

Thuốc trừ sâu: mục tiêu, cơ chế hoạt động và đánh giá rủi ro

Yves Combarous¹, Nguyễn Thị Mộng Điệp^{2,*}

¹Đơn vị Sinh lý sinh sản và Hành vi (PRC), INRAe, CNRS, Trường Đại học Tours, 37380 Nouzilly, Pháp

²Khoa Khoa học Tự nhiên, Trường Đại học Quy Nhơn, Thành phố Quy Nhơn, tỉnh Bình Định, Việt Nam

Ngày nhận bài: 03/10/2022; Ngày sửa bài: 18/01/2023;
Ngày nhận đăng: 31/01/2023; Ngày xuất bản: 28/02/2023

TÓM TẮT

Thuốc trừ sâu (chủ yếu là thuốc diệt cỏ, diệt côn trùng, sâu và diệt nấm) được sử dụng để tiêu diệt một số loài thực vật, động vật hoặc vi sinh vật có hại cho nông nghiệp. Do những điểm tương đồng cơ bản trong tất cả các sinh vật sống, việc tấn công mục tiêu là các loài không mong muốn mà không ảnh hưởng đến những loài khác, kể cả con người là một thách thức. Theo quan điểm này, việc xác định chính xác các phân tử hoặc cơ chế tấn công mục tiêu của thuốc trừ sâu là vô cùng quan trọng để đánh giá rủi ro và phát triển các chế phẩm thuốc trừ sâu hiệu quả, ít gây nguy hiểm đến cây trồng, động vật hoang dã và con người. Bài báo này sẽ trình bày ngắn gọn về các nhóm thuốc trừ sâu phổ biến, cơ chế hoạt động cũng như đặc tính của chúng đối với mục tiêu và tác dụng phụ có thể xảy ra đối với các thành phần của môi trường như quần thể côn trùng và thực vật, không khí, nước hoặc hệ sinh vật đất.

*Tác giả liên hệ chính.

Email: nguyenthimongdiep@qnu.edu.vn

Pesticides: targets, mechanisms of action, and risk assessment

Yves Combarous¹, Thi Mong Diep Nguyen^{2,*}

¹INRAe, CNRS, Tours University, Unité de Physiologie de la Reproduction & des Comportements (PRC) 37380 Nouzilly, France

²Faculty of Natural Sciences, Quy Nhon University, Quy Nhon city, Binh Dinh Province, Vietnam

Received: 03/10/2022; Revised: 18/01/2023;

Accepted: 31/01/2023; Published: 28/02/2023

ABSTRACT

Pesticides (mainly herbicides, insecticides, and fungicides) are used to chemically combat certain plants, animals, or microorganisms perceived as harmful to agriculture. Due to the fundamental similarities in all living beings, it is challenging to target unwanted species without affecting others, including humans. In this perspective, precisely identify the molecules or mechanisms targeted by pesticides is of utmost importance for assessing risk and developing efficient pesticide preparations with limited damage to crops, wildlife and humans. This review will briefly present the group of common pesticides, their mechanisms of action as well as their toxic effects on the target and possible side effects on the components of the environment such as insects and plants populations, air, water, or soil biota.

1. INTRODUCTION

Originally, the term pest was limited to “*Insects or small animals which damage crops or food supplies*”.¹ With this first definition, only insecticides (meaning insect killer) and rodenticides (rodent killer in general) would be called pesticides. The definition has now been extended to “*Something resembling the pest (plague) in destructiveness especially, a plant or animal detrimental to humans or human concerns, such as agriculture or livestock production*”.² With this definition, herbicides are included among pesticides, representing about 80% of their total use. Moreover, in the scientific literature, fungicides (fungi killers)

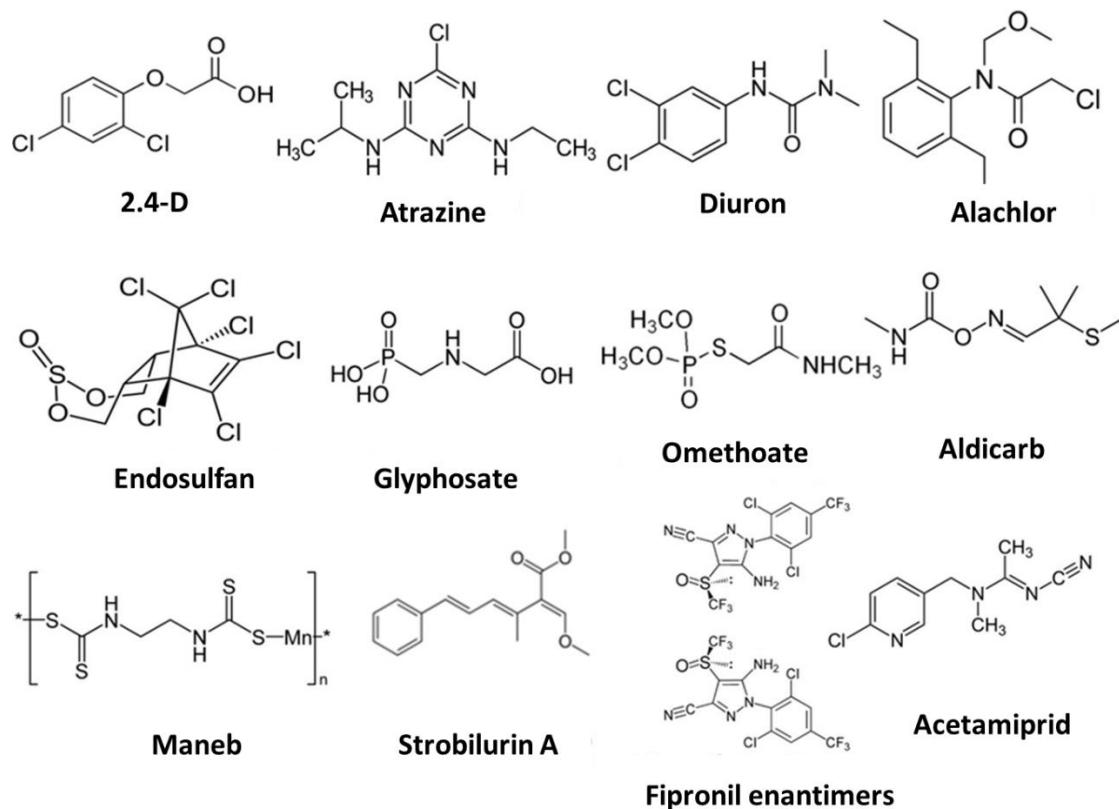
and bactericides (bacteria killers) are now taken into consideration under the general term of “pesticide” as well as many specialized products such as molluscicides (snails and slugs killers), nematicides (nematodes killer), etc.

