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TOM TAT

Bai béo nay trinh bay mot phuong phap méi dé thiét ké mot bo quan sat trang thai cho mot 16p he Glucose-
Insulin phi tuyén véi hai do tré thoi gian. Dya vao tinh duong ctia nghiém, chiing t6i da dé xuit mot phép bién
ddi toa do méi dé dua mo hinh dang xem xét vé mot hé quan sat duge. Trong hé toa do méi nay, céc do tré clia
hé da cho xuat hién trong véc to dau vio va véc to dau ra ma khong xuat hién trong véc to trang thai. Heé qua
la chiing ta dé& dang thiét ké duge bo quan sat dé wée lugng thong tin clia bién trang thai. Céc két qua minh
hoa s6 dugc trinh bay trong bai bao cho thay tinh hiéu qua ctia phuong phap dé xuét.

Tt khéa: Quan sdt trang thdi, phép bién doi trang thdi, hé tré thoi gian.
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ABSTRACT

This paper presents a novel method for designing a state observer of a class of nonlinear Glucose-Insulin (GI)

systems with two time delays. Based on the positivity of its solutions, we suggested a new state transformation

to transform the model into a new observable form. In this new form, the time delays in the system description

appear in the input and out put vectors, but not in the state vector. As a result, a state observer can be easily

designed. Simulation results are given to illustrate the effectiveness of the suggested method.

Keywords: State observers, state transformations, time-delay systems.

1. INTRODUCTION

Diabetes is a world-wide epidemic. In the treat-
ment of diabetes, it is essential to monitor glu-
cose and insulin levels in diabetic patients so
that appropriate treatment such as insulin in-
jections can be implemented to maintain satis-
factory blood glucose levels. Blood glucose lev-
els can be readily measured by using a glucose-
oxidase-based amperometric sensor. The sen-
sor utilizes glucose in interstitial fluid under
the skin to indirectly reflect the blood sugar
level. Whereas, insulin measurements are slower,
harder to obtain and less accurate than glu-
cose measurements. Thus, model-based state ob-
servers have been proposed in order to estimate
insulin levels.'~2 The contribution of this paper
is in the design of a novel state observer to esti-
mate insulin levels in diabetic patients.

In this paper, we consider a general nonlin-
ear time-delay GI model of the following form

w(t) = flz(t),z(t — 7)) + Bu(t)
+9(y(t), y(t —79)),t 2 0,
(1)
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z(0) = ¢(0), 0 € [~Tmax, 0],

Tmax = max{7, 7y}, (2)
y(t) = Ca(t) = n(t), (3)
I‘1(t)
- l’g(t) .
where z(t) = 23(t) is the state vector, x1(t)

Ty t

and z(t) are the lglc))od glucose and insulin lev-
els, respectively, z3(t) and x4(t) are the insulin
mass in the accessible and not-accessible subcu-
taneous depot, respectively. The control input
u(t) is the subcutaneous insulin delivery rate
while the output variable is defined as the mea-
sured glucose levels, z1(t). In (1)-(3),

—alxl(t)xz(t - T)
—Qa9x2 (t) + a3x4(t)
—ayx3(t)
asxs(t) — agra(t)

fla(t),z(t = 7)) =

)

B = ,C = 00 0,a@-=

1,2,...,7) are positive parameters, ¢(f) =
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T
| 01(6) 2(6) @s(0) 6a(6) | s a continu-
ous initial function, ¢;(0) (i = 1,2,3,4) are pos-
itive functions, ¢;(t) > 0, and

g1(y(t),y(t — 74))
o(u(t)ylt =) = | 200
9a(y(t), y(t — 14))

is a function depending on the output y(¢) and
y(t —74) with g1(y(t),y(t—7,4)) > 0 for all t > 0.
In our model, 7 > 0 and 7, > 0 are known
constant time delays. As defined in®, 7, is the
apparent delay with which the pancreas varies
secondary insulin release in response to varying
plasma glucose concentrations, while 7 is the de-
lay with which insulin acts in stimulating glu-
cose uptake by peripheral tissues.*

