interpret for most
users. This high level of interpretability makes
logistic regression a popular choice in practical
applications, particularly ~within financial
institutions.

The loss function for logistic regression
algorithm which is called log-loss (cross-entropy
loss), is represented as follows:

1 c
L= N Zyji log(a;;) (2)
i=1j=1
where N is the size of training set, C is the
number of classes in the problem, y;; is actual
one-hot label of ith sample and a;; is predicted
probability for class j of ith sample. This loss
function penalizes wrong classifications more
heavily when the model is confident but incorrect,
which makes it highly effective for probabilistic
interpretation. As a convex function, log-loss
ensures a single global minimum, enhancing
the stability and convergence of gradient-based
optimization methods. During training, as the
model is updated over epochs, the loss typically
decreases smoothly, especially when a suitable
learning rate is chosen. The loss function's
stability makes logistic regression robust against
small fluctuations in the data loop and batch size.

2.3.2. Support Vector Machine

Support Vector Machine (SVM) is a robust
machine learning algorithm designed for both
classification and regression tasks.?* In this
study, it is employed to classify data points into
distinct categories based on input features X.
The model constructs an optimal hyperplane that
maximizes the margin between support vectors.
The classification process will take place
according to Equation (3):

y = sign(w'x+ b) (3)

SVM is particularly effective in handling
high-dimensional data and is often combined
with kernel functions to address non-linear
problems. Its main advantage lies in its ability
to generalize well, even with limited data,
making it a standard choice in applications like
image classification, bioinformatics, and text
categorization.

In the case of SVM algorithm, the loss
function is shown as:

N
L= max(0,1 —y;(w'x; + b)) (4)
2

where N is the size of training set, y; is actual
label of ith sample and w’x; + b is predicted
value of ith sample. The hinge loss used in SVM
is not differentiable at the margin boundary but
remains convex, which guarantees the existence
of a global minimum. Unlike probabilistic
models, SVM does not output probabilities but
focuses on maximizing the margin. This can lead
to more stable generalization, especially when
the dataset is not noisy. However, if the data is
not linearly separable or if the margin is narrow,
the loss may plateau early, requiring careful
tuning of hyperparameters such as C (penalty
term) to ensure effective convergence.

2.3.3. Random Forest

Random Forest is a highly effective ensemble
algorithm frequently employed for both
classification and regression. This method builds
a collection of decision trees during training

https://doi.org/10.52111/qnjs.2025.19401
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and then synthesizes their outputs to improve
prediction accuracy and limit overfitting.”> Each
tree is trained on a random subset of data, and
only arandom subset of features is considered for
splitting at each node, enhancing diversity among
the trees. The final prediction is made through
majority voting (for classification) or averaging
(for regression). Known for its robustness and
ability to handle high-dimensional, non-linear
data, Random Forest is widely applied in areas
like financial risk assessment, medical diagnosis,
and image classification.

The loss function used by the Random
Forest algorithm, known as “Gini Impurity”, is
presented below:

C
Gini(S)=1- ) p2 (5

where S is training set at the current node, C
is the number of classes in the classification
problem and p,. is the probability of class c at
the current node. Gini Impurity is used as a
criterion for splitting nodes in decision trees,
rather than being minimized through a global
loss function. Therefore, it does not operate over
epochs or follow a traditional gradient-based
optimization loop. The model's stability derives
from aggregating over many uncorrelated trees
rather than minimizing a differentiable loss.
This results in lower variance and a reduction
in overfitting, making it inherently stable during
training.

2.3.4. Adaptive Boosting

Boosting constructs a model on training data,
then creates another model to fix the first
model's errors. This technique is repeated until
errors diminish and data prediction is accurate.
Boosting combines multiple weak models into a
strong model for the final result.

AdaBoost works by initially assigning
equal weights to all samples in the training
dataset.® The algorithm then iterates for a
predefined number of iterations or until a
stopping criterion is met. In each iteration, a
weak classifier f; (e.g., a one-level decision

https://doi.org/10.52111/qn;js.2025.19401

tree) is trained on the data. The weights of the
samples are updated, giving higher weights to
misclassified examples to focus more on them
in subsequent iterations. The weak classifiers
are evaluated based on their errors, with lower-
error classifiers receiving higher weights. The
sample weights are then normalized to sum up
to 1. The final prediction is made by combining
the predictions of all p weak classifiers using a
weighted majority vote:

p

fo0) =sign| > afi0 | ©

=1

This process repeats until the specified
number of iterations is completed or the stopping
criterion is satisfied.