The pesticides are intended to protect crops by acting against deleterious weeds, insects (and other invertebrates), fungi, or microorganisms. It is obvious that the mechanisms of action against such a variety of targets should be different to retain the highest possible specificity to destroy the undesired species without negatively affecting the crop to be protected as well as humans and wildlife.³ About a thousand chemical pesticides

*Corresponding author:

Email: nguyenthimongdiep@qnu.edu.vn

employing more than a hundred unique mechanisms have been developed. One of the challenge is to have available strains resistant to the pesticides used against the organisms harmful to the crops.³ Thus, it is of utmost importance to have good knowledge of the pesticides targets and mechanisms of action to protect crops without affecting wildlife and human health.


2. PESTICIDE FAMILIES (STRUCTURES AND TARGETS)

Numerous pesticides with various structures have been developed to combat different pests affecting crops (Table 1 and figure 1). In term of total quantity, around 55% are herbicides, 6% insecticides and 29% fungicides in order to control ~1800 weeds, ~10 000 insect pests, and ~80 000 fungi.

Table 1. Overview of the main classes of pesticides.

Chemical Class	Herbicides	Insecticides	Fungicides
Organochlorines	2,4-Dichlorophenoxyacetic acid (2,4-D) dichlorodiphenyltrichloroethane (DDT)	Endosulfan	Hexachlorobenzene
Organophosphates	Glyphosate	Diazinon, Omethoate, Dimethoate, Chlorpyrifos, Maldison, Methidathion	
Carbamates and thiocarbamides		Aldicarb, Carbofuran, Oxamyl, Carbaryl, Methomyl, Pirimicarb, Thiodicarb	
Metal-organic dithiocarbamates	Nabam (algicide)		Maneb, Mancozeb, Zineb
Urea derivatives	Diuron, Fenuron, Metoxuron, Miuron, Linuron, Monuron		
Heterocyclic compounds	Brassinazole	Triazines Atrazine	Strobilurins, Benzimidazole, Triazole derivatives
Phenol and nitrophenol derivatives	Dinocap	Dinoseb	Dinoseb
Fluorine-containing compounds	Phenylpyrazoles, Acetopyrazole	Fipronil	Dichlofluanid
Copper-containing compounds			Cuprous oxide, Copper sulfate, Copper octanoate, Copper hydroxide, Copper oxychloride sulfate

Synthetic pyrethroids	Allethrin, Alpha-cypermethrin, Beta-cyfluthrin, Bifenthrin Cypermethrin, Cyfluthrin, Deltamethrin, Esfenvalerate, Fluvalinate, Fenvalerate, Lambda-cyhalothrin, Pyrethrins
Neonicotinoids	Acetamiprid, Clothianidin, Imidacloprid, Thiamethoxam
Others	Spiroxamine

Figure 1. Chemical structure of a few pesticides.

2.1. Herbicides

Prominent herbicides belong to seven main families:

- 1) Photosystem II (PSII) inhibitors showing various cross-resistances among sub-families a) triazines (e.g. atrazine), pyridazinone (e.g. pyrazon), phenylcarbamate, b) anilide (e.g. propanil), ureas (e.g. diuron), c) benzothiadiazinone (e.g. bentazone), hydroxybenzonitrile (e.g. bromoxynil).
- 2) Superoxide promoters in chloroplasts such as paraquat and diquat.
- 3) Shikimic acid inhibitors such as glycine derivatives (e.g. glyphosate).
- 4) Tubulin polymerization inhibitors such as dinitroanilines (e.g. pendimethalin).
- 5) Gibberellin pathway inhibitors such as chloroacetamides (e.g. acetochlor, S-metolachlor).
- 6) Auxin pathway disruptors such as phenoxy and benzoic acids (e.g. 2,4-dichlorophenoxyacetic acid 2,4-D).
- 7) 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors (e.g. mesotrione).

2.2. Insecticides

Prominent chemical insecticides include organochlorines, organophosphates, carbamates, pyrethroids, and neonicotinoids.

1) Organophosphates (e.g. chlorpyrifos, acephate, dimethoate) and carbamates largely replaced organochlorines such as DDT. All operate through the inhibition of the acetylcholinesterase enzyme (AChE), causing acetylcholine to transfer nerve impulses endlessly, and then inducing weakness or paralysis. The toxicity of Organophosphates to vertebrates led to their partial replacement by the less toxic carbamates (e.g. carbofuran).

2) Pyrethroid insecticides (e.g. λ -cyhalothrin) are the synthetic counterparts of the pyrethrin pesticide, naturally found in chrysanthemums.

3) Neonicotinoids (e.g. imidacloprid) are insecticides of the neuro-active class structurally similar to nicotine⁵⁻⁶ and target the nicotinic ACh receptor (nAChR).

2.3. Fungicides

Contact fungicides work by preventing fungal spores from germinating or penetrating into the plant from the leaf surface. They require care in the application as complete coverage is essential for effectiveness.

Penetrant fungicides work inside the plant and can be locally systemic or translocated throughout the plant. They can be preventative and curative.

The most common fungicides are:

- 1) Respiration inhibitors like succinate dehydrogenase inhibitors (SDHIs) or quinone outside inhibitors (QoIs).
- 2) Sterol biosynthesis inhibitors such as demethylation inhibitors DMIs which disrupt the fungi cell membrane and organelles after spore germination.
- 3) Fungicides are also necessary to combat fungi affecting animals, particularly humans (*Candida albicans* and others). These products for humans are pharmaceutical drugs and not « pesticides » as they are not dispersed in the environment to protect crops. Nevertheless, themselves or their metabolites can be found in the environment and exert toxic effects.

3. PESTICIDE CHEMICAL STRUCTURES AND MECHANISMS OF ACTION

Depending on their structure (Figure 1), the most commonly used pesticides can be divided into different chemical groups⁷ with various usages (Table 1). The different biological targets are, of course, determined by the chemical structure of their targets. It is expected that chemical specificity would lead to biological specificity. Nevertheless, many of them exert non-specific oxidative stress.⁸ A number of pesticides now consist of microorganisms or toxins from them, instead of chemicals.⁹⁻¹⁰

3.1. Herbicides

The main molecular targets of herbicides are the following:

1) Auxin (IAA) receptor (2,4-D, 2,4,5-T, phenoxy, and benzoic acids): The strong downstream stimulation of the auxin signaling pathway leads to uncontrolled growth of meristem cells, disorganizing the development of their vascular structures.¹¹ These pesticides kill most broad-leaf weeds such as plantain, common chickweed, dandelion, ground ivy, yellow wood sorrel, prostrate knotweed, or white clover.

2) Acetolactate synthase (sulfonylurea derivatives): The inhibition of this enzyme controlling the branched-chain amino acid biosynthetic pathway¹² in targeted weeds leads to their death by starvation and also breakdown, accelerated at a high light intensity, in the electron transport process.

