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TOM TAT

Khoang san, v6i thanh phan hoa hoc phirc tap va cdu tric tinh thé, dong mot vai tro then chét trong nhidu
qua trinh hoa hoc, ung dung, va nghién ctru. Truyén théng, viéc phan loai chung dugc thuc hi¢n thong qua céc ky
thudt quan sat va hoa hoc. Tuy nhién, véi viéc ting sé luong miu, cic phuong phap nay thuong mat nhidu thoi
gian. Nhiing tién bo gan day trong Tri tué nhan tao (AI) va Hoc sau (DL) hira hen nhiing cai tién dot pha vé toc do
va d6 chinh x4c cta vi¢c phan loai khodng san. Tuy nhién, cdc md hinh DL, méac du chinh xéc, thuong hoat dong
nhu nhitng “hop den”, 1am cho quyét dinh ciia chiing khong tuong minh. Dé giai quyét diéu nay, nghién ciru cua
chung t6i gidi thiéu mot khung chuong trinh dua trén Al cho viéc phan loai khoang san, két hop cac mé hinh tién
tién voi AI Giai thich dwoc (XAI) va mo hinh Al sinh ngdn ngit I6n (LLMs) nhu GPT-4. Chuong trinh nay khong
chi phan loai mét s6 lugng 16n cac khoang san ma con giai thich 1y do phia sau mdi lya chon phan loai. Théng qua
sur Kkét hop ctia mé hinh Swin Transformer V2 cho viéc nhan dang khoang san, GradCAM cho tinh minh bach cia
mb hinh, va GPT-4 dé truy xuat thong tin khoang san chi tiét, chuong trinh cung cap sy két hop can ddi gitra hiéu
suét, kha nang giai thich va thong tin hudng téi nguoi dung. Chuong trinh c6 thé dugc truy cap cong khai, nhan
manh tiém ning cua Al trong viéc cach mang hoa viéc phéan loai khoang san trong khi van dap mg nhu cau vé
su 10 rang, minh bach va gido duc ngudi dung. Pudng dan truy cap cong khai tai https://huggingface.co/spaces/
minatosnow/mineral_framework.

Twr khéa: Phdn logi khoang san, Al giai thich dwoc, mé hinh Al sinh ngon ngir lon.
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ABSTRACT

Minerals, with their intricate chemical compositions and crystalline structures, play a pivotal role in diverse
chemical processes, applications, and research. Traditionally, their classification was achieved through observational
and chemical techniques. However, with increasing sample sizes, these methods often proved time-consuming.
Recent advances in Artificial Intelligence (Al) and Deep Learning (DL) promise transformative improvements
in the speed and accuracy of mineral classification. However, DL models, for all their precision, often operate
as “black boxes”, making their decision-making opaque. To address this, our study introduces an innovative Al-
powered framework for mineral classification, integrating state-of-the-art models with Explainable Al (XAI) and
generative Al large language models (LLMs) like GPT-4. This framework not only categorizes a wide-ranging
number of minerals but also elucidates the reasoning behind each classification. Through a combination of Swin
Transformer V2 models for mineral identification, GradCAM for model transparency, and GPT-4 for detailed
mineral information retrieval, the framework offers a balanced blend of performance, interpretability, and user-
centric information. Available for public access, this system underscores the potential of Al to revolutionize mineral
classification while staying attuned to the demands of clarity, transparency, and user education. The framework can
be publicly accessed via https://huggingface.co/spaces/minatosnow/mineral_framework.

Keywords: Mineral classification, explainable Al, generative Al large language models.

1. INTRODUCTION stability.* This understanding is fundamental for

. . . . various chemical processes, including synthesis,
Minerals are naturally occurring inorganic ) ) ) o )
. . . ... analysis, and industrial applications. Mineral
substances with a specific chemical composition

. . . . classification is not only an academic exercise
and crystalline structure.! Mineral classification y

is the systematic categorization of minerals based but also a vital practice in the chemical field. It

on their physical and chemical properties.? underpins various industrial processes, medical

This classification provides detailed insights applications, environmental = protection, and

into the chemical composition and structure of research endeavors. Its importance continues
minerals. By categorizing minerals, chemists to grow with the increasing complexity and
can predict their behavior, reactivity, and specialization of chemical products and
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processes, making it an indispensable aspect of
modern chemistry.>*>