Note that, when 7 = 0, and by letting

1
a1 = Kogi, ag = Kuiy 03 = ypaT, 04 = a5 =
_ 1 _
aﬁ—m,(w—land
_ Ty -
Va

<701(t*Tg)>AY
TiG‘/maz Gr ~
I 1+<w1(é;"g)>
0
0

for all ¢ > 0, our model (1)-(3) is reduced to the
same GI model as considered in.> However, to
our knowledge, a direct observer design proce-
dure for (1)-(3) has not yet been reported in the
literature as there are some difficulties in dealing
with the nonlinear delayed term xq(t)zo(t — 7)
in the model.

Recently, the authors of the work® proposed
an observer design for a nonlinear minimal dy-
namic model of glucose disappearance and in-
sulin kinetics. They transformed the model into
a nonlinear observer normal form and then es-
timated the state variables that are not directly
available from the system, i.e. the remote com-
partment insulin utilization, the plasma insulin
deviation and the infusion rate. However, the

results of the work® only dealt with nonlinear

term x1(t)z2(t), that is, 7 = 0 in the model.
So far, the results of® has not been extended to
the time-delay model of the form (1)-(3). This
motivates the present study.

2. STATE TRANSFORMATION

In this section, we present a novel procedure
for designing a state observer of the nonlinear
time-delay model (1)-(3). In our design proce-
dure, we propose a two-stage process to trans-
form (1)-(3) into a new observable form where
the nonlinear term 1 (t)z2(t — 7) is injected into
the output and input of the system. To achieve
this, we first utilize the concept of diffeomor-
phism on the output® by defining a new output
y(t) = —In(y(t)) for the system (1)-(3). To en-
sure such a diffeomorphism can take place, we
show that z1(t) > 0 for all ¢ > 0 for the model
(1)-(3) (i.e., in order for In(y(t)) to exist, it is
necessary that y(t) > 0, V¢ > 0). In the second
stage of the process, we introduce a novel state
transformation to transform the system into a
novel observable form where a state observer can
be easily designed.

First, let us prove that zi(¢t) > 0 for all
t > 0. Indeed, if there exists a ty > 0 such
that z1(t9) = 0, then according to the conti-
nuity of the solution of a differential equation,
#1(to) < 0, which is a contradiction since we
have

i1(ty) = —armi(to)zalto —7)
+g1(y(to), y(to — 74))
=g1(0,y(to —79)) > 0. (4)

Hence, we can conclude that z1(¢t) > 0 for all
t > 0. With this fact, we can now utilize the
concept of diffeomorphism on the output.” For
this, let us divide both sides of the first equa-
tion of (1) by —x1(¢) and let a new output be
defined as y(t) = £(t) = —In(y(t)). Then (1)-(3)
is equivalent to the following

B(t) = AZ(t) + Agi(t —7)
+Bu(t) + a(y(t), y(t — 79)),
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>0, (5)
E0) = 6(6), 0 € [~Tmax, 0, (6)
ylt) = Cx(t) = &), (7)
where
§(t)
N 2109
l‘(t)— .’L‘3(t) )
£C4(t)
0 0 0 0
A= 0 —ag 0 as
0 0 —ag O ’
0 0 as —ag

0 az 00
4|0 000
00 00
00 00
—1In(¢1(0))
5(0) = $2(0)
¢(0) = 6a(0) 7
$4(0)
p(@(t), y(t — 79)) =
—g1(y(t), Gt — 7,))ev®
_ g2((t), 4(t = 74))
gg(g(t), Zj(t - ’Tg))
94 (g (t), y(t — 74))