3) D-1 plastoquinone-binding (QB) protein in photosystem II electron transport (triazines): These herbicides inhibit photosystem II by disturbing the photosynthetic electron transport through competition with the native plastoquinone for the D1 protein QB-specific site.¹³⁻¹⁵

4) BZR1 (Brassinazole Resistant 1) transcription factor (brassinazole triazole): Brassinazole inhibits brassinosteroid effects through binding to the BZR1 (Brassinazole Resistant 1) transcription factor in the targeted weeds.¹⁶⁻¹⁸

5) 5-enolpyruvylshikimate-3-phosphate synthase (glyphosate): Through this inhibition of 5-enolpyruvylshikimate-3-phosphate synthase, glyphosate disrupts the shikimic acid pathway, which is indispensable for the synthesis of aromatic amino acids, and thus for protein (including enzymes) expression in the targeted weeds¹⁹ but also in a number of prokaryotes and fungi.²⁰⁻²²

3.2. Insecticides

The main targets of insecticides are the following:

1) Acetylcholinesterase (organophosphorus, carbamates, neonicotinoids): The inhibition, by covalent binding to an active site serine residue of cholinesterase (AChE), at the cholinergic junctions of the target insect nervous system, leads to a sustained, lethal influx.²³⁻²⁵ Together, the different insecticides can exert additive effects if acting the same way, or synergic effects if not.²⁶⁻²⁷

2) GABA-gated chloride channel (fipronil, endosulfan, lindane,): These compounds act as antagonists by stabilizing non-conducting conformations of the chloride channel and so antagonize the GABA action on insect neurons in a noncompetitive manner.²⁸⁻³¹

3) Ca^{2+} , Mg^{2+} ATPase inhibitor (endosulfan): Endosulfan uncouples oxidative phosphorylation and inhibits the electron transport chain. The *in vivo* cytotoxic/insecticidal effects of endosulfan and its metabolites could be damaged mitochondrial bioenergetics.³²

4) Cytochrome P450 monooxygenase induction (atrazine): atrazine increases cytochrome P450 monooxygenase activity by enhancing their oxidative activation to sulfoxide analogs with increased anticholinesterase activity, leading to increased toxicities of demeton-S-methyl, disulfoton, and dimethoate.³³ In contrast, atrazine may reduce omethoate toxicity by enhancing oxidative metabolic detoxification because it does not need oxidative activation.³⁴

5) Antioxidant enzymes (organophosphorus, diazinon): The inhibition of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), and Paraoxonases (PONs), which act as free radical scavengers, plays a complementary role in the effect of organophosphorus, in particular for diazinon.

6) Insect midgut enzymes and transporters (*Bacillus thuringiensis* toxins): The Cry or Cyt toxins produced during the sporulation phase of the entomopathogenic bacteria *Bacillus thuringiensis* (*Bt*) are proteins with specific and efficient insecticidal activities.³⁵⁻³⁶

Different *Bt* strains do not produce the same Cry toxins, which affect insect according to their order: dipteran, coleopteran, lepidopteran, etc. In contrast the Cyt toxins show mainly dipteran specificity, being able to kill mosquitoes and black flies, and can exhibit synergy with Cry toxins in some insects.³⁷ Cry toxin destroys insects by interacting with key toxin receptors like aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), or ATP-binding cassette transporters.³⁸ The genes encoding these endotoxins can be expressed by transgenic plants to be protected from insects³⁹⁻⁴⁰ at least in countries not banning GMOs.⁴¹⁻⁴²

3.3. Fungicides

The number and variety of fungi are enormous, so it isn't easy to specifically control them. Many fungicides have multisite effects to reduce the selection of resistant strains. Nevertheless, there are a few fungicides with specific targets:

1) Multisite: Amine and thiol metabolism (hexachlorobenzene): By inhibiting these pathways, this product, first introduced in 1945 and discontinued after 1972, slows fungi's growth rates and sporulation. The primary molecular sites of action of hexachlorobenzene in fungi are not well defined.

2) Cytochrome b (strobilurin): Strobilurin binds to the quinol oxidation (Q_o) site of cytochrome b to inhibit mitochondrial respiration.⁴³ Numerous other fungicides have been recently developed, starting from the strobilurin scaffold structure.⁴⁴

3) Lanosterol 14-demethylase CYP51 (triazoles): The inhibitory effect of triazoles affects CYP51, a key enzyme for sterol biosynthesis in fungi³¹⁻³² and, unfortunately, in

animals.⁴⁵ There is, therefore, active research to design fungicides that do not cross-react with the host CYP51.⁴⁶

4) Succinate dehydrogenase (pyrazole carboxamide): The inhibition of this enzyme by various pyrazole-phenyl carboxamide derivatives is particularly efficient in combating plant fungi, such as *Sclerotinia sclerotiorum*, *Rhizoctonia solani*, and *Botrytis cinerea*.⁴⁷ This new class of inhibitors allows to overcome the resistance of fungi against previously launched succinate dehydrogenase inhibitors.

4. OFF-TARGET ACTIONS OF PESTICIDES (RISK ASSESSMENT)

Life has only emerged once during earth's history, so all living organisms share common hereditary support (DNA), some genetic material, and biochemical and physiological mechanisms whose similarities are proportional to their phylogenetic closeness. Consequently, it is problematic to target weeds without affecting cultivated plants or to target herbivore insects without affecting pollinator insects. Moreover, it has been observed that numerous pesticides interact at molecular sites unrelated to their assigned targets and thus exhibit unexpected effects in unrelated species. These off-target effects are responsible for environmental and human health concerns.⁴⁸ Risk assessment is crucial to deciding about new and existing pesticides.⁴⁹

4.1. Environmental concerns (Biodiversity)

Phenoxy herbicides impact broad-leaf weeds much more than grasses. Even when they are not targeted at all, soil microorganisms can be greatly affected by herbicides in addition to the identified target.⁵⁰⁻⁵¹

Insecticides often affect non-target insects such as pollinator insects⁵²⁻⁵⁵ but also soil microorganisms,⁵⁴ invertebrates other than insects (earthworms in particular⁵⁶), and even vertebrates.⁵⁷

From an environmental point of view, it is good that a lot of organophosphates do not persist in nature, but they also need to not disappear too quickly to be efficient, and have been modified toward this objective. The balance between environmental respect and efficacy is, of course, primordial. Many chemicals are no longer used due to their adverse impact on human health or the environment (e.g., DDT, chlordane, and toxaphene).

In the late 1990s, neonicotinoids became increasingly scrutinized for their negative impact on the environment. They are highly suspected to be directly detrimental to bee colonies, and indirectly to birds due to the greatly reduced number of insects they feed on. This is why they are partially restricted in many European countries since the 2010's.