In the following, the loss function for
AdaBoost is illustrated.

N 14

L= Zexp —%yiEfljfj(xi) (7)

i=1 j=1

where N is the size of training set, p is the
number of weak classifiers, y; is actual label of
ith sample, a; is weight of jth weak classifier
and fi(xi) is predicted value made by jth weak
classifier for ith sample. The exponential loss
in AdaBoost increases rapidly for misclassified
samples, which causes the model to focus on
hard-to-classify examples. While this often
improves performance, it also introduces
instability—particularly ~when the dataset
contains noise or outliers, as the loss may
disproportionately prioritize these instances.
AdaBoost typically does not use epochs in the
traditional sense but follows a fixed number of
boosting rounds. During each iteration, the loss
function drives reweighting of samples, and
convergence depends heavily on the number of
weak learners and their diversity.

2.3.5. Gradient Boosting

Gradient Boosting, a powerful boosting
algorithm, creates strong learners by combining
weak ones. It trains each new model to minimize
the previous model's loss—Ilike mean squared
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error or cross-entropy—using gradient descent.
In each step, the algorithm calculates the loss
function's gradient against the ensemble's
predictions and trains a new weak model to
reduce this gradient.”’ The ensemble is built
incrementally by adding predictions from
each new model, a process that continues until
a stopping point is reached. Different from
AdaBoost which adjusts sample weights,
Gradient Boosting focuses on training each
new predictor to target the residual errors from
the previous one, using these residuals as the
learning objective. Gradient Boosted Trees, a
well-known implementation, is based on CART
(Classification and Regression Trees).

Gradient Boosting uses the same loss
function as logistic regression (log-loss — (2)).
In gradient boosting, the loss function not only
guides the performance of each individual learner
but also influences how residuals are calculated
and targeted in subsequent rounds. Although
log-loss provides stability due to its convex
nature, gradient boosting can become unstable if
learning rates are too high or if too many trees
are added, leading to overfitting. Therefore, the
number of boosting rounds, learning rate, and
tree depth must be carefully balanced to maintain
convergence and loss stability over iterations.

2.3.6. Multi-layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is the most
common neural network architecture, composed
of input, hidden, and output layers.?® For each
neuron in a hidden layer, the operation involves
taking a weighted sum of its inputs. This sum
is then subjected to a non-linear activation,
examples of which include the Rectified Linear
Unit (ReLU), Sigmoid, and Hyperbolic Tangent
(Tanh).

During training, MLP utilizes a two-
step learning process: forward propagation and
backpropagation. In forward propagation, the
output of a neuron is computed as follows:

z® = wOx(-1 4 pO (8)
a® = f(z(l)) 9)

where W® and b are the weight matrix and
bias vector for layer /, x(*1 is the input from the
previous layer, and f(.) is the activation function.
The backpropagation algorithm then updates
the network’s weights by computing gradients
of the loss function with respect to the weights
using the chain rule. The gradient descent
optimization technique, often with variations
such as Stochastic Gradient Descent (SGD) or
Adam, is applied to minimize the loss iteratively.

Features
I$

Figure 1. F-statistics of 34 features in descending order.
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MLP is widely used in classification
and regression tasks due to its ability to learn
complex patterns in data. It serves as a foundation
for more advanced deep learning models and
is particularly effective in applications such as
image recognition, speech processing, and time
series prediction.

In the same manner as logistic regression,
MLP makes use of log-loss (2) as its loss
function. Although MLP uses the same loss
function, training stability can be affected
by several factors such as learning rate,
weight initialization, and batch size. Log-loss
contributes to smooth gradient signals during
backpropagation, especially when combined
with softmax activation in the output layer.
However, as the network depth increases, loss
landscapes may become non-convex, leading
to potential local minima or saddle points.
Techniques such as learning rate decay, batch
normalization, and early stopping are often
employed to stabilize training and ensure the
loss consistently decreases across epochs.