As we know, in many practical applications,
the states of the considered systems are not
easily obtained due to technical or economic
reasons. In this case, the estimation of actual
states and output feedback control law are very
necessary. Therefore, the problem of designing
state observers for dynamical systems has at-
tracted considerable attention in the literature
(see, for example,®~®). On the other hand, since
time delay is often encountered in many prac-
tical control systems”, the problem of design-
ing a state observer to estimate the state vector
of a time-delay system is an important research
topic and it has received considerable research
attention in the literature. In particular, state

observers have important applications in real-
isation of state-feedback control, system super-
vision, fault diagnosis of dynamic processes, and
general control and diagnosis issues from avail-
able information.'0~1213

From (5)-(7), we can proceed to design a
state observer to estimate the unknown state
vector, Z(t). In the literature, there are well-
known state observer design methodsS—%'* for
various time-delay systems of the type (5)-(7).
These methods aim at designing an asymp-
totic state observer, Z(t), such that it con-
verges with any prescribed convergence rate
to Z(t), ie., #(t) — &(t). However, based on
these methods®~%1* it is not possible to de-
sign a satisfactory state observer for the system
(5)-(7). This is due to the fact that the ma-
trix pair (4,C) is not observable!* as well as
there are some fixed poles in the observer er-
ror dynamics.~® These stable fixed poles are
very close to zeros and thus resulted in a very
slow convergent rate for the designed state ob-
servers. Recognizing this difficulty, in this paper,
we present a new type of state observer, and re-
ferred to it as a “delayed" state observer. In this
regard, the designed state observer will be able
to estimate a delayed version of the state vector
instead of the instantaneous state vector, which
is impossible based on existing observer design
methods.0 =814

Accordingly, in the following, we consider
the general form of system (5)-(7), where & =

T
£(t) Falt) Flt) ] € R, A € R™™,

AgeR™ M and €= [10 0 ... 0. We
will present a new state transformation which
transforms the considered system into an ob-
servable form where the time-delay term A4z (t—
7) will be injected into the input and output of
the transformed system. This will then allow a
delayed state observer to be easily designed.
For myn € N, n > 1 and an arbitrary
matrix M € R™™ MT denotes the transpose
of M, 0y, denotes the m X n zero matrix,

M = | [M]y, [M]g |, where [M];, € R and
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[M]g € R*("=1) are sub-matrices of M.
We define a new change of coordinates as

follows
z1(t)
2(t) = :
zn(t)
My Ny
R [ (1) ]
I it—r1) |’
M. A, (t—7)

(8)
where matrices M;, N; (i =1,2,...,n) are gen-
erated by the following algorithm

My =C, N;=0, 9)
M1 = M;A — o; My,
i=1,2,...n—1, (10)
Nip1 = M;Aq + N; A — B; My,
i=1,2,...n—1, (11)

where «; and f3; are scalars to be determined
later.

Theorem 1. For some scalars ~; (i =
2,3,...,n), o and B; (7 =1,2,....,n—1), if
the following equations hold

[N‘Ad]R:O i:2...,n, (12)

[M,A - Z% iR =0, (13)

[M,Aq+ N,A - Z% R =0, (14)
=2

then the change of coordinate (8) transforms the
system (5)-(7) into the following form

#(t) = Az(t) + Bu(t) + Bru(t — 1)
+Ty(t) + Tyt —7)
+Toy(t — 27)
+L3a((t), yt — 79))
+Lap(y(t — 1), 4t -

where

N
Il

we]l
Il
Q
~
Il
(e

M,B | 0
NQB a9

N,_1B Op—1
N.B | | D(n,1) |

I = , Fl(n, 1) =

Bn—l
L Fl(na 1) |

9

[ MnAd+NnA— Z ’)/ij :|
Jj=2 L

0
[ ],
Iy E ,
{ Nn-144 }
[vas],

Proof: Fori=1,2,...,n—1, by taking the
derivatives of (8) and using (10)-(12), we obtain

M N[ E) E-)

