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TÓM TẮT

Dự đoán khả năng liên kết của các phân tử nhỏ với các mục tiêu protein là một bước quan trọng trong quá 
trình khám phá thuốc hiện đại, mở ra tiềm năng đẩy nhanh việc xác định các liệu pháp điều trị hiệu quả đồng thời 
giảm chi phí thí nghiệm. Trong nghiên cứu này, chúng tôi sử dụng bộ dữ liệu BELKA, một thư viện hóa học mã hóa 
bằng DNA (DEL) quy mô lớn, để huấn luyện các mô hình học máy nhằm dự đoán khả năng liên kết. Bằng cách áp 
dụng XGBoost, một thuật toán gradient boosting dựa trên cấu trúc cây quyết định, cùng với các bước tiền xử lý và 
thiết kế đặc trưng chuyên sâu, chúng tôi đã phát triển các mô hình dự đoán cho ba mục tiêu protein: BRD4, HSA, 
và sEH để dự đoán khả năng liên kết phân tử cho ba mục tiêu protein. Các mô hình này thể hiện năng lực dự đoán 
mạnh mẽ, đồng thời cho phép giải thích kết quả thông qua phân tích SHAP nhằm xác định các đặc trưng phân tử 
quan trọng quyết định khả năng liên kết. Đánh giá trên bộ dữ liệu kiểm tra BELKA cho thấy những thách thức trong 
việc khái quát hóa, cung cấp những hiểu biết quý giá về sự phức tạp của mô hình dự đoán trong khám phá thuốc. 
Nghiên cứu này nhấn mạnh tiềm năng của học máy trong việc thúc đẩy quá trình khám phá thuốc bằng máy tính, 
cho phép khám phá không gian hóa học hiệu quả hơn để tìm kiếm các liệu pháp điều trị tiềm năng.

Từ khoá: Khám phá thuốc, học máy, AI có thể giải thích.
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ABSTRACT

The prediction of small molecule binding affinity to protein targets is a critical step in modern drug discovery, 
offering the potential to accelerate the identification of effective therapeutics while reducing experimental costs. In 
this study, we employ the BELKA dataset, a large-scale DNA-encoded chemical library (DEL), to train machine 
learning models for binding affinity prediction. Using XGBoost, a tree-based gradient boosting algorithm, and 
extensive preprocessing and feature engineering, we develop predictive models for three protein targets: BRD4, 
HSA, and sEH to predict whether a given small molecule is a binder or not to one of three protein targets. The 
models demonstrate strong predictive capabilities, with interpretability achieved through SHAP analysis to 
identify molecular features driving binding predictions. Evaluation of the BELKA test dataset reveals challenges 
in generalization, providing valuable insights into the complexities of predictive modelling in drug discovery. This 
work highlights the promise of machine learning in advancing computational drug discovery by enabling efficient 
exploration of the chemical space for potential therapeutics.

Keywords: Drug discovery, machine learning, explainable artificial intelligence.
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1. INTRODUCTION

The development of machine learning (ML) 
models to predict the binding affinity of small 
molecules to specific protein targets holds 
transformative potential for drug discovery. 
Predicting these interactions is central to 
identifying new, effective drug candidates, as 
small molecule drugs interact with cellular 
protein machinery to influence disease-
associated biological processes. 

Traditionally, screening and testing 
small molecules for binding affinity to protein 
targets involve labour-intensive and costly 

physical experiments, which severely limits the 
speed and scope of drug discovery efforts.1,2 
The search space for small molecule drugs is 
estimated to encompass approximately 1060 
chemical compounds, which is impractical to 
screen physically.3 

With the pharmaceutical landscape 
evolving, the integration of ML-based predictive 
models offers a promising alternative to these 
conventional approaches, enabling efficient 
exploration of the vast chemical space for 
potential therapeutics. Traditional high-
throughput screening (HTS) technologies can 
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assess libraries of small molecules against 
protein targets, but they are often restricted to 
collections of tens of thousands to a few million 
compounds.4 In response to this limitation, 
DNA-encoded chemical libraries (DELs) have 
emerged as a more scalable solution.5 DELs 
use unique DNA barcodes to tag each molecule, 
allowing the pooling of millions of compounds 
and simplifying the identification of binders 
through DNA sequencing. This method has 
substantially expanded the feasible scale of 
chemical libraries and presents an attractive 
foundation for computational models aimed at 
binding affinity prediction. 

