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TOM TAT

Bai bao nay tap trung vao nghien ciu luge do lap kiéu Newton gan ding giai céc phuong trinh suy rong
bao ham 4nh xa da tri trong truong hgp hitu han chiéu. Chtng t6i dé xuat mot chién luge cap nhat dong
cac bude 1ap méi biang cach dua vao tai moéi buée mot mo hinh quy hoach toan hoc diya trén dang tuyén
tinh hoéa ctia phan don tri xuét hien trong phét biéu bai toan gbc. Ching t6i ciing dua ra két qua phan tich
hoi tu dia phuong ctia luge dé duge dé xuit va 4p dung dé xay dung mot thudt toan ciu tric cho mot 16p
quan trong la cac bai toan bii. Mot vai thuce nghidm s ciing duge xem xét nham danh gia bude dau tinh
khé thi thyc tién ctia phuong phap.

T khoéa: Anh zq da tri, phuong trinh suy rong, phuwong phdp Newton, tinh nia on dinh.
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ABSTRACT

This paper deals with inexact Newton-type scheme for solving generalized equation governed by

set-valued mappings defined on finitely dimensional spaces. We proposed a new dynamical updating strategy

by adapting in a mathematical program modeling based on the linearization of the single-valued part at each

step. We investigated the local convergence behavior of the proposed framework and applied it to design a

structural algorithm for solving complementarity problems. Implementation of several numerical tests was

also considered to illustrate the feasibility of such framework.

Keywords: Set-valued mapping, generalized equation, Newton-type method, semistability.

1. INTRODUCTION

The Newton (or Newton-Raphson) method together
with its extensions have been well-known in the lit-
erature as among of popular and efficient strate-
gies for finding the zeros to a system of nonlinear
functions. This is due to the good behavior of con-
crete algorithms designed from such manner, espe-
cially, the high growth of the convergence under mild
assumptions on the input data. particularly, when
the functions defining the system are sufficiently
smooth (of C1* class for example), the corresponding
Newton-based algorithms might be locally quadrati-
cally convergent (seel).

As motivated from certain problems in appli-
cations, many authors have extended the classical
Newton framework to deal with the general model
called by generalized equation (GE). Mathemati-
cally, an abstract GE defined on finite dimensional
spaces can be formulated as inclusions involved set-
valued map

0 ®(x)+ N(z). (1)

where, the single-valued term ® : R® — R™ is as-
sumed to be smooth up to the necessary order, and
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the set-valued part N : R" =% R™ has closed graph.
Problem of type (1) covers many concrete situations
under the suitable choice of N. One of the most im-
portant case is the variational inequalities? which
is closely related to mathematical program induced
by selecting N to be the normal cone mapping as-
sociated with feasible region. For the sack of further
reading, we refer to.} and the references therein.

One of the earliest framework dealing with ab-
stract problem (1) is the famous Josephy-Newton
method.* The core idea behind is to perturb (1)
by replacing ® with its linearization at each step
and searching the next iterate as a solution to the
auxiliary problem

0 € ®(z*) + &' (zF)(z — 2*) + N(z). (2)

Here and in what follows, z* is meant to be the &'
iterate of the principal loop, and @ stands for the
first-order derivative of ®. More general, (2) can
be subsumed as a particular case of the following

scheme
0 € A(z", z) + N(x), (3)

in which a perturbed term A(x*,.) is in the posi-
tion of ®. (The typical Josephy-Newton framework
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is induced from (3) if we let A(u,v) = ®(u) +
®’(u)(v—u).) Under some mild assumptions, the ref-
erence methods will produce an iterative sequence
(z%) that converges to a solution of (1) with lin-
ear/superlinear /quadratic rate. The readers should

t1356 and the references therein for more

consul
about those topics.

As mentioned in,! one of the sharpest trend for the
study of local convergence of (2) was appeared in
the work,” and then, was considered in the later pa-
per.® Another line for dealing with (2), sometimes is
said to be semilocal convergence result, was begun at
least from the work,® and then, by some later ones,
e.g. 51911 Perhaps the major difference between the
two aforementioned strategies is that, the local con-
vergence involves the information concerning an ex-
isting solution, while the other one almost concen-
trates on initial guess point.