Traditionally, mineral classification
has been carried out through a combination of
physical observation and chemical analysis.®
Regarding the physical properties, minerals are
often classified based on their hardness, luster,
color, streak, and specific gravity. The Mohs scale,
for example, is used to classify minerals based on
hardness.”® Minerals can be grouped into classes
based on their primary anionic species, such as
silicates, carbonates, and sulfates.”'® Chemical
tests, such as flame tests and wet chemical
analysis, are used to identify the presence
of specific elements or compounds.®!! X-ray
diffraction and other microscopic techniques
are also employed to analyze the crystalline
structure of minerals, further categorizing them
into specific groups.!*'* Additionally, another
approach is to use polarizing microscopes to
study the optical properties of minerals, such
as birefringence and pleochroism, which can be
essential for classification.!>!”

However, conventional methods might
be labor-intensive and time-consuming,
particularly when dealing with a large number
of samples. With the advent of Artificial
Intelligence (Al) and Deep Learning (DL), the
field of mineral classification has witnessed a
significant transformation.'®° The application
of DL techniques to mineral classification on
images has opened new avenues for accurate and
automated classification. DL models can easily
scale to handle vast datasets, providing rapid

classification without compromising accuracy.

Nevertheless, DL models, particularly
complex neural networks (NNs), are often
referred to as “black boxes” due to their lack of
transparency in how they arrive at a particular
decision.?">* While these models can achieve
high accuracy, understanding the specific
reasoning behind their decisions can be elusive.
This lack of transparency poses significant
challenges, particularly in understanding the

rationale behind specific classifications and in
ensuring trust and compliance with regulatory
standards. Consequently, there is a growing
imperative for the integration of Explainable
Al (XAI) methods, which aim to unravel the
intricate workings of DL models, providing
insights into their decision-making processes.>*
Besides that, recent works in generative Al large
language models (LLMs) have shown promising
results in generating human-like text that can be
leveraged to provide more information and facts
about the model’s decisions.?”

Hence, in this paper we propose an
Al-assisted mineral classification framework
leveraging several state-of-the-art models in a
multi-class classification task integrated with
XALI techniques and generative AI LLMs. This
integration not only enhances the interpretability
of mineral classification but also provides
clear and plausible insights into the decision-
making process for the end-users. Our proposed
framework is tailored to meet the specific
needs of the chemical field, ensuring that the
classifications are both scientifically robust and
readily interpretable. Through our framework,
we aim to address the critical challenge of
transparency in Al-driven mineral classification,
offering a solution that balances performance
with interpretability, and understandability,
tailored to the unique requirements of the
chemical domain. The framework can be
publicly accessed via https.//huggingface.co/
spaces/minatosnow/mineral_framework.

2. RELATED WORK
2.1. Deep learning in mineral classification

DL has emerged as a powerful tool in the field of
mineral classification, leveraging the ability to
learn complex patterns and relationships directly
from data, which has been greatly facilitated
by the availability of large datasets, powerful
computing resources, and the development of
sophisticated algorithms.'®2°

Convolutional Neural Networks (CNNs)?
are deeply structured feedforward NNs and one
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of the representative algorithms of DL, which
can be applied to automatically extract optical
features of minerals for mineral identification
or accelerate the microphase classification. A
hybrid approach combining mineral photo image
features extracted by CNN EfficientNet-b4 and
mineral hardness features to identify minerals.”
U-Net model is utilized to effectively and
automatically extract deep feature information
of ore minerals, realizing intelligent recognition
and classification under the microscope.”
ResNet-18 and ResNet-50 models is proposed
for DL-based intelligent mineral recognition,
enhancing data with image flipping and scale
transformation.*®

However, challenges related to
interpretability and data dependence remain,
where the generated models are complex and
difficult to interpret and good accuracy is only
guaranteed when the amount of data is large
enough, limiting the application in scenarios
with limited data, calling for further research and

innovation in the field.?*3?