Advances in ML architectures and feature 
representation techniques, such as Simplified 
Molecular Input Line Entry System (SMILES) 
and graph-based molecular representations, have 
made it possible to capture complex chemical 
properties and interactions computationally.6 
SMILES, as a string-based molecular 
representation, encodes atom connectivity 
and stereochemistry, facilitating ML models’ 
application in molecular property prediction, 
drug discovery, and materials design. 

Hence, in this work, we explore the 
application of a tree-based gradient boosting 
approach, specifically XGBoost, for predicting 
binding affinity.7 In addition to model 
development, an Explainable AI (XAI) method 
is integrated to interpret model behaviour, 
enhancing transparency and interpretability 
in the prediction of molecular binding. The 
findings from this study aim to contribute to the 
broader field of computational drug discovery, 
leveraging ML to identify promising drug 
candidates with high precision and potentially 
reduce the costs associated with traditional 
drug development methods. By enabling more 
efficient exploration of chemical space, this 
work aspires to pave the way toward discovering 
new lifesaving therapeutics for complex 
diseases. Conclusively, in this study, we make 
the following contributions:

l Dataset Utilization: We leverage the 
BELKA dataset8, a large-scale DNA-encoded 
chemical library, providing a comprehensive 
resource for binding affinity modelling.

l Predictive Modelling: We employ 
the XGBoost model optimized with advanced 
preprocessing and feature reduction techniques 
to predict binding affinities for three biologically 
significant protein targets: BRD4, HSA, and 
sEH.

l Interpretability: Through XAI analysis, 
we enhance the interpretability of the models, 
offering molecular-level insights into the features 
influencing binding predictions.

l Benchmarking: We evaluate our 
methodology on the BELKA dataset, highlighting 
the challenges of generalization for unseen cases.

2. RELATED WORK

2.1. Drug discovery and protein-target 
interactions

The pharmaceutical field relies heavily on 
understanding and predicting protein-target 
interactions, as these molecular interactions 
are critical in developing effective drugs. 
Small molecule drugs are typically designed 
to modulate specific protein targets linked to 
disease mechanisms. Protein-ligand binding is 
fundamental to this process, as the ability of a 
drug candidate to bind to a specific protein target 
determines its efficacy and safety.

Traditional drug discovery methodologies, 
such as high-throughput screening (HTS), involve 
synthesizing large libraries of small molecules 
and testing their affinity with the protein targets. 
However, HTS is costly, time-intensive, and 
limited in scope due to physical constraints, 
allowing only a fraction of potential drug-like 
compounds to be examined. Innovations, such as 
DNA-encoded chemical libraries (DELs)5, have 
addressed some of these limitations by enabling 
more extensive exploration of chemical space. In 
DELs, small molecules are tagged with unique 
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DNA barcodes, allowing millions of compounds 
to be screened in a pooled format. As such, 
DELs offer a scalable and efficient alternative to 
traditional HTS. Advances in molecular biology 
and DNA sequencing have further accelerated 
DEL technology, facilitating its adoption in both 
academia and industry.

2.2. SMILES and molecular representations

SMILES is one of the most widely adopted 
formats for encoding chemical structures in 
computational chemistry.6 SMILES strings 
represent molecular structures in a linear form, 
capturing atoms, bonds, and stereochemistry in 
a machine-readable format. This notation has 
become essential for ML applications in drug 
discovery due to its simplicity and the ease with 
which it can be integrated into computational 
pipelines. SMILES can also be converted to 
other representations, such as 3D structures and 
molecular graphs, allowing flexibility in model 
input formats.

	 Alternative molecular representations, 
such as molecular fingerprints and molecular 
graphs, offer distinct advantages. Molecular 
fingerprints encode the presence or absence of 
substructures, providing a high-dimensional, 
fixed-length vector representation suited for 
various ML tasks.9–13 Meanwhile, molecular 
graphs represent the connectivity of atoms in 
the molecule, capturing spatial information that 
can be valuable for models like graph neural 
networks (GNNs).14–17 Recent studies suggest 
that combining multiple representations, such 
as SMILES with molecular graphs, can enhance 
predictive accuracy by leveraging diverse 
information formats.

2.3. Machine learning in molecular binding 
prediction

ML has become essential to molecular binding 
prediction, with recent models achieving high 
performance by leveraging large datasets and 
sophisticated algorithms. ML models, especially 
deep learning (DL) frameworks, can capture 
complex relationships in chemical and biological 

data, allowing them to predict molecular 
properties with increasing accuracy. 