T
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= M;AZ(t) + (M;Aq + N;A)z(t — 1)
+M;Bu(t) + N;Bu(t— 1)
N AL — 27) + Mi(g(t), gt
PN - ), (-7~ 7)

= zi+1(t) + M;Bu(t) + N;Bu(t — 1)

+aiy(t) + Big(t — 7) + [NiAd| Ly(t — 27)

+Mip(y(t), y(t = 74))

ANyt = 7),y(t =7 = 7). (17)

Next, for i = n and from (13)-(14), we have
Zo(t) = MyAz(t) + (MpAq+ NyA)Z(t —7)
+M,,Bu(t) + N,Bu(t — 7)
+[NpAglLy(t — 27)
+M (), y(t = 79))
ANyt = 1), 4t = 7 = 7))

= Zn:%'Zi(t) + M, Bu(t) + N, Bu(t — 1)
i=2
+[NaAdlLy(t — 27)

Mo A=Yy M1 ()
j=2

+HMypAg+ NoA =4 Nj]g(t - 7)
=2

+Ma(y(t), 5t — 79))

+Nn/j‘(:g(t_7)vg(t_7-_7—g))' (18)
Finally, note that N7 = 0, therefore (17) and
(18) can now be expressed in the form (15)-
(16). This completes the proof of Theorem 1.

Remark 1. In the Appendiz, we provide an al-
gorithm (Algorithm 1) which allows us to solve
for the unknowns v; (i =2,3,...,n), o and B;
(j=1,2,...,n—1) as defined in Theorem 1.

Remark 2. Once, a transformed system as
described by (15)-(16) has been obtained, we
can easily apply any Luenberger-typed state ob-
servers design method (see, for evample®) to
design a state observer to estimate z(t) since
the matriz pair (A, C) is now observable. After
a satisfactory state observer z(t) has been de-
signed, we can use the method of backward state

transformations reported in.'>13

— )

3. APPLICATION TO THE GI MODEL
3.1. State transformation

In this section, we will apply the results ob-
tained in the previous section to the GI model
(5)-(7). By following the steps (Step 1-Step 4)
of Algorithm 1, we obtain

My=[1000] M=0y
My=010, o= 0 a1 0 0],

M3z = 014, Ngz[O —ajas 0 alag]7
My=|2%m 00 0],

N4:{O a1a3  ajazas —a1a3(a2+a4)}.

Hence, we obtain the following state transforma-

tions
21 (t) = g(t)a
Zg(t) = all'g(t — T),
23(t) = —ajagxe(t — 7) + aragza(t — 7),
ault) = ZU%¢4) 1+ ayadas(t — 1)

2
+ajazaszs(t — 7)
—araz(az + ag)za(t — 7)

and a transformed system of the forms (15)-(16)
is obtained, where

[0 1 0 0 0
i- 0 0 1 0 7B: 0 ’
0 0 0 1 0
L0 M 2 s a1a3a;
c=[1000], m :_7@&24@6’
Yo = —(a2a6 + asay + a4a6),
3 = —(az + ag + ag),
0
_ 0
Bi =041, I'=  asasag )
aza4a6(a2+as+ae)
1 0 00
0 0 0 0
I's = , 'y =041,
: 0O 000 1=l
920496 () () 0
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0 0 0 0
r, - 0 ai 0 0
0 —ajay 0 ajas
0 aad ajazas —ajaz(az + ag)

3.2. Observer design

Since the matrix pair (A,C) is observable,
it is easy to design a state observer to estimate
any linear function of the state vector z(t). Let

ha(t) 0100
h(t)= | ho(t) | =Fz(t)=]0 0 1 0 |z(t)
hs(t) 0001

be a vector that is required to be estimated. To
reconstruct the state function, h(t), we consider
a functional observer of order 3 as follows:

ht) = w(t)+ Ej(t), (19)
w(t) = Nw(t)+Jy(t)+ Hu(t —71)
+Lp(y(t), y(t — 7).yt —

where w(t) € R3, h(t) € R? is the estimate of
h(t), E, N, J, H and L are observer parameters
to be determined. Let us define the following
error vectors €(t) and e(t) as