In agricultural practices, the treatment of plant seeds with pesticides and/or fungicides can cause adverse effects on soil flora through single and combined effects of them. For example, the seed dressing of winter wheat (*Triticum aestivum* L. var. Capo) by insecticides (neonicotinoid) and/or fungicides (strobilurin and triazolinthione) significantly reduced the surface activity of earthworms.⁵⁶

4.2. Human health concerns (Toxicology)

Research on toxicology aims at improving the knowledge of the field and developing new chemicals, assessing their efficiency and hazardousness, and regulating their usage.⁴

Hexachlorobenzene disrupts porphyrin metabolism by acting on catalytic sites through modification of sulphydryl groups or substrate binding of the enzyme uroporphyrinogen decarboxylase. It inhibits the catalytic activity of uroporphyrinogen decarboxylase causing decarboxylation of uroporphyrinogen III to be deficient, leading to accumulation of uroporphyrin in the liver. Furthermore, cytochrome P-450 catalyzed metabolism of hexachlorobenzene produces electrochemically

reactive metabolites that are covalently bound to proteins and DNA in the cells, causing irreversible damage. When the body is exposed to hexachlorobenzene, macrophages are attracted to organs such as the spleen, lungs, and skin, where they are activated by hexachlorobenzene through a chain of reactions involving innate immune cells. Evidence suggests that the importance of macrophages and granulocytes is due to gene expression profiles. Mediators secreted by these cells are directly involved in the adverse inflammatory response against hexachlorobenzene. In this way, T-cells can be activated through co-stimulatory or danger signals.

Diazinon, dieldrin, endosulfan, ivermectin, maneb, 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP1), and rotenone affect Pg-P ATPase activity and modify its drug-expelling activity and, consequently, accentuate Parkinson's disease symptoms.⁵⁸ Diazinon is a prevalent compound and a food contaminant, absorbed by the gastrointestinal tract and quickly metabolized. High exposure to DZN induces the gene expression of antioxidant enzymes.

Atrazine may indirectly act as an estrogen activator and directly inhibit dopamine synthesis, and thereby reduce dopamine levels. Atrazine may also block feedback regulation, leading to increased prolactin levels and altered immune cell activation, including T-cell proliferation and antibody responses.

4.3. Risk assessment

The assessment process combines all the information from the toxicity tests (hazard) and the exposure information to evaluate the risk (risk = hazard x exposure).⁵⁹ It is a complex procedure with many actors. It is meant to ensure safety for operators, workers, bystanders, residents, consumers, non-target species as well as the environment, and to allow an efficient use of resources for risk assessment and risk management in the policy area of pesticides.⁶⁰

There are now numerous large-scale studies for evaluating the risk assessment of pesticides in humans,⁶¹⁻⁷² wildlife,⁷³⁻⁸² and ecosystems.⁸³⁻⁸⁶

Cocktail toxic effects of pollutants are well known.^{72-73,87-88} How are effects of pesticide cocktails related to their mechanism of action? Intuitively, molecules with identical targets and mechanisms of action should exhibit additive effects. In contrast, molecules with an identical target but different mechanisms of action may exhibit either antagonist or synergic effects.⁸⁹⁻⁹⁷ If toxic molecules act on different molecular targets or organs, the situation is even more complex⁹⁸⁻⁹⁹ and difficult to anticipate.⁷² Moreover, the surfactants used to help pesticide cell penetration can exert toxic effects by themselves.¹⁰⁰⁻¹⁰³

It is also essential to evaluate pesticides from an epidemiological point of view.¹⁰⁴ People are exposed intermittently to chemicals at different concentrations. This is why toxicology alone is insufficient to evaluate accurately the effects of pesticides on human health and must be associated with epidemiology. For example, the very wide use of glyphosate in many countries allowed the gathering of valuable epidemiological data which pointed to its responsibility in some cancers. However, the large scale of these data can make them either valuable or suspicious, depending on how they are observed: while the International Agency for Research on Cancer saw a link between glyphosate and cancer, other regulatory entities considered no causal link was established.¹⁰⁵

The use of pesticides is not only based on scientific authorities but has an important political dimension.¹⁰⁶ Industrial companies, non-governmental organizations (NGO) and national and international public agencies as well as politicians are involved in decision makings. Thus, the European Food Safety Authority (EFSA) developed a methodology by grouping pesticides to take cumulative risk assessment into consideration. However, Pesticide Action

Network Europe (PAN), representing more than 600 NGOs, deemed these studies “unfit for purpose,” because they did not establish that pesticides had “no impact to human health and particularly to the most vulnerable groups in the population”. Complementary studies are being conducted and EFSA is currently working with the European Commission on this matter.

5. CONCLUSION

Pesticides are amidst fierce societal, economic, and political debates, which often blur scientific data. Many of them have already been banned in Vietnam and in many other parts of the world, such as in European or American countries, for being directly or indirectly harmful to the environment or human health. It mostly concerns the endocrine disruption caused by the older kinds of pesticides, such as: organochlorines, organophosphates, carbamates and Thiocarbamides. These scientific data about pesticides are not always as objective as they should be, and many are more or less oriented (not always consciously) to support the authors' convictions, whatever they are. The problem of pesticide use is so complex that absolute objectivity is almost impossible. The number of viewpoints (scientific, societal, economic, political) is too huge to provide simple conclusions that would be acceptable to everyone. In the present work, we have concentrated on scientific issues, but we are aware that it is not the whole story.

REFERENCES

1. "Pest" in Collins dictionnary, <<https://www.collinsdictionary.com/dictionary/english/pest>>, retrieved on 01/07/2022.
2. "Pest" in Merriam-Webster dictionary, <<https://www.merriam-webster.com/dictionary/pest>>, retrieved on 01/07/2022.
3. J. E. Casida. Pest toxicology: the primary mechanisms of pesticide action, *Chemical Research in Toxicology*, **2009**, 22(4), 609-619.