Traditional ML methods, such as 
quantitative structure-activity relationship 
(QSAR) models, relied on engineered molecular 
descriptors to predict binding affinity. Still, recent 
ML approaches enable the use of raw chemical 
representations such as SMILES and molecular 
graphs, reducing the need for extensive feature 
engineering.18–20 Convolutional neural networks 
(CNNs)21, graph neural networks (GNNs)22, and 
recurrent neural networks (RNNs)23 have been 
widely used to encode molecular structures.

In addition to DL approaches, gradient-
boosting algorithms like XGBoost have gained 
recognition for their efficacy in molecular 
property prediction. XGBoost suits tasks 
involving structured, high-dimensional data, 
such as molecular fingerprints. By leveraging an 
ensemble of decision trees, XGBoost iteratively 
refines predictions, minimizing error while 
maintaining interpretability. Unlike DL models, 
XGBoost offers a computationally efficient 
alternative that is well-suited for datasets with 
tabular or fingerprint-based representations. 
Recent studies have shown that integrating 
molecular representations, such as Extended-
Connectivity Fingerprints (ECFPs)24 with 
XGBoost, yields highly accurate binding affinity 
predictions while retaining transparency. These 
models are particularly valuable in scenarios 
where interpretability is crucial, such as drug 
discovery pipelines.25–27 Additionally, XGBoost's 
robustness to overfitting, especially when 
combined with appropriate feature selection and 
regularization, makes it a strong candidate for 
handling imbalanced datasets often encountered 
in molecular binding tasks.

2.4. Explainability in ML for drug discovery

As ML models become increasingly complex, 
understanding the decision-making process 
within these models is critical for their adoption in 
sensitive fields like drug discovery. XAI methods 
aim to make the behaviour of complex ML 
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models more interpretable by providing insights 
into how input features influence predictions. In 
drug discovery, XAI can offer insights into which 
molecular features contribute most significantly 
to binding affinity, helping chemists understand 
and validate model predictions.28–30

While tree-based models such as XGBoost 
provide inherent interpretability through their 
structured decision paths, this interpretability 
becomes limited when applied to high-
dimensional and large-scale datasets. In such 
cases, the complexity and volume of features 
make it challenging to discern the specific 
contributions of individual features to each 
prediction, thereby reducing the practical utility 
of feature importance metrics provided by these 
models. To address this limitation, XAI methods, 
like SHAP (SHapley Additive exPlanations)31 
values and LIME (Local Interpretable Model-
agnostic Explanations)32, are often applied to 
these models, enabling the decomposition of 
predictions into contributions from individual 
features. For example, SHAP values, derived 
from cooperative game theory, were especially 
used to quantify each feature’s influence on 
the prediction.33 These explanation methods 
not only facilitate model interpretation but also 
foster trust in ML predictions, an essential factor 
for the integration of AI into pharmaceutical 
workflows.

3. DATASET

The BELKA dataset used in this study comprises 
training and test samples that detail the 
interactions between various small molecules 
and three protein targets: bromodomain-
containing protein 4 (BRD4), soluble epoxide 
hydrolase (EPHX2/sEH), and human serum 
albumin (ALB/HSA).8 The dataset presents a 
binary classification of whether a given small 
molecule is a binder or not to one of three protein 
targets.

3.1. Dataset targets

The BELKA dataset encompasses three distinct 
protein targets: BRD4, EPHX2/sEH, and ALB/

HSA. Each target represents a unique class of 
biomolecular interactions, selected to provide 
a diverse benchmarking ground for modelling 
small molecule-protein interactions. These 
targets were carefully chosen for their biological 
significance and existing therapeutic relevance. 
Their acquisition and preparation followed 
rigorous protocols to ensure data fidelity and 
reproducibility.

3.1.1. BRD4

Bromodomain-containing protein 4 is a pivotal 
member of the BET protein family, involved in 
recognizing acetylated lysines on histone tails.34 
BRD4 has emerged as a prominent therapeutic 
target in oncology, with inhibitors designed to 
disrupt its role in transcriptional regulation, 
particularly in cancer proliferation pathways. 
Recombinant BRD4 was acquired through 
baculovirus expression in insect cells to preserve 
post-translational modifications critical for 
its bromodomain function. Protein purity and 
structural integrity were validated through size-
exclusion chromatography and binding assays 
with known BRD4 inhibitors. These quality-
control measures ensured that the BRD4 used 
in DEL screenings retained its native binding 
characteristics, enabling high-confidence small 
molecule-protein interaction studies.