Toward the numerical implementation aspect,
the Newton-type frameworks mentioned above op-
erate as follows: after getting an iterate, one con-
structs a partial linearization system corresponding
to the original problem, and then solve exactly the
immediate system to produces the next step. (Par-
ticularly, (2) and (3) are typical in such a manner.)
Being quite different, some authors proposed several
inexact schemes in order to solve variational inclu-
sion (1). For instance, the paper'? introduced an
abstract iterative scheme based on the subproblem

(®(z*)+9' (z%) (z—2")+ N (2)) "Ry (z", ) £ 0 (4)

for a family of set-valued maps Ry : R” x R" —
R™. While the authors® developed the algorithms
for (1) using the updating process obtained by con-
sidering the perturbed inclusion

0 € d(z") 4+ &' (aF) (x — ") + Qa*, & — 2F) + N ()
(%)

k is present. The inexact models allow

whenever x
us to apply suitably dynamical strategy of selecting
the solvers to handle auxiliary problems that still
ensure the convergence of overall process.

The current paper follows the idea of inexact
Newton-type methods proposed in the literature
with a few relaxations. Suppose now an iterate
zF € R™ is known, then we would compute next
step 2"t! via the perturbed GE

0 € ®(zF)+ & (a*) (2! —2F) +wk + N(zF+), (6)

for a perturbation term w* € R™. The performance
of the overall procedure is strongly concerned with

how efficiently one selects w® and solve the inclu-
sion (6). For instance, with aim of obtaining locally
superlinear convergence of the resulting sequence
(x%), we can require that w* satisfies the condition

|lw®|| = 0(||fﬂk+1 — ¥ + ||~ — ")) (7)

as mentioned,! where z* is assumed to be an exist-
ing solution. Unfortunately, this dynamical choice
for w* seems to be slightly difficult to verify in
practice, since it involves a posterior estimation. To
avoid that drawback, we proposed a modified ver-
sion of (7) by solving simultaneously z**! and w*
with some additional constraints. Precisely, let us
introduce several auxiliary variables d = z — 2%,

z € R™ and consider the optimization problem

ming o t

subject to  ®(z%) + &' (2%)(d) + w + z = 0,
Jw]|* = t]ld]* <0,
z € N(z* +d),

(8)

for unknowns ¢, d, w and z. Once an exact/inexact
solution to (8) is found, we update the next step
oFtt = gk 4+ d*F (d* is extracted from the previ-
ous procedure) and continue. Note that if (7) does
hold, problem (8) will admit a feasible solution
(t,d®, w* z*) such that t; | 0. This demonstrates
the possibility of implementing (8) in practice with
the help of available optimization solvers.

The paper is organized as follows. In the next
section we recall some basic notions used throughout
the paper. Section 3 is devoted to introduce our gen-
erally inexact Newton-type framework and investi-
gate its local convergence. In Section 4, we apply our
method to a concrete important class of variational
problem. The last section presents some numerical
experiments to consider the practical performance
of algorithms based on our approach.

2. PRELIMINARIES

For the convenience of reading, we start by re-
calling some notions that will be used through the
paper. The convention ol notations used in the
monograph will be applied throughout the paper.
We frequently work with the a set-valued map
N : R®™ =2 R™ assigning to each x € R™ a sub-
set N(x) C R™ (may be empty). Such an ob-
ject could be identified with its graph, defined by
Gr(N) := {(z,y) € R* x R™ | y € N(z)}. For any
usual map ® : R — R™ (equivalent terminology
single-valued map), its (Frechét) derivative will be
denoted by ®’. While, notation ®” is meant to be
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the second-order corresponding derivative. When &
is real-valued, we write V®(z) and V2®(x) respec-
tively to indicate its gradient vector and Hessian
matrix at a given point x. Conventionally, all single-
valued maps appeared in the paper are assumed to
be differentiable up to the necessary order.

The problem of our interest is an abstract GE of the
form

0 € ®(x) + N(x), (9)

where ® : R®™ — R™ is a smooth map, and
N : R™ = R" is set-valued whose graph is a closed
set. The closedness assumption to Gr(N) allows for
preserving the inclusion involving N after passing to
the limit. We are interested in the iterative scheme

governed by solving the subproblem of the form

0 € ®(zF) + @' (2")(z — %) + Q¥ — 2%) + N(z),

(10)
for some set-valued term 2 : R" x R™ == R". To
study the convergence behavior of such scheme, the
next, definition is useful.

Definition 1 (Semistable solution,!). Suppose that
z* € R™ is a solution to GE (9). z* is said to be
semistable if for every r € R™ any solution u(r) to
the perturbed inclusion

r € ®(x)+ N(z) (11)
being close enough to x* satisfies the estimate
[u(r) = Orll) as |r]f — 0. (12)

Concern Definition 1, the next result is fruitful
when dealing with the local convergence analysis of
scheme updated through (10).