4. J. E. Casida, R. J. Bryant. The ABCs of pesticide toxicology: amounts, biology, and chemistry, *Toxicology Research*, **2017**, 6(6), 755-763.
5. Y. Zhang, D. Chen, Y. Xu, L. Ma, M. Du, P. Li, Z. Yin, H. Xu, X. Wu. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study, *Science of the Total Environment*, **2022**, 809, 151116.
6. K. Matsuda, M. Ihara, D. B. Sattelle. Neonicotinoid insecticides: Molecular targets, resistance, and toxicity, *Annual Review of Pharmacology and Toxicology*, **2020**, 60, 241-255.
7. V. I. Lushchak, T. M. Matviishyn, V. V. Husak, J. M. Storey, K. B. Storey. Pesticide toxicity: a mechanistic approach, *EXCLI Journal*, **2018**, 17, 1101-1136.
8. R. O. Sule, L. Condon, A. V. Gomes. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity, *Oxidative Medicine and Cellular Longevity*, **2022**, 2022, 5563759.
9. F. E. Helepciu, A. Todor. EU microbial pest control: A revolution in waiting, *Pest Management Science*, **2022**, 78(4), 1314-1325.
10. P. Mombert, B. Guijarro Diaz-Otero, J. L. Alonso-Prados. Study of the different evaluation areas in the pesticide risk assessment process: Focus on pesticides based on microorganisms, *EFSA Journal*, **2022**, 20, e200412.
11. Y. Song. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide, *Journal of Integrative Plant Biology*, **2014**, 56(2), 106-113.
12. R. A. LaRossa, J. V. Schloss. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in *Salmonella typhimurium*, *The Journal of Biological Chemistry*, **1984**, 259(14), 8753-8757.
13. N. Ohad, J. Hirschberg. Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites, *Plant Cell*, **1992**, 4(3), 273-282.
14. J. Kern, B. Loll, A. Zouni, W. Saenger, K.D. Irrgang, J. Biesiadka. Cyanobacterial photosystem II at 3.2 Å resolution - the plastoquinone binding pockets, *Photosynthesis Research*, **2005**, 84, 153-159.
15. A. Antonacci, F. L. Celso, G. Barone, P. Calandra, J. Grunenberg, M. Moccia, E. Gatto, M.T Giardi, V. Scognamiglio. Novel atrazine-binding biomimetics inspired to the D1 protein from the photosystem II of *Chlamydomonas reinhardtii*, *International Journal of Biological Macromolecules*, **2020**, 163, 817-823.
16. T. Asami, Y.K. Min, N. Nagata, K. Yamagishi, S. Takatsuto, S. Fujioka, N. Murofushi, I. Yamaguchi, S. Yoshida. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor, *Plant Physiology*, **2000**, 123(1), 93-100.
17. C. Fan, G. Guo, H. Yan, Z. Qiu, Q. Liu, B. Zeng. Characterization of Brassinazole resistant (BZR) gene family and stress induced expression in *Eucalyptus grandis*, *Physiology and Molecular Biology of Plants*, **2018**, 24(5), 821-831.
18. M. S. Kesawat, B. S. Kherawat, A. Singh, P. Dey, M. Kabi, D. Debnath, D. Saha, A. Khandual, S. Rout, Manorama, A. Ali, R. R. Palem, R. Gupta, A. A. Kadam, H. Kim, S. Chung, M. Kumar. Genome-Wide Identification and Characterization of the Brassinazole-resistant (BZR) Gene Family and Its Expression in the Various Developmental Stage and Stress Conditions in Wheat (*Triticum aestivum* L.), *International Journal of Molecular Sciences*, **2021**, 22(16), 8743.
19. J. L. Rubin, C.G. Gaines, R.A. Jensen. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthase from suspension-cultured cells of *nicotiana silvestris*, *Plant Physiology*, **1984**, 75(3), 839-845.
20. L. Leino, T. Tall, M. Helander, I. Saloniemi, K. Saikonen, S. Ruuskanen, P. Puigbò. Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide, *The Journal of Hazardous Materials*, **2021**, 408, 124556.

21. K. Haghani, A. H. Salmanian, B. Ranjbar, K. Zakikhani-Alang, K. Khajeh. Comparative studies of wild type *Escherichia coli* 5-enolpyruvylshikimate 3-phosphate synthase with three glyphosate-insensitive mutated forms: activity, stability and structural characterization, *Biochimica et Biophysica Acta*, **2008**, 1784(9), 1167-1175.
22. M. J. Rainio, S. Ruuskanen, M. Helander, K. Saikonen, I. Saloniemi, P. Puigbò. Adaptation of bacteria to glyphosate: a microevolutionary perspective of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, *Environmental Microbiology Reports*, **2021**, 13(3), 309-316.
23. D. Vincent, R. Truhaut. Contribution to the study of the mechanism of the physiological action of the insecticide D.D.T. ; D.D.T. and serum cholinesterase, *Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales*, **1947**, 141(1-2), 65.
24. H. Futagawa, H. Takahashi, T. Nagao, S. Adachi-Akahane. A carbamate-type cholinesterase inhibitor 2-sec-butylphenyl N-methylcarbamate insecticide blocks L-type Ca^{2+} channel in guinea pig ventricular myocytes, *The Japanese Journal of Pharmacology*, **2002**, 90(1), 12-20.
25. X. Shao, S. Xia, K. A. Durkin, J. E. Casida. Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist, *Proceedings of the National Academy of Sciences of the United States of America*, **2013**, 110(43), 17273-17277.
26. L. T. Herbert, P. F. Cossi, J. C. Paine filu, G. C. Mengoni, C. M. Luquet, G. Kristoff. Acute neurotoxicity evaluation of two anticholinesterasic insecticides, independently and in mixtures, and a neonicotinoid on a freshwater gastropod, *Chemosphere*, **2021**, 265, 129107.
27. A. Katic, V. Kasuba, N. Kopjar, B. T. Lovakovic, A. M. M. Cermak, G. Mendas, V. Micek, M. Milic, I. Pavicic, A. Pizent, S. Zunec, D. Zeljezic. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats, *Chemico-Biological Interactions*, **2021**, 338, 109287.
28. J. R. Bloomquist. Chloride channels as tools for developing selective insecticides, *Archives of Insect Biochemistry and Physiology*, **2003**, 54(4), 145-156.
29. Z. Soualah, A. Taly, L. Crespin, O. Saulais, D. Henrion, C. Legendre, H. Tricoire-Leignel, C. Legros, C. Mattei. GABA Receptor Subunit Composition Drives Its Sensitivity to the Insecticide Fipronil, *Frontiers in Neuroscience*, **2021**, 15, 768466.
30. Y. Ozoe. Ion channels and G protein-coupled receptors as targets for invertebrate pest control: from past challenges to practical insecticides, *Bioscience, Biotechnology, and Biochemistry*, **2021**, 85(7), 1563-1571.
31. T. Nakao, S. Banba. Mechanisms underlying the selectivity of meta-diamides between insect resistance to dieldrin (RDL) and human gamma-aminobutyric acid (GABA) and glycine receptors, *Pest Management Science*, **2021**, 77(8), 3744-3752.
32. R. K. Dubey, M. U. Beg, J. Singh. Effects of endosulfan and its metabolites on rat liver mitochondrial respiration and enzyme activities in vitro, *Biochemical Pharmacology*, **1984**, 33(21), 3405-3410.
33. Y. Jin-Clark, M. J. Lydy, K.Y. Zhu. Effects of atrazine and cyanazine on chlorpyrifos toxicity in *Chironomus tentans* (Diptera: Chironomidae), *Environmental Toxicology and Chemistry*, **2002**, 21(3), 598-603.
34. C. L. Sweeney, N. K. Smith, E. Sweeney, A. M. Cohen, J. S. Kim. Analysis of human serum and urine for tentative identification of potentially carcinogenic pesticide-associated N-nitroso compounds using high-resolution mass spectrometry, *Environmental Research*, **2022**, 205, 112493.
35. J. V. Rie, S. Jansens, H. Hofte, D. Degheele, H. V. Mellaert. Specificity of *Bacillus thuringiensis* delta-endotoxins. Importance of specific receptors on the brush border membrane of the

mid-gut of target insects, *European Journal of Biochemistry*, **1989**, 186(1-2), 239-247.