2.4. Local Interpretable Model-agnostic
Explanations (LIME)

Local Interpretable Model-agnostic Explanations
(LIME) is an algorithmic approach designed
to elucidate the predictions of any classifier or
regressor. It achieves this by creating a locally
faithful approximation using an interpretable
model.”

Often classified as a “surrogate model”
approach, the LIME explainability model is
constructed through a step-by-step procedure.
First, to generate a substitute dataset, the LIME
algorithm subtly alters the feature values of the
original dataset — the very data that trained the
black-box model. Next, these newly created
samples are assigned weights that reflect their
similarity to the particular instance under
explanation. Lastly, an inherently understandable
model, like a decision tree or logistic regression,
is employed as a surrogate machine learning
model and trained on this weighted, artificially

https://doi.org/10.52111/qn;js.2025.19401

created dataset. The learned model should be
a good approximation of the machine learning
model predictions locally, but it does not have
to be a good global approximation. This kind
of accuracy is also called local fidelity. The
explanation produced by LIME is obtained by
the following:

$(x) = argginﬁ(f, g,my) +Q(g) (10)

LIME explains instance x with a model
g (like linear regression) that minimizes a loss
L (e.g., mean squared error). Loss £ measures
how well g mimics the original model f (e.g.,
AdaBoost) predictions, while keeping g simple
(low (€2(g)). G is the set of possible g models,
for example, all linear regressions. m, defines the
neighborhood size around x used for explanation.

3. RESULTS AND DISCUSSION

3.1. Dimensionality reduction and

multicollinearity check

Figure 1 shows the descending F-statistics of 34
features obtained through ANOVA. X14 (debt-
to-equity ratio) appears to be the most relevant,
and 16 out of 34 features have significantly
higher scores compared to the rest. We will retain
these top 16 features and remove the other 18.

Before feeding these 16 features into the
models, we calculated the Variance Inflation
Factor (VIF), which indicates the presence of
multicollinearity in the model. A VIF value
below 10 is considered acceptable. Table 4
shows that there is no multicollinearity, as all 16
selected features have VIF values below 10.

Table 4. VIF values of the selected features.

Feature VIF Feature VIF
X4 9.21 X13 3.06
X5 6.57 X14 4.04
X6 9.45 X20 9.33
X8 8.09 X22 2.13
X9 2.65 X23 1.73

X10 8.74 X24 4.17
X1 6.34 X25 6.34
X12 3.16 X32 9.15
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3.2. Performance of machine learning models

When training a machine learning model, we
fit the model's parameters. However, before
the model begins learning, certain parameters
are pre-set—these are called hyperparameters.
We can improve the model's performance
by tuning these hyperparameters. There are
several hyperparameter tuning methods, such
as grid search, random search, and Bayesian
optimization. Among them, grid search is widely
used. Grid search works by building a grid of all
hyperparameter settings. Then, it trains and tests
the model with each setting and picks the best

Table 5. Performance of the models on test set.

one. This complete search of hyperparameters
makes sure every option is checked. Moreover,
grid search is typically used with cross-
validation, specifically k-fold cross-validation.
Here, the training set is divided into & parts. In
each iteration, £k — 1 parts are used to train the
model, while the remaining part is used for
validation. The best set of hyperparameters is the
one that yields the highest average performance.
Finally, the models with the optimal set of
hyperparameters are tested on the test set using
various metrics. Table 5 presents the hyper-
parameter settings and the evaluation of the
models on different metric.

Models Hyperparameter settings Accuracy | Precision | Recall | F1 Score | AUC
Logisti C=1 iter=300 Ity="1"
OBIstie > Tmax_{ler=tL, perlalty= 2 09331 | 08861 | 0.8952 | 0.8901 | 0.9693
Regression solver= ‘saga’
C=1,d =2 =‘scale’
SVM > (egreeTs, gammam seaie 0.8642 | 07799 | 0.8729 | 0.8097 | 0.9534
kernel="rbf”
bootstrap=False, max_depth=10,
Random .
Forest max_features=‘sqrt’, min_samples 0.9484 0.9133 0.9166 | 0.9149 | 0.9836
split=20, n_estimators=100
AdaBoost learning_rate=1, n_estimators=500 0.9331 0.8904 | 0.8873 | 0.8888 | 0.9780
learning_rate=0.5, loss=‘log_loss’,
Gradient max_depth=7, max_features=‘sqrt’,
. - - 0.9579 0.9276 | 0.9344 | 0.9309 | 0.9870
Boosting min_samples_split=20,
n_estimators=100
activation="‘relu’, alpha=0.01,
MLP hidden layer sizes=(100,), 0.9312 0.8785 | 0.9020 | 0.8896 | 0.9788
learning_rate=‘adaptive’, solver="adam’