2.2. Swin transformer — hierarchical vision
transformer using shifted windows

Given the aim of our research to classify images
according to their corresponding mineral
specimen, we undertake this endeavor within the
paradigm of image classification-a canonical yet
persistently demanding task within the domain
of computer vision (CV). For this purpose, we
have chosen to utilize a leading-edge model
known as the Swin Transformer. The Swin
Transformer is a hierarchical vision transformer
characterized by its use of shifted windows
to compute its representations.** This model
has been meticulously crafted to navigate the
inherent challenges of transposing transformers
from linguistic contexts to visual ones. These
challenges encompass the vast disparities in
scale among visual entities and the inherent
high resolution of pixels in images, which stand
in stark contrast to the relative simplicity of

https://doi.org/10.52111/qn;js.2023.17510

words within a textual context. The deployment
of a shifted windowing scheme serves a dual
purpose: it enhances computational efficiency
by restricting self-attention computations to
discrete, non-overlapping local windows,
and concurrently, it facilitates cross-window
connections. The hierarchical nature of this
architecture bestows upon it the versatility
to operate across multiple scales, all while
maintaining linear computational complexity
in relation to image size. Such attributes render
the Swin Transformer a suitable candidate for
an array of vision tasks, spanning from image
classification to object detection and semantic
segmentation.** These qualities make Swin
Transformer compatible with a broad range of
vision tasks, including image -classification,
object detection, and semantic segmentation.*

Furthermore, Swin Transformer V2
represents a sophisticated evolution of the
original Swin Transformer model, with an
emphasis on augmenting both its capacity and
resolution.*®* The associated paper addresses
three predominant challenges encountered
during the training and application of expansive
vision models: training instability, discrepancies
in resolution between the stages of pre-training
and fine-tuning, and an acute dependence
on labeled data. To rectify these issues, the
authors propose three primary strategies: 1)
The combination of a residual-post-norm
approach with cosine attention to bolster training
stability; 2) The introduction of a log-spaced
continuous position bias method, facilitating
the seamless transference of models pre-trained
on low-resolution images to downstream tasks
necessitating high-resolution inputs; and 3)
The deployment of a self-supervised pre-
training technique named SimMIM, which
mitigates the requirement for vast repositories
of labeled images. Leveraging these strategies,
the researchers were successful in training
a Swin Transformer V2 model comprising a
staggering 3 billion parameters, marking its
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position as one of the most voluminous dense
vision models presently available. Impressively,
this model has established new benchmarks in
performance across four cardinal vision tasks:
ImageNet-V2 image classification, COCO object
detection, ADE20K semantic segmentation, and
Kinetics-400 video action classification.*®’

2.3. Explainable Al

XAl is a field of research that aims to make the
decisions and predictions of Al systems more
transparent and interpretable to humans. There
are several approaches to achieving this goal,
including gradient-based, perturbation-based,
and Class Activation Mapping (CAM)-based
methods.

Gradient-based methods, such as LRP,*
use gradient signals to assign the burden of the
decision on the input features. These techniques
can be evaluated for their robustness and the
role that adversarial robustness plays in having
meaningful explanations.

Perturbation-based methods investigate
properties of deep neural networks (DNNs) by
perturbing the input of a model. For example,
part of the input image can be occluded with a
mask or a word in a sentence can be replaced
with its synonym, and the changes in the output
of the model can be observed. Some notable
perturbation-based methods are LIME,* RISE,
D-RISE,* D-CLOSE.

CAM-based methods, such as CAM,*
GradCAM,*! GradCAM++, SeCAM, >4
ScoreCAM,* are visual explanation techniques
that use class activation maps to highlight the
regions of an input image that are most relevant
to the model's prediction.

In this work, we employ GradCAM*!
for model debugging and to make CNN-based
models more transparent to end-users, primarily
in visual tasks like image classification. By
visualizing the important regions in an image as
a high-resolution heatmaps, developers and end-

users can better understand if a model is focusing
on the correct patterns or perhaps getting misled
by noise or other irrelevant features. GradCAM
offers easily interpretable visualizations that
align well with human intuition.*

2.4. Generative Al with large language models

In the arena of Al, generative Al LLMs have
garnered significant attention. Such models,
underpinned by extensive datasets, possess
the aptitude to synthesize text that is strikingly
analogous to human-authored content. One of
the most distinguished models in this domain is
the Generative Pre-trained Transformer (GPT),
a brainchild of OpenAl* GPT has seen several
iterations, with the latest being GPT-4.“¢ In
parallel, Llama 2 has emerged as a notable LLM,
a product of collaborative efforts between Meta
and Microsoft. This model stands out due to its

Mineral Information
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Generative Al LLM
(GPT-4)