Theorem 2 (! Theorem 3.6). Let z* be a semistable
solution to the GE (9) for which the derivative ®'
is continuous at x*. Let 0 : R" x R™ = R"™ be a set-
value map satisfying the following assumption: for x
close enough to z*, the GE

0€d(x)+d(x)(u) + Qx,u) + N(z+u) (13)

has a solution u(x) such that u(x) — 0 as x — z*
and the estimate

lwll = o(fjull + [lz = =™[) (14)

holds as © — x*, u — 0 uniformly for w € Q(z,u),
x € R™, u € R™ obeying the inclusion

0€®(z)+ P (x)(v) +w+ N(z+u). (15)

Then there exists 6 > 0 such that for any starting
point 2V € close enough to x*, there ewists a sc-
quence (z%) C R™ such that z**' is a solution to
the GE (10) for each k =0,1,2, ..., satisfying

ot — 24| < 6. (16)

https://doi.org/10.52111/qnjs.2021.15306

For any such sequence, 2* converges to =* superlin-

early. Moreover, the rate of convergence is quadratic
provided the derivative ® is locally Lipschitz-
continuous with respect to x*, and provided (14) can
be replaced with the estimate

lwll = O(llull® + Il — 2*[|*). (17)

Here, superlinear rate of convergence is meant to
be z¥ — z* with

O oty
limsup —— = 0. 18
N P (18)
If the relation
k+1 _ %
lim sup o il < 400 (19)

koo |lzF — 2|2
is in position of (18), one says that #* — z* quadrat-
ically. Further, local Lipschitz continuity of ® w.r.t

*

z* is equivalent to the assertion that

|9 (z) — (=)

lim sup I < +o00. (20)

rH#x —a* ||-T - I/H

3. LOCAL ANALYSIS FOR A CLASS OF IN-
EXACT JOSEPHY-NEWTON METHOD VIA
OPTIMIZATION MODEL

The current section is devoted to study an iterative
scheme of inexact type for solving GE (9) by mod-
ifying the well-known Josephy-Newton method in
the literature (see more, e.g.%%). Such a framework
based on the optimization model (8) in order to up-
date z**t! = 2% + d*, where d* is computed from
an exact/approximating optimum to the nonlinear
programming

mingsg ¢

s.t. O(z*) + &' (2F)(d) +w +2=0
dd < p} (21)
wlw —tdTd <0
z € N(z¥ +d),

where (py,) is a positive sequence that determines the
upper bound for actual step d*. Comparing with (8),
such a constraint is included to avoid the quite long
step and ensure the local convergence property. This
model can be viewed as a relaxation of the original
subproblem involved in the Josephy-Newton scheme

0 € ®(x") + @' (z*)(x — 2®) + N(z) (22)

after adding the slack variable w. Also, (21) is sub-
sumed as a particular case to (18), where Q(z*, z —
x*) coincides with the w component of feasible re-
gion to problem (21). Algorithm 1 outlines the over-
all process of our proposed method.
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Remark 3. The core phase in Algorithm 1 is sub-
problem defined in (21) which simultaneously gener-
ates both the search direction d and the term of in-
exactness w. This is slightly different from the strat-
egy given by (10), where the suitable candidate for
w should be chosen via an existing set-valued map
Q. To the practical implementation aspect, our pro-
posed algorithm using optimization model (21) is
quite flexible rather than the one by means of (10).
Nevertheless, the performance of overall process de-
pends on how efficient we solve (21). Further, for
concrete applications, it is also necessary to invoke
some reasonable globalization framework in order
to avoid the sensitivity when dealing with difficult
problems. Those issues should not be in the scope
of this paper, and for the analysis here, we assume
in general that any of subproblem (21) is solved
successfully throughout the principal loop of Algo-
rithm 1.

Concern the behavior of Algorithm 1, we con-
sider some assumptions below.

(Al). The sequence of parameters (py) appear in
model (21) is chosen in some manner such that
pr 4 0.

(A2). The mathematical program (21) admits at
least one (optimal or almost optimal) solu-
tion that can be successfully computed at each
step.

(A3). The optimal value ;" returned by solv-
ing (21) satisfies

limsup {¢t*'} = 0. (23)
k—o0

input :2° & N

output: sequence z°, z', 2?2, ...

k+0;

repeat /*principal loop*/

Set up the model (21) ;

Solve the model (exact/inexact);

if solve (21) successfully then
Extract d* from solution to (21);
Update 2+t « zF + d*;

kE+—k+1
else /*subproblem fail*/
Terminate the loop ;
endif
until stopping criterion reached;/*end
loop*/

Algorithm 1. Inexact Newton-type method involving

optimization model of subproblems

The next theorem summarizes the local conver-
gence result for the proposed method based on
Algorithm 1.