Based on®, ﬁ(t) converges asymptotically to
Fz(t) if the following conditions are satisfied

N is Hurwitz, (23)
NL+JC-LA = 0, (24)
H-LB = 0, (25)
F-EC-L = 0. (26)

Accordingly, for the given matrices A, C, and
B as above, we can easily solve (23)-(26) to ob-
tain the following matrices: N = Agy + L1 A1,
Ly is chosen such that N is Hurwitz, £ = — L,
J = —NL,, H = LB, where L = [ L, Ly ]

) 0 1 0
A]Q = 1 00 s /_122 = 0 0 1 and
_ 772 M8
10 0]
Ly = | 0 1 0 |.Note that the matrix pair
0 01
([122, Alg) is observable and thus L1 can be eas-

ily found to ensure that NN is stable with any
prescribed eigenvalues.

Upon h(t) has been obtained, then based
the method of backward state transformations
(Case 2) reported in'?, we obtain

bat=7) = (), (27)
Byt —7) = [azaghy (t) + (a2 + ag)ha(t)
ajasas
+ha(t) - Z525(0), (28)
Falt—1) = all%[ay%l(mﬁz(tﬂ. (20)

3.3. Simulation results

In order to obtain simulation results, we con-
sider the nonlinear time-delay GI model (1)-
(3) with a set of parameters, the initial condi-
tions and the input u(t) are as follows: a; =
3.11x1075, ap = 1.211x1072, a3 = gomss, G4 =
as = ag = %, a7 = 1, 7 =3min, g(y(t),y(t —

3.205 T

z1(t—7g)

_ 3 1.573 ( 9
Tg)) - 187 0.25 o1 (t—g) 3.205 O 0
(2

7, =4min, z1(6) = 10.66, z2(d) = 49.29,
xz3(f) = 0, x4(f) = 0 for all 0 € [-4,0],
wi(€) = 207097 1y (¢) = 27, w3(¢) = be?
for all t > 0, ¢ € [-8,0] and

?

ult) = sint 4+ 50, 0 <t < 100,
| sint+3, 100 < t < 180.

Let us now apply the reduced-order state ob-
server (19)-(20) for this example. The eigenval-
ues of matrix N are chosen as, say, A} = —0.05,
Ay = —0.07, A3 = —0.08, hence we obtain L =

—-0.1515 1 0 0 0.0180
-0.0050 0 1 0 |,J=| —0.0008 |,E=
0.0001 0 0 1 0
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0.1515 0
0.0050 | and H = 0
—0.0001 0.4112 x 107

Figure 1 shows the responses of z(t) and its
delayed-estimation, i.e., &5(t — 3), while, Figure
2 shows the responses of z9(t—3) and its estima-
tion, i.e., #2(t—3). It is clear from Figure 2 that
the designed observer able to track the delayed
version of the state vector, as expected.

9000

TO0OF -~ et

)
S
S
S

o
=]
S
=]

4000

3000 g s e e

Third- order state observer
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1000f -+

Time(min)

Figure 1. Responses of xo(t) and Zo(t — 3)
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0 20 40 60 80 100 120 140 160 180
Time(min)

Figure 2. Responses of &5(t — 3) and z5(t — 3)

4. CONCLUSION

In this paper, we have presented a novel proce-
dure for designing a state observer of a general
nonlinear time-delay GI model. The reported re-
sult is significant as the two-stage design process
transforms a nonlinear time-delay model into a
new observable form which allows a third-order

delayed state observer to be easily designed.
Simulation results have been given to illustrate
the effectiveness of our results.

Appendix: An algorithm for solving un-
known parameters according to Theorem
1.