Top-1 prediction
— Classification model

Choose a model T
g Load

End-users Upload an image

{ Large Language Model
(LLM) Module
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L (& :
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'
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: Explainable Al (XAl)
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Figure 1. The flowchart representation of the
proposed mineral classification framework. After
the classification model receives the input image
loaded by end-users, the top-1 prediction is fed into
the XAI method to deliver the explanation map, and
into the generative AI LLM to give information and
facts about the classified mineral.
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training on a contemporaneous and more eclectic
dataset. Claude 2, heralded by Anthropic, is
another LLM worth mentioning, boasting
enhanced performance, safety, harmlessness
and an aptitude for generating more extensive
responses. Additionally, the BLOOM, an
exemplar of open science and accessibility, was
conceived by the BigScience team at Hugging
Face. Specifically designed to elaborate on
textual prompts, BLOOM capitalizes on
industrial-grade computational capacities to
produce coherent text across 46 languages and
13 programming languages, rivaling the fidelity
of human-generated content.

These expansive LLMs exemplify the
forefront of advancements in their uncanny
capacity to emulate human text generation.
Their implications are manifold, particularly
within domains such as natural language
processing (NLP) and machine learning (ML).
Consequently, they remain at the epicenter of

fervent academic inquiry and technological
progression.?’4

3. PROPOSED FRAMEWORK

In this work, we introduce an innovative
framework for mineral classification augmented
by Swin Transformer V2 models. This framework
seamlessly integrates XAI techniques with
LLMs with the overarching aim of enhancing
the interpretability and understandability of the
generated models. A comprehensive illustration
of the structural composition of our mineral
classification framework is provided in Figure 1.
Moreover, to offer a tangible glimpse into its real-
world implementation, the user interface (UI) of
our proposed framework is depicted in Figure 2.

The ensuing sections meticulously detail
each phase of our methodology-ranging from
data preparation and model training to the
nuanced intricacies of integrating XAI and
LLMs into our framework.

&P

Choose the classification model

SwinV2-Tiny &

ulexite

ulexite
grossular
graphite
clinozoisite

leucite

8%

%

6%

6%

Information about the classified mineral

Chemical Formula: NaCaB509-8H20

Ulexite, also known as "TV rock™ or "boronatrocalcite,” is a fascinating mineral with a unique optical property. Its
chemical formula is NaCaB509-8H20. Ulexite is composed of hydrated sodium calcium borate and belongs to the
borate mineral group.

One of the most intriguing features of ulexite is its fibrous crystal structure, which allows it to transmit light along its
fibers. This property gives ulexite the ability to act as a natural optical fiber, creating a mesmerizing effect known as.
“fiber-optic television stone " When placed on top of an image or text, ulexite can project a clear and magnified version
of the image on its opposite face, resembling a television screen.

Ulexite is typically found in arid regions, such as California, Nevada, and Turkey. It forms in evaporite deposits where
boron-rich waters slowly evaporate, leaving behind the mineral crystals. Due to its unigue optical properties, ulexite is
often used in the production of optical instruments, scientific research, and even in some artistic applications

In addition to its optical properties, ulexite is also valued for its boron content. Boron is an essential element for various
industrial applications, including the production of glass, ceramics, and detergents. Ulexite deposits serve as a
significant source of boron, contributing to the global supply of this important element.

Overall, ulexite is a captivating mineral with its ability to transmit light and its importance in the boron industry. Its
unique properties make it a favorite among mineral enthusiasts and scientists alike

Figure 2. The mineral classification framework user interface (UI) deployed on the Huggingface platform

with Gradio Ul The framework requires end-users to upload a mineral image and choose a classification model

(the default model is set as SwinV2-Tiny) on the left panel. On the right panel, the top-5 predictions from models,

explanation map of XAI methods on the model’s prediction, and information retrieval about the top-1 classified

mineral from GPT-4 are delivered.
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(a) Acanthite (Ag,S) (b) Babingtonite (Ca;FeSisO4)

(e) Euclase (BeAlSiO4(OH)) (f) Fluorite (CaF,)

(i) Ilmenite (FeTiO3) (j) Jadeite (NaAlSi,Og)

(n) Nepheline ((Na,K)AISiO,)

(r) Raspite (PbWOy)

(u) Variscite (AIPO,-2H,0) (v) Willemite (Zn,SiOy)

(k) Kaolinite (Al,SiO5(OH),)

(0) Opal (Si0, nH,0)

(w) Xenotime (YPO,)

(c) Coesite (Si0,) (d) Dolomite (CaMg(CO3);)

(1) Leucite (KAISi;Og)

(p) Pyrite (FeS,)

(x) Zincite ((Zn,Mn)O)

Figure 3. Samples of mineral specimens in the mineral dataset. Each mineral is shown in their name and formula.