Theorem 4 (Local analysis for Algorithm 1). Con-
sider GE (9) whose single-valued part ® is differen-
tiable. Let x* be semistable in the sense of Defini-
tion 1 and ® be continuous around x*. If all as-
sumptions (A1), (A2) and (A3) are fulfilled, then
by starting at x° being close enough to x*, the se-
quence (x%) generated via Algorithm 1 converges to
x* superlinearly.

Proof. We notice first that, if we set
o= @R ) — @ (2F) — @' (2F) (dF) — Wk, (24)
then it is obvious to see that z**! solves the GE
r* € ®(x) + N(x). (25)

For the main proof, let us mimic the line of The-
orem 2. Choosing some parameters x > 0 and
0 < d,€ < 1 for which the following does hold: when
I7]l < 2¢, any solution wu(r) to the perturbed GE

r € ®(u) + N(u) with [|u(r) — z*|| < 2§ will satisfy
the estimate

u(r) = 2" < &lr|. (26)
Scaling € > 0 if necessary, we can suppose that
1@ (2) — @' (a")]| <6, Vjr — 2" <26 (27)

Finally, since pj | 0, after skipping a few first in-
dexes, it is possible to require py < €.

We now start by z¥ such that ||2° — z*|] < e
By assumption (A2), (21) produces some triplet
(to,d°, w®) which solves the GE

0€ ®(2”) + @' (a°)(d’) + w° + N(2® + d°) (28)

such that [[w®|| < to||d°|| and ||d°|] < po. As men-
tioned at the beginning, ' = 2% + d is a solution
to the inclusion

€ ®(x) + N(x) (29)
for 1 = ®(z') — ®(20) — &’ (2°)(d") — w’. The Tay-
lor’s expansion applied to @ yields

0 — /1 {[® (2% +5d°)— @' (2°)](d°) } ds—w". (30)
0

Because of ||#° —z*|| < e and ||d°||< po, it does hold
[|2° + sd® — 2*|| < 2¢ when s varies in the interval
[0, 1]. Thus, the estimate

12"(2° + sd°) — @'(27)[| < 8 (31)

is straightforward for 0 < s < 1. The combination
between (27), (30) and (31) gives us

0] < 28]l + [[w® ]| < (28 + to) ]| (32)

Hence, assumption of Theorem 4 implies ||7°|| < 2e.
Consequently, we obtain

ot — o) < wllr%)) < m(26 4+ 1)) (33)

Taking into account the inequality ||d°| < [|z! —
z*|| + ||z° — 2*||, we deduce from (33)

https://doi.org/10.52111/qnjs.2021.15306
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1 * K(26 + tO) 0 * 0 *
—r| < = |]2° — —z*|,
It o < T gyl =l < la® — ),
(34)
if the following is active
2k(20 + tg) < 1. (35)

Because § > 0 can be made arbitrarily small and
tr * 10, (35) could be supposed to satisfied.

In summary, under the condition (35) and || —
7*|| < €, we obtain z! via Algorithm 1 and moreover

lo" — 27| < ofl2” — 2| (36)

for some 0 < o < 1. This shows that the process
above still applicable if z! is in position of z°. As a
result, the sequence (z¥) is well-defined with

4~ <ol —al (3D
It can be derived from (37) that ||2* — 2| — 0. The

superlinear rate of convergence is attained by apply-
ing the result presented in! Proposition 3.4. ]

4. APPLICATION TO NONLINEAR COM-
PLEMENTARITY PROBLEMS (NCPS)

The NCP corresponding to a smooth map F
R™ — R"™ could be formulated as follows (see,
e.g.?)

x>0,F(z) > 0,27 F(z) =0, (38)

in which we denote as usual 27 the transpose of
being written as a column matrix. If F' coincides
with the gradient Vf to a smooth real-valued func-
tion f : R® — R, the NCP (38) reduces to the KKT

system associated with minimization program*

min, f(z) st. 2 >0. (39)
By setting ®(z) = F(x) and

{zER"|z<0,sz=0}, ifz >0
N(z):=
0, otherwise,
(40)
we recover GE (9) from (38). The optimization
model (21) now reads

mint>0 t

8.t. F(®) + F'(z*)(d) +w+2=0
ZT(zk+d)=0
—dTd+pi >0 (41)
—wTw+tdTd >0
2 +d>0
—z > 0.