36. H. Hofte, H. R. Whiteley. Insecticidal crystal proteins of *Bacillus thuringiensis*, *Microbiology Reviews*, **1989**, 53(2), 242-255.

37. M. Soberon, J. A. Lopez-Diaz, A. Bravo. Cyt toxins produced by *Bacillus thuringiensis*: a protein fold conserved in several pathogenic microorganisms, *Peptides*, **2013**, 41, 87-93.

38. I. Alam, K. Batool, A.L. Idris, W. Tan, X. Guan, L. Zhang. Role of Lectin in the Response of *Aedes aegypti* Against Bt Toxin, *Frontiers in Immunology*, **2022**, 13, 898198.

39. B. Cao, Y. Nie, Z. Guan, C. Chen, N. Wang, Z. Wang, C. Shu, J. Zhang, D. Zhang. The crystal structure of Cry78Aa from *Bacillus thuringiensis* provides insights into its insecticidal activity, *Communications Biology*, **2022**, 5(1), 801.

40. D. Sun, L. Zhu, L. Guo, S. Wang, Q. Wu, N. Crickmore, X. Zhou, A. Bravo, M. Soberon, Z. Guo, Y. Zhang. A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth, *BMC Biology*, **2022**, 20(1), 33.

41. A. E. Ricroch. What will be the benefits of biotech wheat for European agriculture?, *Methods in Molecular Biology*, **2017**, 1679, 25-35.

42. A. E. Ricroch, J. Martin-Laffon, B. Rault, V. C. Pallares, M. Kuntz. Next biotechnological plants for addressing global challenges: The contribution of transgenesis and new breeding techniques, *New Biotechnology*, **2022**, 66, 25-35.

43. H. Balba. Review of strobilurin fungicide chemicals, *Journal of Environmental Science and Health, Part B*, **2007**, 42(4), 441-451.

44. L. Musso, A. Fabbrini, S. Dallavalle. Natural compound-derived cytochrome bc1 complex inhibitors as antifungal agents, *Molecules*, **2020**, 25(19), 4582.

45. F. Wang, J. Yang, H. Wang, G. Xia. Gonadotropin-regulated expressions of lanosterol 14alpha-demethylase, sterol Delta14-reductase and C-4 sterol methyl oxidase contribute to the accumulation of meiosis-activating sterol in rabbit gonads, *Prostaglandins Other Lipid Mediat*, **2010**, 92(1-4), 25-32.

46. N. Rani, P. Kumar, R. Singh. Molecular modeling studies of halogenated imidazoles against 14alpha- demethylase from candida albicans for treating fungal infections, *Infectious Disorders - Drug Targets*, **2020**, 20(2), 208-222.

47. T. T. Yao, D. X. Xiao, Z. S. Li, J. L. Cheng, S. W. Fang, Y. J. Du, J. H. Zhao, X. W. Dong, G. N. Zhu. Design, synthesis, and fungicidal evaluation of novel pyrazole-furan and pyrazole-pyrrole carboxamide as succinate dehydrogenase inhibitors, *Journal of Agricultural and Food Chemistry*, **2017**, 65(26), 5397-5403.

48. P. Nicolopoulou-Stamati, S. Maipas, C. Kotampasi, P. Stamatis, L. Hens. Chemical pesticides and human health: The urgent need for a new concept in agriculture, *Frontiers in Public Health*, **2016**, 4, 148.

49. EPA Risk Assessment, <<https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/overview-risk-assessment-pesticide-program>>, retrieved on 01/07/2022.

50. L. Aristilde, M. L. Reed, R. A. Wilkes, T. Youngster, M. A. Kukurugya, V. Katz, C. R. S. Sasaki. Glyphosate-Induced specific and widespread perturbations in the metabolome of soil *pseudomonas* species, *Frontiers in Environmental Science*, **2017**, 5, 34.

51. J. G. Zaller, C. A. Brühl. Editorial: Non-target Effects of pesticides on organisms inhabiting agroecosystems, *Frontiers in Environmental Science*, **2019**, 7, 75.

52. J. E. Serrao, A. Plata-Rueda, L. C. Martinez, J. C. Zanuncio. Side-effects of pesticides on non-target insects in agriculture: a mini-review, *Naturwissenschaften*, **2022**, 109(2), 17.

53. S. M. Williamson, G. A. Wright. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees, *Journal of Experimental Biology*, **2013**, 216(10), 1799-1807.

54. R. A. Schmidt-Jeffris, E. H. Beers, C. Sater. Meta-analysis and review of pesticide non-target

effects on phytoseiids, key biological control agents, *Pest Management Science*, **2021**, 77, 4848-4862.

55. M. Aoun, W. Leal Filho, A.M. Azul, L. Brandli, P.G. Özuyar, T. Wall. *Pesticides' Impact on Pollinators*, Springer International Publishing, 2019, 1-11.

56. W. V. Hoesel, A. Tiefenbacher, N. König, V. M. Dorn, J. F. Hagenguth, U. Prah, T. Widhalm, V. Wiklicky, R. Koller, M. Bonkowski, J. Lagerlöf, A. Ratzenböck, J. G. Zaller. Single and Combined effects of pesticide seed dressings and herbicides on earthworms, soil microorganisms, and litter decomposition, *Frontiers in Plant Science*, **2017**, 8, 215.

57. S. G. English, N. I. Sandoval-Herrera, C. A. Bishop, M. Cartwright, F. Maisonneuve, J. E. Elliott, K. C. Welch Jr. Neonicotinoid pesticides exert metabolic effects on avian pollinators, *Scientific Reports*, **2021**, 11(1), 2914.

58. S. E. Lacher, K. Skagen, J. Veit, R. Dalton, E. L. Woodahl. P-Glycoprotein transport of neurotoxic pesticides, *Journal of Pharmacology and Experimental Therapeutics*, **2015**, 355(1), 99-107.

59. R. Stahlmann, A. Horvath. Risks, risk assessment and risk competence in toxicology, *German Medical Science*, **2015**, 13, 09.