3.1. Data preparation

Initiating with data acquisition, we embarked on
a web-crawling exercise, amassing a rich dataset
of mineral images, each meticulously annotated
with their respective labels. The dataset contains
around 4,000 images of 282 different minerals,
each with labels. The dimensions of these images

stand at 110 X 110 pixels. The labeling schema is
comprehensive, encapsulating various attributes
such as the mineral name, associated crystal
system, chemical groupings, rock typologies,
and fracture characteristics. For the purpose of
model training and evaluation, the dataset was
stratified into training and test sets, adhering to
an 80% to 20% split ratio.

https://doi.org/10.52111/qnjs.2023.17510
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Given the inherent challenges posed
by a limited number of images per mineral
specimen (averaging about 14 images for each
mineral type) and the relatively diminutive
image dimensions, we employed a series of data
augmentation strategies. Techniques such as
Random Resized Crop and Random Horizontal
Flip were judiciously applied to the training
dataset to diversify and enhance its content.

3.2. Model training

Within the mineral classification framework,
we incorporated three variants of the Swin
Transformer V2 model, differentiated by
their size: the Tiny-sized model (SwinV2-T),
the Small-sized model (SwinV2-S), and the
Base-sized model (SwinV2-B). Each of these
models has undergone preliminary training
on the ImageNet-1k dataset at a resolution of
256 X 256 pixels.*® Recognizing the intricacies
of a multiclass classification task, we elected the
cross-entropy (CE) as our loss function, with the
top-1 accuracy metric serving as the cornerstone
of our evaluation process.

The training set, derived from our curated
dataset, was harnessed to fine-tune these
models. An advanced image preprocessing tool,
the Vision Transformer (ViT), was deployed
to ensure uniform normalization of images,
thus harmonizing their resolution to align
with the models' specifications. All associated
hyperparameters pertinent to the fine-tuning
process are systematically delineated in Table 1.

Table 1. The defined hyperparameters for finetuning
the Swin Transformer V2 models.

Hyperparameter Value
learning_rate Se-5
warmup_ratio 0.1
gradient_accumulation_steps 4
batch_size 32

Subsequent to the fine-tuning phase, a
rigorous evaluation was conducted to assess the
performance of each model variant, employing
the test set as the benchmark.

https://doi.org/10.52111/qn;js.2023.17510

3.3. XAl integration

In this section, we leverage XAI to enhance
the interpretability and transparency of Swin
Transformer V2 models. We utilize GradCAM
as the XAI method.*! Given an input image, the
forward pass computes activations at the chosen
layer. The gradients of the class score concerning
this layer's activations are then computed. These
gradients are globally average-pooled to produce
weights. Finally, a weighted combination of
forward activation maps produces the GradCAM
heatmap.

Loraacam = ReLUC) af 4%)
k
where:
® L, .acav 18 the explanation map for class c.

e aj, are the global-average-pooled gradients.

o A represents the forward activation maps
for the chosen layer.

® ReL U ensures that only positive influences
on the class prediction are visualized.

3.4. Information retrieval with GPT-4

Given the multitude of mineral specimens that
can be identified and categorized by our models,
we recognized the imperative to supplement the
raw classification with pertinent information.
To this end, we employ the capabilities of GPT-
4. This strategic integration is underpinned by
the objective of furnishing end-users-who may
lack prior familiarity with the specific mineral
depicted in the image-with comprehensive and
contextually relevant insights.

Upon obtaining the results from our
primary classification model, we extract the
top-most prediction, which is then utilized as an
input for GPT-4. This methodology enables the
provision of comprehensive and contextual data
to the end-user. Notably, we have configured
GPT-4 to emulate the expertise of a mineralogist,
thereby ensuring that the generated information
is not only informative but is also presented
in a manner that is both engaging and cogent.
It is worth emphasizing that vague or generic
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explanations are deliberately avoided, thereby
enhancing the utility and reliability of the
provided details.