3.1.2. BPHX2/sEH

Soluble epoxide hydrolase is an enzyme 
involved in metabolizing lipid epoxides, 
converting them into diols through hydrolysis.35 
This enzymatic activity has been implicated 
in numerous physiological and pathological 
processes, including inflammation, pain, and 
cardiovascular diseases. Recombinant human 
EPHX2 was expressed in Escherichia coli and 
purified via affinity chromatography. Its activity 
was verified using substrate-based fluorescence 
assays to confirm functional integrity before 
integration into DEL screening assays. By 
selecting sEH as a target, the BELKA dataset 
facilitates the evaluation of ligand binding in the 
context of enzymatic specificity and inhibition.
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3.1.3. ALB/HSA

Human serum albumin, the most abundant 
plasma protein, plays a key role in drug 
pharmacokinetics by binding and transporting 
a wide range of endogenous and exogenous 
compounds.36 For this dataset, HSA was 
isolated from human plasma and subjected 
to additional purification to remove potential 
impurities. Its binding activity was assessed 
through equilibrium dialysis and competitive 
ligand-binding assays to confirm its ability to 
interact with small molecules37. Using HSA in 
the DEL screening enables exploring protein-
small molecule interactions that influence drug 
bioavailability and distribution.

3.2. Dataset acquisition

The raw readout acquisition process is visualized 
in Figure 1. The primary library, AMA014, is 
a triazine-based shree-cycle library designed 
to resemble DEL-A. An additional orthogonal 
DEL, termed kinase0 (kin0), was designed to 
mimic kinase inhibitor chemistry.

	 The screening methodology involved 
combining the DEL with the target protein, 
isolating DEL/target complexes, eluting the 
bound DEL through heat application, and 
repeating the selection with the fresh target 
protein. This iterative process, conducted over 
three rounds for AMA014, aimed to enrich 
high-affinity binders. Each selection series for 
AMA014 was performed in triplicate to assess 
reproducibility. In contrast, the smaller kinase0 
library underwent a single selection round, 
performed in duplicate with a single negative 
control. Post-selection, the eluted DELs were 
subjected to sequencing to quantify binding 
events. The dataset includes both binary binding 
labels and raw sequencing counts, facilitating 
diverse analyses, including evaluating hit-calling 
methods and experimental design parameters. 
The raw dataset encompasses approximately 
4.25 billion physical measurements, with 
compressed data totalling around 600 GB.

All protein targets underwent rigorous 
selection and preparation to maintain high 
experimental reproducibility. For each target, 
protein binding assays were conducted to 
confirm the enrichment of small molecule 
binders across multiple rounds of DEL screening. 
The screening workflow included initial binding 
assays with the target protein, iterative selection 
and amplification of enriched libraries, and 
sequencing to quantify binding events. These 
protocols were designed to capture high-affinity 
interactions and a broad spectrum of molecular 
binders, ensuring a comprehensive dataset for 
benchmarking predictive models.

3.3. Dataset description

Each row in the dataset encapsulates the chemical 
composition and binding characteristics of a 
small molecule with a specific protein target, 
providing a structured basis for learning binding 
patterns across different protein targets and 
molecular configurations.

The training dataset D train contains 
98,415,610 samples and D test contains 878,022 
samples. The training dataset D train (as shown 
in Table 1) includes molecular structures 
represented by SMILES strings, with each 
sample specifying four chemical building 
blocks, a complete molecular structure, the 
protein target, and the binary binding label 
(1 for binding, 0 for no binding) as the output 
variable. The test dataset D test follows a similar 
structure without the binding label, providing 
the molecular structure and target protein only. 
Each feature of the data is described as follows:

•	 id: A unique identifier for each record. 
Every unique combination of small molecule 
features is represented by three consecutive 
rows, each corresponding to a specific protein 
target: BRD4, HSA, or sEH. This structure 
allows for direct comparisons of binding affinity 
predictions across the three protein targets for 
the same molecular structure.
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•	buildingblock1_smiles: A SMILES 
string representing the first building block of 
the molecule. This component forms part of 
the molecular structure and contributes specific 
chemical properties to the final molecule.

•	buildingblock2_smiles: A SMILES 
string for the second building block. Together 
with the first and third building blocks, it helps 
define the molecule's structure and potential 
binding characteristics.

•	buildingblock3_smiles: A SMILES 
string representing the third building block of 
the molecule, completing the combination of 
foundational elements used to form the final 
molecule.