THomepage: https://www.gnu.org/software/octave/

https://doi.org/10.52111/qnjs.2021.15306

Under such configuration, the iterative process
to find a solution of (38) based on our pro-
posed scheme is described in Algorithm 2.

input : 20, F

output: sequence 20,z 22,

k<« 0;

repeat /*principal loop*/
Compute py ;

Set up the model (41) ;

Solve the model (exact/inexact);

if successful solving then
Extract d* from solution to (41);
Update z#t1 « 2% + d¥;
k< k+1;

else /*subproblem failx/
Terminate the loop ;

endif

until stopping criterion reached;

Algorithm 2. Inexact Newton-type method
for NCP (38)

5. NUMERICAL EXPERIMENTS

We implement Algorithm 2 with open-source soft-
ware GNU Octave.! The testing model involving
mathematical program (39) whose objective func-
tion f: R™ — R belongs to the well-known family
of Rosenbrock type!?
n—1
f@) = (@1 — 23+ (@ - 1%, (42)
i=1
where r > 0 is some parameter. Throughout the
tests, each input sample is randomly generated via
the built-in program randn. To handle subproblems
in the form of (41), we invoke some certain hooking

solvers ipopt,'* minos,'® snopt.'% At the moment,
we benchmark the performance by comparing sev-

eral features:

e the number of samples that stops at successful
criteria;

e the number of samples that assump-
tions (A2), (A3) are fulfilled throughout the
principal loop.

To decide whether termination is optimal or not,
we adopt the merit function w(z) = ||diag(z)F ()|,
where diag(z) is the diagonal matrix whose diago-
nal entries are components of vector x. The thresh-
old tolerance for stopping criteria maintained dur-
ing the test is chosen as 1079, while the maxi-
mum number of iterations in principal loops is set
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to be 200. Here, we update dynamically pp41 =
min(pg, 1/log(k + 1)) and check assumption (A3)
by comparing with the slowly convergent sequence
er = 1/k. Tables 1 and 2 show the benchmarking
results obtained after specific test which consists in
N = 20 samples of dimension n = 5.

Features ipopt minos snopt
nb. optimal 4 2 3
nb. limit 16 12 6
nb. failure 0 6 11

Table 1. Numerical implementation of Algorithm 2: nb.
optimal (resp.nb. limit,nb. failure) indicates the
number of founding optimal iterate (reaching limit of
threshold /updating fail)

Features ipopt minos snopt
nb. valid 10 13 8
nb. failure 10 6 12
nb. other 0 1 0

Table 2. Information concern Assumption (A3): nb.
valid (resp. nb. failure, nb. other) shows the num-
ber of samples that satisfy (resp. not satisfy, be unsure)

From Table 1, we can see that our proposed
model works pretty well. More specifically, the per-
centage of problems which are successfully solved by
our model combined with ipopt, (resp. minos and
snopt) is 100%, (resp. 70% and 50%). This means
that the successful rate of our model is more than
70%. It is worth noting that ipopt, minos and snopt
are general-purposed solvers which are not properly
designed for our new model. It is really interesting
to propose a particular algorithm for solving (41)
which is more efficient than these above solvers.

Fraction between error bounds plot

J,

15, X 1% X1
2

Figure 1. Superlinear convergence of Algorithm 2 with
ipopt solver

Fraction between error bounds plot
1

I, X WX X1

-y :
&

*— —— — —

Figure 2. Superlinear convergence of Algorithm 2 with
minos solver

Table 2 shows us the validity of assumption (A3).
Tt can be seen that over 50% (31/60) of problems sat-
isfy this assumption. According to Theorem 4, Algo-
rithm 2 will attain a superlinear rate of convergence
in these problems. To verify this assertion, we plot
the behavior of Algorithm 2 when solving a prob-
lem satisfying assumption (A3) in Figures 1, 2 and 3.
These figures give us the error distance of iterates in
one certain successful sample that is extracted ran-
domly. We can see that the error distances decrease
faster and faster on last iterations. This implies the
superlinear convergence in the corresponding cases.

Fraction between error bounds plot

- -

10° I“‘

1%y X XX

107 !
0 50 100 150 200
Iter

Figure 3. Superlinear convergence of Algorithm 2 with
snopt solver

Remark 5. In Table 2 the only of interest is ac-
tually Assumption (A3), because the lack of validity
for Assumption (A2) is almost the same with failure
of overall process given in Table 1.
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