60. National Institute for Agricultural and Food Research and Technology (INIA); R. Molteni, J.L. Alonso-Prados. Study of the different evaluation areas in the pesticide risk assessment process, *EFSA Journal*, **2020**, 18, e181113.

61. S. N. Ali, N. Rafique, S. Akhtar, T. Taj, F. Mehboob. Analysis of multiple pesticide residues in market samples of okra and associated dietary risk assessment for consumers, *Environmental Science and Pollution Research International*, **2022**, 29(31), 47561-47570.

62. D. B. Perkins, Z. Stone, A. Jacobson, W. Chen, A. Z. Szarka, M. White, B. Christensen, L. Ghebremichael, R. A. Brain. Development of a US national-scale, mixed-source, pesticide, rural well database for use in drinking water risk assessment: an atrazine case study, *Environmental Monitoring and Assessment*, **2022**, 194(8), 578.

63. K. K. Sharma, V. Tripathy, K. Sharma, R. Gupta, R. Yadav, S. Devi, S. Walia. Long-term monitoring of 155 multi-class pesticide residues in Indian vegetables and their risk assessment for consumer safety, *Food Chemistry*, **2022**, 373, 131518.

64. Y. Yang, K. Zheng, L. P. Guo, C. X. Wang, D. B. Zhong, L. Shang, H. J Nian, X. M Cui, S. J Huang. Rapid determination and dietary intake risk assessment of 249 pesticide residues in Panax notoginseng, *Ecotoxicology and Environmental Safety*, **2022**, 233, 113348.

65. Q. Yao, S.A. Yan, J. Li, M. Huang, Q. Lin. Health risk assessment of 42 pesticide residues in Tieguanyin tea from Fujian, China, *Drug and Chemical Toxicology*, **2022**, 45(2), 932-939.

66. Q. Zhang, C. Ma, Y. Duan, X. Wu, D. Lv, J. Luo. Determination and dietary intake risk assessment of 35 pesticide residues in cowpea (*Vigna unguiculata* [L.] Walp) from Hainan province, China, *Scientific Reports*, **2022**, 12(1), 5523.

67. M. Constantinou, D. Louca-Christodoulou, A. Agapiou. Method validation for the determination of 314 pesticide residues using tandem MS systems (GC-MS/MS and LC-MS/MS) in raisins: Focus on risk exposure assessment and respective processing factors in real samples (a pilot survey), *Food Chemistry*, **2021**, 360, 129964.

68. Y. Duan, T. Ramilan, J. Luo, N. French, N. Guan. Risk assessment approaches for evaluating cumulative exposures to multiple pesticide residues in agro-products using seasonal vegetable monitoring data from Hainan, China: a case study, *Environmental Monitoring and Assessment*, **2021**, 193(9), 578.

69. A. Ippolito, D. Kardassi, C. Lythgo, M. Tiramani. Peer review of the pesticide risk assessment for the active substance spiroxamine in light of confirmatory data submitted, *EFSA Journal*, **2021**, 19(2), e06385.

70. Z. Li. Improving screening model of pesticide risk assessment in surface soils: Considering degradation metabolites, *Ecotoxicol Ecotoxicology and Environmental Safety*, **2021**, 222, 112490.

71. Z. Li, S. Niu. Improving screening model of pesticide risk assessment in surface soils: Addressing regional specific human exposure risks and regulatory management, *Ecotoxicol Ecotoxicology and Environmental Safety*, **2021**, 227, 112894.

72. O. Weisner, T. Frische, L. Liebmann, T. Reemtsma, M. Ross-Nickoll, R.B. Schafer, B. Scholz-Starke, P. Vormeier, S. Knillmann, M. Liess. Risk from pesticide mixtures - The gap between risk assessment and reality, *Science of the Total Environment*, **2021**, 796, 149017.

73. F. Sgolastra, X. Arnan, R. Cabbri, G. Isani, P. Medrzycki, D. Teper, J. Bosch. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee, *Proceedings of the Royal Society B: Biological Sciences*, **2018**, 285(1885), 20180887.

74. S. Rondeau, N. E. Raine. Fungicides and bees: a review of exposure and risk, *Environment International*, **2022**, 165, 107311.

75. D. B. Nkontcheu Kenko, N. T. Ngameni. Assessment of ecotoxicological effects of agrochemicals on bees using the PRIMET model, in the Tiko plain (South-West Cameroon), *Heliyon*, **2022**, 8, e09154.

76. L. Li, S. Liu, Y. Yin, G. Zheng, C. Zhao, L. Ma, Q. Shan, X. Dai, L. Wei, J. Lin, W. Xie. The toxicokinetics and risk assessment of pyrethroids pesticide in tilapia (*Oreochromis mossambicus*) upon short-term water exposure, *Ecotoxicol Ecotoxicology and Environmental Safety*, **2022**, 241, 113751.

77. N. Capela, M. Xu, S. Simoes, H. Azevedo-Pereira, J. Peters, J. P. Sousa. Exposure and risk assessment of acetamiprid in honey bee colonies under a real exposure scenario in Eucalyptus sp. landscapes, *Science of the Total Environment*, **2022**, 840, 156485.

78. L. Barascou, D. Sene, Y. Le Conte, C. Alaux. Pesticide risk assessment: honeybee workers are not all equal regarding the risk posed by exposure to pesticides, *Environmental Science and Pollution Research*, **2022**, 29(60), 90328-90337.

79. L. Barascou, F. Requier, D. Sene, D. Crauser, Y. Le Conte, C. Alaux. Delayed effects of a single dose of a neurotoxic pesticide (sulfoxaflor) on honeybee foraging activity, *Science of the Total Environment*, **2022**, 805, 150351.

80. P. Azevedo, N. P. Butolo, L. D. de Alencar, H. M. S. Lima, V. R. Sales, O. Malaspina, R. C. F Nocelli. Optimization of in vitro culture of honeybee nervous tissue for pesticide risk assessment, *Toxicology in Vitro*, **2022**, 84, 105437.

81. H. M. Thompson. The use of the Hazard Quotient approach to assess the potential risk to honeybees (*Apis mellifera*) posed by pesticide residues detected in bee-relevant matrices is not appropriate, *Pest Management Science*, **2021**, 77(9), 3934-3941.

82. C. Stuligross, N.M. Williams. Past insecticide exposure reduces bee reproduction and population growth rate, *Proceedings of the National Academy of Sciences of the United States of America*, **2021**, 118(48), e2109909118.

83. M. Fatema, A. Farenhorst, C Sheedy. Using the pesticide toxicity index to show the potential ecosystem benefits of on-farm biobeds, *Journal Environmental Quality*, **2022**.

84. Y. Yang, T. Chen, X. Liu, S. Wang, K. Wang, R. Xiao, X. Chen, T. Zhang. Ecological risk assessment and environment carrying capacity of soil pesticide residues in vegetable ecosystem in the Three Gorges Reservoir Area, *Journal of Hazardous Materials*, **2022**, 435, 128987.