•	molecule_smiles: A SMILES string 
for the entire molecule, constructed from the 
building blocks and representing the complete 
molecular structure, including atoms, bonds, and 
stereochemistry. This column is a primary input 
for machine learning models to predict binding 
affinity based on the molecule's overall chemical 
structure.

•	protein_name: The name of the protein 
target for each molecule, which can be one of 
three values—BRD4, HSA, or sEH. Each protein 

target has a specific biological significance and 
is used to determine the binding affinity of the 
molecule to a particular protein. For each unique 
molecule, the dataset includes rows for all three 
proteins to allow cross-target comparisons.

•	binds (D train only): A binary label 
indicating whether the molecule binds to the 
specified protein target. A value of '1' signifies 
that the molecule binds to the target, while '0' 
indicates no binding. This label is used as the 
output variable y.

For instance, the 2D representation of a 
molecule in the BELKA dataset is demonstrated 
in Figure 1.

Figure 1. The 2D representation of a BELKA 
molecule (C#CCOc1ccc(CNc2nc(NCC3CCCN3c3cc
cnn3)nc(N[C@@H](CC#C)CC(=O)N[Dy])n2)cc1).

Table 1. Training dataset excerpts for 3 targets: BRD4, HSA, and sEH.

id
buildingblock1_
smiles

buildingblock2_
smiles

buildingblock3_
smiles

molecule_smiles
protein_
name

binds

0

C#CC[C@@H]
(CC(=O)O)NC(=O)
OCC1c2ccccc2-
c2ccccc21

C#CCOc1ccc (CN)
cc1.Cl

Br.Br.NCC1CC 
CN1c1cccnn1

C#CCOc1ccc(CNc2nc(NCC3CCC
N3c3cccnn3)nc(N[C@@H](CC#C)
CC(=O)N[Dy])n2)cc1

BRD4 0

1

C#CC[C@@H]
(CC(=O)O)NC(=O)
OCC1c2ccccc2-
c2ccccc21

C#CCOc1ccc (CN)
cc1.Cl

Br.Br.NCC1CC 
CN1c1cccnn1

C#CCOc1ccc(CNc2nc(NCC3CCC
N3c3cccnn3)nc(N[C@@H](CC#C)
CC(=O)N[Dy])n2)cc1

HSA 0

2

C#CC[C@@H]
(CC(=O)O)NC(=O)
OCC1c2ccccc2-
c2ccccc21

C#CCOc1ccc (CN)
cc1.Cl

Br.Br.NCC1CC 
CN1c1cccnn1

C#CCOc1ccc(CNc2nc(NCC3CCC
N3c3cccnn3)nc(N[C@@H](CC#C)
CC(=O)N[Dy])n2)cc1

sEH 0
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4. METHODOLOGY

4.1. Data preprocessing

In the data preprocessing phase, as demonstrated 
in Figure 2, the dataset was processed in 
increments of 104 rows to manage memory 
efficiently, given its large size. Each molecule in 
the dataset, represented by SMILES strings, was 
processed to create ECFPs, a commonly used 
molecular representation in cheminformatics. 
The SMILES strings for each molecule were 
converted into RDKit molecular objects, and 
ECFPs were generated with a radius of 2 and 
a fingerprint size of 2048 bits. The ECFPs 
were transformed into sparse matrix format 
to optimize memory usage, and additional bit 
information for each fingerprint was captured to 
enhance interpretability.

To reduce the dimensionality and 
improve computational efficiency, each of the 
building blocks (as shown in Section 3), namely  
buildingblock1_smiles, buildingblock2_smiles 
and buildingblock3_smiles were mapped to 
unique integer identifiers, with dictionaries 
created for each set of SMILES strings.

For instance, building blocks in 
buildingblock1_smiles were mapped to integer 
values in blocks_dict_1, while a shared 
dictionary, blocks_dict_23, was created for 
buildingblock2_smiles and buildingblock3_
smiles due to the overlap between these blocks. 
These mappings were then saved, allowing 
for efficient lookup and reuse. To address the 
class imbalance, particularly given the scarcity 
of positive binding cases, the dataset was 
downsampled for non-binding entries, retaining 
all rows where the binding was detected and 
sampling a subset of non-binding cases. This 
balanced dataset provided an optimal size and 
improved training stability.