To further bolster the authenticity and
veracity of the information retrieved, we have
imparted explicit instructions to GPT-4, directing
it to rely solely on information from reputable
sources. Among the preferred repositories are
Wikipedia, an encyclopedia recognized for its
vast and up-to-date content; The Mineral and
Gemstone Kingdom, known for its exhaustive
listings and detailed mineralogical insights; and
the Mineral Resources Database, a repository
hailed for its accuracy and comprehensive
coverage. By anchoring our information retrieval
process in such esteemed sources, we aspire
to ensure that the knowledge disseminated to
the users is both trustworthy and of the highest
academic caliber.

4. RESULTS

In this section, we systematically present the
empirical results and observations gleaned from
the evaluations of the Swin Transformer V2
models. Initially, we will provide a quantitative
assessment of the models based on the test
set, followed by an exploration of the visual
explanations in the form of saliency maps.

4.1. Quantitative assessment of model
performances

We subject three distinct models - SwinV2-T,
SwinV2-S, and SwinV2-B - to rigorous
evaluation, both on training and test sets.
As depicted in Figure 4, all three models
demonstrate comparable CE loss on the training
set. Notably, SwinV2-B emerges as the earliest
to converge, trailed by SwinV2-S and SwinV2-T.
Furthermore, SwinV2-B boasts the lowest CE
loss among the trio.

However, a contrasting pattern emerges
upon examining their performance on the test
set, as shown in Figure 5. SwinV2-S achieves the
lowest CE loss. Nevertheless, all three models
showcase an analogous behavior; their CE
losses manifest a steady uptick after the initial
1,000 training steps. This tendency suggests
a pronounced overfitting to the training data

and limited generalization to unseen datasets.
This observation is further corroborated by
accuracy metrics on the test set, with the most
compact model, SwinV2-T, outperforming its
counterparts.

In contemporary Al research, the
efficiency of models, especially concerning
GPU power consumption measured in Watts
(W), has emerged as a crucial criterion.
Lower power usage signifies a reduced carbon
footprint, advancing the cause of sustainable
and eco-friendly Al modeling. As one would
anticipate, SwinV2-T, with its parsimonious
parameterization, consumes the least power,
trailed by SwinV2-S and then SwinV2-B, as
evident from Figure 6.

Given the above empirical observations,
factoring in both performance and efficiency,
we advocate SwinV2-T as the primary model
recommendation  within  our
However, we offer users the flexibility to
leverage other models as per their requirements.

framework.

train/loss
]

= SwinTransformerv2-tiny

train/global_step

2k 4k 6k 8k

(a) The loss of three models on the training set

train/train_loss

SwinTransformerv2-based

SwinTransformerv2-tiny
0.4747

000 005 010 015 020 025 030 035 040 O

(b) The average loss of three models on the training set

Figure 4. The (a) loss and (b) average loss of three
classification models, namely SwinV2-T (pink),
SwinV2-S (yellow), and SwinV2-B (blue), on the
training set during the training phase.
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4.2. In-depth qualitative analysis of classification
explanations

This section provides a meticulous qualitative
dissection of the explanations underlying the
classification decisions made by our selected
model.

Figure 7 demarcates two distinct
classification cases associated with the SwinV2-T
model: an instance of accurate classification and
a contrasting case of misclassification.

In scenarios where the classification
proves accurate, the model's top-1 prediction
perfectly resonates with the ground truth,
illustrated by the case of the mineral Boleite. A
closer examination reveals that the model, in its
discernment, emphasizes specific features of the
mineral. Specifically, it pays particular attention
to the frontal facade of the mineral, which
seems to be a key determinant in its accurate
classification.

eval/loss

4 ¥ train/global_step

2k 4k 6k 8k

(a) The loss of three models on the test set

eval/accuracy

train/global_step

2k 4k 6k 8k

(b) The accuracy of three models on the test set

Figure 5. The (a) loss and (b) accuracy of three
models, namely SwinV2-T (pink), SwinV2-S
(yellow), and SwinV2-B (blue) on the test set during
the training phase.
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Figure 6. The process GPU power usage (in Watt)
of three models, namely SwinV2-T (pink), SwinV2-S
(yellow), and SwinV2-B (blue) during the training phase.