In the following development, we will pro-
vide a procedure for solving the unknowns -,
(1=2,3,...,n),ajand f; (j =1,2,...,n—1)
as defined in Theorem 1. Let us denote the
following recursive matrices

Xi (M A'p, X} = [MiA™ AR, (30)

i = ZMlAf—lAdAi—jAd ,
Lyj=1 R
[i+1

Y/ o= ) MAT A AT (31)
Li=1 R

fori=1,2,...,n—1.
First, we consider (12) and by using (30)-
(31), we obtain the following recursive equations

x| =Y],
oY+ B X3 +62{(11 = Yfl )
a1 YE + oY + 51 X3 + B XE + B3 X] = Y7,

Oé1Y1n72 + Oz2Y1n73 +...+ Oén—2Y11 + 515(?71
TR XI 4 B X =Y

(32)
Equation (32) can be expressed in the fol-
lowing compact form

Xan = an (33)
where
Xn = [ X’}L X% } ]
Xl
Xn _ [ XT2L , Yn — [ Yll Y12 Yln—l } 7
n

with x1, x2, X} and X2 are as defined below

Xrll:[& Ba B3 @H}a
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Xi X? X3 xpt
01771_1 Xll X% X{L72
X =1 Op—1 O X} xp-s

| Otn—1 O1p—1 O1p1 Xi

2 _
Xn = a1 Qg Ap—2 |,

01;n71 Yll Y12 Yln—Q

v O1n-1 O1po1 Y9 Yy
010-1 O1n—1 O Y.

From (33), a solution for x;, exists if and only

rank!f/:]:rank[Xn}.

Next, to determine the remaining unknowns

if

(34)

op—1 and v (j =2,3,...,n), let us look at the
solvability of equations (13)-(14). Substituting
(10) - (11) into (13) -(14), using (30)-(31) and
after some rearranging, we obtain the following
equation expressed in a compact vector-matrix

form
CnZn: ny (35)
where
G = |1 72 B on Yo |
(36)
X} X
Xy X
Z, = | Zy@Bn-1) Zx3,n-1) | (37)
| Zi(n,n—1) Zi(n,n—1) |
T, = [T,} Tg}. (38)
In (37)-(38), T}, T2, Z}(k,n—1) and Z2(k,n—1)

(k=3,4,...,n) are defined as follows

) = X! - X7~ —a, o XE,
(39)
Tg = }71"71 - ali_’l”*Q - = ozn_gi_/ll

—BI X = By XL

—Bn1 X1, (40)
ZXkn—1) = Xl XF2 - -y 0X],
(41)
Z2(kn—1) = Y2 vF3— .
—Oék_gf/ll - ak_g)_(ll
—B X} = B Xy
— = Broa X1 (42)

It is clear from (39)-(42), Z, and T, are
two known constant matrices since [j (k
1,2,...,n—1)and ay (¢ =1,2,...,n—2) have
already been derived from the solution to equa-

tion (33). From (35), a solution for ¢, always
exists if and only if

in]:rank{Zn}.

(43)

rank [
n
Accordingly, we present an effective algo-
rithm to transform a general n-order time-delay
system (n > 3) with single output into the
observable form (15)-(16).

Algorithm 1

Step 1: Obtain matrices X,, and Y,, according
0 (33). Check if condition (34) is satisfied or
not. If so, obtain y, where x,, = Y, X", where
Xt denotes the Moore-Penrose inverse of X,,.
Step 2: Substitute gy (k = 1,2,...,n — 1) and
ag, oy (0 =1,2,...,n —2) into (37)-(38) and
obtain Z, and T,. Check if condition (35) is
satisfied or not. If so, obtain ¢, = T,,Z;", where
ZT denotes the Moore-Penrose inverse of Z,,.
Step 3: From (9)-(11), obtain matrices M; and
N; (i =1,2,...,n) and hence the state transfor-
mation (8). Finally, obtain a transformed system
according to (15)-(16).
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