Processed data, including the sparse 
ECFP matrices and integer-encoded building 

blocks, were saved into a training balanced 
set εtrain and a test set εtest, in compressed 
formats for efficient storage and retrieval. This 
preprocessing pipeline allowed for structured 
and memory-efficient representation of the 
dataset, supporting effective model development 
for binding prediction across the three protein 
targets.

4.2. Model implementation

In this section, we described our implementation 
of a multi-step model training and evaluation 
process to predict the binding affinity of small 
molecules to three protein targets: BRD4, 
HSA, and sEH. This approach involved model 
selection, feature reduction, model training and 
evaluation.

4.2.1. Training setup and data partitioning

To control randomization across the training 
process, we initialized a fixed seed as 42, 
allowing for reproducibility in sampling and 
shuffling steps. The dataset εtrain was then split 
into a training set Atrain (90%) and a validation 
set Aval (10%) based on a shuffled index of 
samples. This partitioning enabled model tuning 
on the training set while using the Aval to assess 
model generalization and prevent overfitting.

4.2.2. Feature reduction by variance threshold

The initial input data contained high-
dimensional molecular fingerprints generated 
from ECFPs. To reduce dimensionality and 
enhance model performance, we applied a 
variance threshold to the ECFP feature matrix. 
Features with variance θ below 0.005 were 
removed, as low-variance features contribute 
minimally to distinguishing between classes. 
This filtering reduced computational complexity 
and mitigated overfitting by retaining only the 
most informative features.
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Figure 3. The pipeline of model training, validation 
and inference.Figure 2. The pipeline of preprocessing dataset.
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4.2.3. Model training and inference

In this step, we employed XGBoost, a gradient 
boosting algorithm, to train separate binary 
classification models for each protein target: 
BRD4, HSA, and sEH. 

For each model, we configured the 
objective function as binary logistic regression 
with a learning rate r of 0.2, and the evaluation 
metric as the average precision score (AP). Early 
stopping was applied with a patience p of 100 
rounds to prevent overfitting, and the model was 
allowed up to 4000 iterations for convergence. 
To handle imbalanced data, we computed a 
scale positive weight for each target, defined as  

counts of non-binding and binding samples, 
respectively.

4.3. Model explanation with XAI

To understand the contribution of specific 
molecular features to each model’s predictions, 
we applied an interpretability method, namely 
SHAP.

We utilized the SHAP TreeExplainer 
for XGBoost, which computes Shapley values 
efficiently in tree-based models. SHAP summary 
plots and bar charts were generated to visualize 
the global importance of features in predicting 
binding affinity for each target.

5. RESULTS

5.1. Model performance

To evaluate the effectiveness of our predictive 
models on the binding affinity classification task, 
we conducted a comprehensive performance 
assessment across the three protein targets: 
BRD4, HSA, and sEH. The metrics used for 
evaluation included accuracy, mean average 
precision (MAP), recall, and the area under 
the precision-recall curve (AUCPR), which 
are presented in Table 1. Results were reported 
separately for the training set Atrain and the 
validation set Aval to provide insights into 
training stability and generalization.

5.1.1. Evaluation metrics

Accuracy measures the overall correctness of 
predictions and is defined as the ratio of correctly 
classified samples (both positive and negative) 
to the total number of samples. Mathematically, 
accuracy is expressed as:

where TP represents true positives, TN 
represents true negatives, FP represents false 
positives, and FN represents false negatives. 
While accuracy provides a general assessment 
of the model's classification capability, it can 
be less informative in imbalanced datasets, as it 
may overemphasize the correct classification of 
the majority class.

Recall  (Sensitivity) measures the 
proportion of actual positive cases correctly 
identified by the model. It is defined as:  

Recall focuses on the model's ability 
to capture true binders, which is critical in 
applications where missing positive cases (e.g., 
potential drug candidates) could have significant 
consequences. A high recall ensures that the 
model effectively identifies most true binding 
interactions.

Mean Average Precision (MAP) evaluates 
the ranking quality of predictions, particularly 
the precision of positive cases across various 
thresholds. It is calculated as the mean of the 
Average Precision (AP) scores over all classes, 
where AP combines precision and recall into a 
single metric that emphasizes the ranking order 
of positive predictions. MAP is computed as: 
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sensitive to the quality of predictions for the 
minority class.