Gradient Boosting achieved the best
performance across all metrics, indicating
high predictive accuracy and a good balance
between precision and recall. Random Forest
ranked second with high accuracy and AUC,
demonstrating strong and consistent classification
ability. MLP also showed good results across all
metrics, particularly in AUC.

AdaBoost and Logistic Regression
had similar performance with accuracy but
showed lower precision and recall compared
to Gradient Boosting and Random Forest.
SVM had the lowest performance across all

metrics, particularly in precision and F1 score,
indicating difficulties in accurate classification
and balancing precision and recall.

Gradient Boosting performs best in this
financial risk prediction task due to several key
advantages. First, Gradient Boosting effectively
captures complex, non-linear relationships and
interactions among financial ratios, which are
common in real-world financial data. Second,
it automatically emphasizes important features
while minimizing the impact of irrelevant or
noisy ones, which is crucial given the large
number of input variables. Third, it handles
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class imbalance effectively, which is particularly
relevant in our dataset where the class y = —1
accounts for nearly 80% of the observations.
The model can be adapted using customized
loss functions or sample weighting strategies to
better learn the characteristics of the minority
class and improve predictive performance for
underrepresented cases.

3.3. Interpretations of results

We used LIME to interpret the two best-
performing models: Gradient Boosting and
Random Forest. A random instance from the test
set was selected to generate a local explanation
for this specific instance (Figure 2, 3).

Gradient Boosting

-0.36 < X12 <= 0.34 1
X24 <=-0.64

-0.61 < X20 <= 0.13 1
X23 <=-0.72 4

-0.62 < X4 <=-0.22
X25 <=-0.53

X11 <= -0.53 1

X9 <= -0.67

X8 <= -0.56

-0.56 < X5 <= -0.04 1
-0.70 < X14 <= -0.24 4
-0.18 < X10 <= 0.61 +
X22 <=-0.654

-0.17 < X32 <= 0.57
-0.62 < X6 <= -0.09
X13 > 0.41 +

T T T
-0.15 -0.10 —0.05 0.00

<)
o
@
=}
=
5]

Figure 2. A local explaination of Gradient Boosting.

Random Forest

X24 <= -0.64 4

-0.36 < X12 <= 0.34
X25 <= -0.53

-0.61 < X20 <= 0.13 4
X11 <=-0.53 1

X23 <=-0.72 1

X9 <=-0.67 -

X8 <= -0.56

-0.70 < X14 <=-0.24 1
-0.56 < X5 <= -0.04 1

-0.17 < X32 <= 0.57
X13 > 0.41 4

X22 <= -0.65

-0.62 < X6 <= -0.09 -

-0.18 < X10 <= 0.61 -
-0.62 < X4 <=-0.22

T T T
0 0.02 0.04 0.06

=

—0‘06 —O:O4 —O‘.OZ 0.
Figure 3. A local explaination of Random Forest.

The chosen instance has a true label of
y=—1, indicating no risk. Both models identified
features X12 and X24 as the most influential.
Specifically, X12 contributes to the model's
prediction of y = —1, as indicated by its negative
weight (shown in red), whereas X24 supports the
prediction of the opposite class with a positive

https://doi.org/10.52111/qn;js.2025.19401

weight (shown in green). For Gradient Boosting,
the impact of features decreases noticeably from
top to bottom, highlighting the model’s tendency
to focus on the most important features. In
contrast, Random Forest distributes influence
more evenly across features, reflecting its
nature of aggregating predictions from multiple
independent decision trees.