85. L. Pitombeira de Figueiredo, D. B. Athayde, M. A. Daam, G. Guerra, P. J. Duarte-Neto, H. Sarmento, E. L. G. Espíndola. Integrated ecosystem models (soil-water) to analyze pesticide toxicity to aquatic organisms at two different temperature conditions, *Chemosphere*, **2021**, 270, 129422.

86. A. R. Brown, G. Whale, M. Jackson, S. Marshall, M. Hamer, A. Solga, P. Kabouw, M. Galay-Burgos, R. Woods, S. Nadzialek, L. Maltby. Toward the definition of specific protection goals for the environmental risk assessment of chemicals: A perspective on environmental regulation in Europe, *Integrated Environmental Assessment and Management*, **2017**, 13(1), 17-37.

87. S. Periasamy, J. F. Deng, M. Y. Liu. Who is the real killer? Chlорfenapyr or detergent micelle-chlорfenapyr complex?, *Xenobiotica*, **2017**, 47(9), 833-835.

88. P. A. Lafon, Y. Wang, M. Arango-Lievano, J. Torrent, L. Salvador-Prince, M. Mansuy, et al. Fungicide residues exposure and beta-amyloid aggregation in a mouse model of alzheimer's disease, *Environmental Health Perspectives*, **2020**, 128(1), 17011.

89. Y. Zhang, D. Zeng, L. Li, X. Hong, H. Li-Byarlay, S. Luo. Assessing the toxicological interaction effects of imidacloprid, thiamethoxam, and chlорpyrifos on Bombus terrestris based on the combination index, *Scientific Reports*, **2022**, 12(1), 6301.

90. F. J. Peng, P. Palazzi, C. Viguie, B. M. R. Appenzeller. Hormonal profile changes induced by pesticide mixture exposure in female rats revealed by hair analysis, *Chemosphere*, **2022**, 303, 135059.

91. F. Mena, A. Romero, J. Blasco, C. V. M. Araujo. Can a mixture of agrochemicals (glyphosate, chlорpyrifos and chlorothalonil) mask the perception of an individual chemical? A hidden trap underlying ecological risk, *Ecotoxicol Ecotoxicology and Environmental Safety*, **2022**, 230, 113172.

92. P. S. Kunwar, B. Sapkota, S. Badu, K. Parajuli, A. K. Sinha, G. De Boeck, et al. Chlорpyrifos and dichlorvos in combined exposure reveals antagonistic interaction to the freshwater fish Mrigal, Cirrhinus mrigala, *Ecotoxicology*, **2022**, 31(4), 657-666.

93. J. B. Belden. The acute toxicity of pesticide mixtures to honeybees, *Integrated Environmental Assessment and Management*, **2022**, 18(6), 1694-1704.

94. A. Sharma, P. John, P. Bhatnagar. Fluoride and endosulfan together potentiate cytogenetic effects in Swiss albino mice bone marrow cells, *Toxicology and Industrial Health*, **2021**, 37(2), 68-76.

95. F. F. Schmidt, D. Lichtenstein, H. Planatscher, A. Mentz, J. Kalinowski, A. E. Steinhilber, T. O. Joos, A. Braeuning, O. Pötz. Pesticide mixture effects on liver protein abundance in HepaRG cells, *Toxicology*, **2021**, 458, 152839.

96. P. S. Kunwar, R. Basaula, A. K. Sinha, G. De Boeck, K. Sapkota. Joint toxicity assessment reveals synergistic effect of chlорpyrifos and dichlorvos to common carp (Cyprinus carpio), *Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology*, **2021**, 246, 108975.

97. V. S. Andrade, M. F. Gutierrez, U. Reno, A. Popielarz, S. Gervasio, A. M. Gagneten. Synergy between glyphosate and cypermethrin formulations on zooplankton: evidences from a single-specie test and a community mesocosm experiment, *Environmental Science and Pollution Research*, **2021**, 28(21), 26885-26894.

98. M. J. Arlos, A. Focks, J. Hollender, C. Stamm. Improving risk assessment by predicting the survival of field gammarids exposed to dynamic pesticide mixtures, *Environmental Science and Technology*, **2020**, 54(19), 12383-12392.

99. T. Brock, M. Arena, N. Cedergreen, S. Charles, S. Duquesne, A. Ippolito, M. Klein, M. Reed, I. Teodorovic, P.J. Brink, A. Focks. Application of general unified threshold models of survival models for regulatory aquatic pesticide risk assessment illustrated with an example for the insecticide chlорpyrifos, *Integrated Environmental Assessment and Management*, **2021**, 17(1), 243-258.

100. J. Dollinger, V.J. Schacht, C. Gaus, S. Grant. Effect of surfactant application practices on the vertical transport potential of hydrophobic pesticides in agrosystems, *Chemosphere*, **2018**, 209, 78-87.

101. M. Torres-Badia, S. Solar-Malaga, R. Serrano, L. J. Garcia-Marin, M. J. Bragado. The adverse impact of herbicide Roundup Ultra Plus in human spermatozoa plasma membrane is caused by its surfactant, *Scientific Reports*, **2022**, 12(1), 13082.
102. A. Lopes, M. Benvindo-Souza, W. F. Carvalho, H. F. Nunes, P. N. de Lima, M. S. Costa, E. J. Benetti, V. Guerra, S. M. T. Saboia-Morais, C. E. Santos, K. Simões, R. P. Bastos, D. M. E Silva. Evaluation of the genotoxic, mutagenic, and histopathological hepatic effects of polyoxyethylene amine (POEA) and glyphosate on *Dendropsophus minutus* tadpoles, *Environmental Pollution*, **2021**, 289, 117911.
103. J. Langrand, I. Blanc-Brisset, D. Boucaud-Maitre, E. Puskarczyk, P. Nisse, R. Garnier, C. Pulce. Increased severity associated with tallowamine in acute glyphosate poisoning, *Clinical toxicology (Philadelphia, Pa.)*, **2020**, 58(3), 201-203.
104. J. E. Goodman, R. L. Prueitt, P. Boffetta, C. Halsall, A. Sweetman. "Good epidemiology practice" guidelines for pesticide exposure assessment, *International Journal of Environmental Research and Public Health*, **2020**, 17(14), 5114.
105. J. N. Jouzel, <<https://www.sciencespo.fr/research/cogito/home/pesticides-and-human-health-between-toxicology-and-epidemiology/?lang=en>>, retrieved on 01/07/2022.
106. Z. Hu. What socio-economic and political factors lead to global pesticide dependence? A critical review from a social science perspective, *International Journal of Environmental Research and Public Health*, **2020**, 17(21), 8-19.