However, in instances where the
classification goes awry, the model's decision-
makingintricaciesbecomeall themore fascinating.
Taking the case where the model erroneously
identifies an image as Monazite, with the second-
highest probability assigned to Xenotime, the
GradCAM explanation offers invaluable insights.
The model seems to be unduly influenced by the
image's background and specific sections of the
Xenotime that are color-matched with training
samples of Monazite. Such idiosyncrasies in
model behavior, illuminated by XAl techniques,
accentuate the need for interpretability. It ensures
that even when the model falters, its decision-
making rationale remains transparent, allowing
users to comprehend and, potentially, correct or
circumvent such pitfalls.

(a) Correct classification

Top-1 prediction: Boleite  Explanation
Ground-truth: Boleite

(b) Wrong classification
W ‘V .

Top-1 prediction: Monazite Explanation
Top-2 prediction: Xenotime
Ground-truth: Xenotime

Training sample
of Monazite

Figure 7. Examples of XAl-driven explanations
for (a) an accurate classification and (b) an instance
of misclassification as determined by SwinV2-T.
Notably, the latter also integrates a training exemplar
of the misclassified mineral, offering users an added
layer of context.
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4.3. Comprehensive insights through information
retrieval

Table 2. Information retrieval with GPT-4 on
classified minerals. As being instructed to deliver
only facts from credible sources, the GPT-4 can

deliver human-like information to end-users.

Mineral: Monazite

GPT-4: Monazite is a rare-earth phosphate mineral
with the chemical formula (Ce,La,Nd,Th)PO,. It is
typically reddish-brown in color and has a resinous
to vitreous luster. Monazite is an important source
of rare-earth elements, which are used in various
high-tech applications including electronics,
magnets, and catalysts. It is also known for its
radioactive properties, containing thorium and
uranium. Due to its scarcity and economic value,
monazite is often mined for its rare-earth content.

Mineral: Acanthite

GPT-4: Acanthite is a silver sulfide mineral with
the chemical formula Ag,S. It is an important ore
of silver and is commonly found in hydrothermal
veins and low-temperature deposits. Acanthite
is known for its metallic luster and dark gray to
black color. It has a high density and is relatively
soft. Acanthite is often associated with other silver
minerals such as native silver and argentite. It is
widely used in the production of silver metal and
jewelry.

Building upon the top-1 classification of
our mineral classification framework, GPT-4
acts as a sophisticated intermediary, extracting
and presenting informative details about the
identified minerals, such as Monazite and
Acanthite, as shown in Table 2. Leveraging its
vast training data, which encapsulates extensive
knowledge on diverse mineral specimens, GPT-4
ensures that the information procured is not just
accurate but is also curated to cater to users with
varied levels of prior knowledge.

Furthermore, by incorporating safety
protocols that ensure information retrieval solely
from reputable sources, such as Wikipedia,
The Mineral and Gemstone Kingdom, and the
Mineral Resources Database, we guarantee the

veracity and reliability of the procured data.
Thus, users not only receive a rich tapestry of
mineralogical information but also the assurance
of'its credibility. In essence, the synergy between
our classification framework and GPT-4 creates
an enriched user experience, fostering a more
profound understanding and appreciation of the
minerals.

5. CONCLUSION AND FUTURE WORK

Throughout this work, we have presented an
Al-driven mineral classification framework
characterized by its high interpretability and
informative capabilities. This framework,
bolstered by advanced XAI techniques and
LLM, is strategically designed to cater to a wide
audience, including those with limited or no prior
expertise in mineralogy or Al. The incorporation
of XAlprovesinvaluable, particularly ininstances
of incorrect model decisions, facilitating a more
transparent and comprehensible insight into the
model's reasoning. Such transparency is crucial
in bolstering user trust and understanding,
enabling them to more confidently engage
with the system. Our future works revolve
around broadening the scope of our dataset by
integrating data from diverse and robust sources.
This not only promises to enhance the model's
precision but also its efficiency. Additionally,
we aim to delve deeper into the human-centric
aspect of our system. Specifically, we intend to
orchestrate comprehensive human evaluations
that will scrutinize both the plausibility and the
faithfulness of explanations and information
generated by XAl techniques and LLMs. Such
evaluations will serve as a litmus test, assessing
the real-world applicability and impact of our
framework on its intended users.
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