Area Under the Precision-Recall 
Curve (AUCPR) quantifies the trade-off 
between precision and recall across all decision 
thresholds. Unlike the Receiver Operating 
Characteristic (ROC) curve, the Precision-
Recall curve is more informative in imbalanced 
datasets, as it emphasizes the model's ability to 
classify the positive class correctly. AUCPR is 
calculated as the area under the curve formed 
by plotting precision against recall at varying 
thresholds. A higher AUCPR indicates a better 

balance between precision and recall, reflecting 
the model's ability to maintain high sensitivity 
(recall) without compromising specificity 
(precision).

These four metrics were chosen to provide 
a comprehensive evaluation of the models, 
capturing their overall classification accuracy, 
ranking quality, sensitivity to true positives, and 
the precision-recall trade-off. By analyzing these 
metrics, we can gain deeper insights into the 
strengths and limitations of the models for each 
protein target, enabling targeted improvements 
in future iterations.

Table 2. The model performance on the training and validation set with accuracy, mean average precision (MAP), 
recall and area under the precision-recall curve (AUCPR).

BRD4 HSA sEH BRD4 HSA sEH

Accuracy MAP

0.9637 0.9164 0.9798 0.5708 0.3341 0.7913

0.9583 0.9082 0.9767 0.5364 0.3006 0.7754

Recall AUCPR

0.9910 0.9543 0.9979 0.9098 0.6751 0.9773

0.9275 0.8467 0.9778 0.8663 0.6076 0.9629

Figure 4. The area under the precision-recall curve (AUCPR) visualization of the model on the training (in green) 
and validation (in orange) set.

Atrain

Aval

Atrain

Aval

5.1.2. Performance evaluation

For BRD4, the model achieved a high 
accuracy of 0.9637 on Atrain and 0.9583 on  
Aval indicating minimal overfitting and strong 
predictive performance. However, the MAP 
values, which assess the ranking quality of 
positive predictions, were relatively modest 
at 0.5708 for Atrain and 0.5364 for Aval . This 

reflects the inherent difficulty of ranking positive 
binders for BRD4. Despite this, the recall values 
were consistently high, reaching 0.9910 for Atrain 
and 0.9275 for Aval, demonstrating the model's 
capability to identify a significant proportion 
of true binders. The AUCPR scores, 0.9098 for 
Atrain and 0.8663 for Aval , further confirms the 
model's effectiveness in differentiating binders 
from non-binders.
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for Aval, were significantly higher than those 
for BRD4 and HSA, indicating superior ranking 
performance. Recall values were near perfect 
at 0.9979 for Atrain and 0.9778 for Aval, further 
emphasizing the model's sensitivity in detecting 
true binding events. The AUCPR scores, 0.9773 
for  Atrain and 0.9629 for Aval, reinforce the 
robustness of the model for sEH, highlighting its 
capability to separate binders from non-binders 
with high confidence effectively.

In addition to evaluating model 
performance on the Atrain and Aval  sets, the final 
models were assessed on the BELKA test dataset  
εtest, as part of a Kaggle competition. Since 
the test labels for each target were not made 
available, the evaluation relied solely on the 
predictions' final test scores. On the public test 
set, the model achieved an accuracy of 0.2042, 

Figure 6. The confusion matrices for the model’s prediction of the binding affinity for 3 targets: BRD4, HSA 
and sEH.

Figure 5. The global explanation (top influencing features) for the model’s prediction of the binding affinity for 3 
targets: BRD4, HSA and sEH.

For HSA, the model exhibited slightly 
lower accuracy than BRD4, with values of 
0.9164 for Atrain and 0.9082 for Aval. The MAP 
scores for HSA, 0.3341 for Atrain  and 0.3006 
for Aval, were the lowest among the three targets, 
indicating challenges in ranking true binders 
effectively. Nevertheless, the recall metrics for 
HSA were robust, achieving 0.9543 on Atrain 
and 0.8467 on Aval. The AUCPR values, 0.6751 
for Atrain and 0.6076 for Aval, suggest the 
model's reasonable ability to identify binding 
patterns, though there is room for improvement 
in precision-recall balance.

The model's performance on sEH was the 
strongest overall. The accuracy reached 0.9798 
for Atrain and 0.9767 for Aval, showcasing 
exceptional classification accuracy. Similarly, 
the MAP scores, 0.7913 for Atrain and 0.7754 
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while the private test set yielded a slightly lower 
accuracy of 0.1843. 

Finally, these results demonstrate that the 
boosting models, when combined with efficient 
data preprocessing and dimensionality reduction, 
can achieve reliable predictions across diverse 
protein targets. The differences in MAP and 
AUCPR scores among the targets underscore 
the varying complexities of binding prediction, 
with sEH being the most tractable and HSA 
presenting the greatest challenges. The results on 
the test datasets highlight the challenges posed 
by the BELKA dataset, particularly the difficulty 
in achieving generalizable predictions across 
unseen data. The gap between validation and 
test performance underscores the potential for 
further enhancements in model robustness and 
generalization.