Local explanations are valuable for
understanding the reasoning behind individual
predictions. However, analyzing a single instance
does not provide a comprehensive understanding
of the model's overall behavior. To gain deeper
insights into the model's decision-making
process, we can aggregate local explanations
across multiple predictions. Specifically, by
combining the LIME weights of numerous
instances and visualizing them through various
types of charts, we can better capture the model's
general patterns and feature importance.

The first aggregation can help us
understand which of the features are most
important. Features with either high positive
or negative LIME weights had a larger impact
on a prediction. For each feature, we take the
absolute mean of all the LIME weights. Features
with large mean weights have, in general, made
large contributions to the predictions. Figure 4
and Figure 5 shows the average weights of the
features in the two models. It can be observed
that the important features are relatively similar
across both models. These features are the
current ratio (X12), return on assets (X6), debt
ratio (X20), and debt-to-equity ratio (X14).

Gradient Boosting

Features
>
=
o

I T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Mean|Weight|

Figure 4. Absolute mean of LIME weights of features
in Gradient Boosting.
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Random Forest
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Mean|Weight]|
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Figure 5. Absolute mean of LIME weights of features
in Random Forest.

Next, we analyze how the values of key
features affect the model’s predictions by plotting
their corresponding LIME weights (Figure 6). A
higher LIME weight suggests that the feature
contributes more strongly to predicting a case as
“At risk” (y = 1). Figure 6 illustrates that as the
values of X12 and X6 rise, their LIME weights
shift from positive to negative. X12, representing
the current ratio, assesses a company's short-term
liquidity. A low current ratio suggests potential
liquidity problems, which increase financial risk
and result in a positive LIME weight. In contrast,
a high current ratio indicates a stronger ability
to meet debt obligations, reducing financial
risk and producing a negative LIME weight.
This negative weight decreases the probability
of being classified as risky (v = 1). Meanwhile,
X6, which measures return on assets (ROA),
reflects how efficiently a company generates

profit from its assets. A low ROA indicates weak
profitability and higher financial risk, leading
to a positive LIME weight. Conversely, a high
ROA signifies effective asset management and
lower risk, resulting in a negative LIME weight.

On the other hand, the LIME weights
for X20 and X14 increase as their values grow.
X20, the debt ratio, indicates the proportion of
a company’s assets financed through debt. A
high debt ratio suggests significant reliance on
borrowed funds, which raises financial leverage
and risk due to fixed interest obligations.
Similarly, X14, the debt-to-equity ratio, compares
total debt to shareholders' equity. A high value
for X14 indicates a greater dependence on
debt compared to equity, leading to increased
financial burden and risk.

4. CONCLUSIONS

In this study, we developed and compared
advanced machine learning models to predict
the financial risk of companies listed on the
Vietnamese stock market. Based on financial
ratios, various models constructed,
hyperparameters
evaluations were conducted using different
metrics. The two best-performing models
were Gradient Boosting and Random Forest,
achieving over 94% accuracy and more than
91% recall. This demonstrates the superiority of
ensemble learning methods over single models.

Furthermore, the LIME method was utilized to

WwEre

were  optimized, and

0.3 4 ‘

0.2

0.0 4

LIME Weight
(=]

—0.14

LIME Weight

0.20 1
0.15 1
0.10 1
0.05 1
0.00 A
—0.05 A

—0.10 1

LIME Weight

LIME Weight

-10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5
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X14

Figure 6. Feature trends for the four most important features.
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explain the models' predictions and the influence
of different features on their decisions. The
results indicate that to reduce financial risk,
businesses should improve their current ratio
(X12) by efficiently managing inventory and
thereby
reducing the likelihood of liquidity issues.

accelerating receivables collection,
Additionally, enhancing return on assets (ROA
- X6) through optimized production processes
can lower financial risk. Companies should also
closely monitor the debt ratio (X20) and debt-
to-equity ratio (X14) by avoiding excessive
borrowing and increasing equity financing to
reduce interest burdens. Moreover, diversifying
funding sources by balancing debt and equity
financing will optimize the capital structure and
minimize financial risk in the long term. The
findings of this study provide a foundation for
businesses to manage risks more effectively,
make safer business decisions, and optimize
their strategies.
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