5.2. Model intepretability

To provide insights into the decision-making 
process of the predictive models, we employed 
SHAP to quantify the contribution of individual 
molecular features to the model's output. 
SHAP explanations are particularly valuable in 
understanding which molecular substructures, 
represented as SMILES fragments, had the 
most significant impact on the binding affinity 
prediction for each protein target: BRD4, HSA, 
and sEH. The SHAP summary plots for the 
three targets are presented in Error! Reference 
source not found., with the x-axis representing 
the mean absolute SHAP value, indicative of the 
average magnitude of a feature’s impact on the 
model's predictions.

BRD4 (Error! Reference source not 
found.a): the most influential molecular feature 
was the fragment "CCNCC," which exhibited 
the highest mean SHAP value, highlighting its 
strong association with binding predictions. 
Other significant contributors included fragments 
with nitrogen and aromatic substructures such 
as "CCC(N)C(N)=O" and "C(c)(H)C(Nc=In)," 
suggesting that these groups may play a key 
role in interacting with BRD4's bromodomains. 

Notably, the diversity of impactful features 
underscores the model's ability to capture 
complex molecular patterns that influence 
binding specificity.

HSA (Error! Reference source not 
found.b): SHAP analysis revealed "CC(C)
(C)CCS" as the most impactful feature. This 
fragment aligns with HSA's known affinity 
for hydrophobic and bulky molecular groups, 
which are critical for its role as a drug carrier 
protein. Additional significant features included 
"ccccc1CCl" and "C1CSC1," suggesting a 
preference for aromatic and cyclic substructures. 
These insights provide a molecular-level 
understanding of the interactions influencing the 
binding of small molecules to HSA.

sEH (Error! Reference source not 
found.c): the SHAP summary plot demonstrated 
that the fragment "CC(C)(C)CCS" had the largest 
average impact on model predictions, followed 
by "ccccc1CCl" and "C=C(C)C(CC)." These 
features are consistent with known hydrophobic 
binding pockets in sEH, highlighting the model's 
ability to identify molecular characteristics 
critical for binding affinity. Notably, the sEH 
model exhibited a larger range of SHAP values 
than the other targets, reflecting a higher 
sensitivity to specific molecular fragments.

The SHAP analysis across all three targets 
highlights the models’ reliance on chemically 
meaningful features, providing interpretability 
and transparency in their predictions. These 
findings not only enhance confidence in the 
models but also offer valuable insights for the 
rational design of small molecules with desired 
binding properties. Future efforts could involve 
leveraging these SHAP-derived insights for 
feature engineering or guiding experimental 
validation to further refine predictive 
performance.

6. DISCUSSION

This study demonstrates the potential and 
challenges of ML in molecular binding 
prediction. The XGBoost models achieved high 
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performance on training and validation datasets, 
particularly for sEH, which benefited from its 
consistent molecular binding patterns. However, 
BRD4 and HSA presented unique challenges due 
to more diverse binding chemistries, resulting in 
slightly lower scores. SHAP analysis revealed 
chemically meaningful features, providing 
valuable insights into the molecular determinants 
of binding and guiding potential drug design 
efforts. The evaluation of the BELKA test 
dataset highlights a notable performance drop, 
with public and private test scores of 0.2042 
and 0.1843, respectively. This gap underscores 
the inherent difficulty of generalizing predictive 
models to unseen data in large, diverse chemical 
spaces. It also highlights the importance 
of robust feature selection, additional data 
augmentation, and more generalized learning 
methods to bridge the gap between validation 
and test performance. Hence, in our future work, 
we would like to investigate the influence of 
more feature selection, dimensional reduction 
and data augmentation techniques.

	 While tree-based models like XGBoost 
are interpretable and effective for structured data, 
the reliance on binary binding labels rather than 
continuous affinity scores limits their ability to 
capture nuanced interactions. Future work could 
integrate graph-based molecular representations 
or hybrid approaches combining DL with 
traditional ML to improve prediction accuracy 
and generalizability.15,17,38,39 Additionally, 
leveraging semi-supervised learning or transfer 
learning could further enhance model robustness 
in unseen data scenarios.34–36

7. CONCLUSION

This study highlights the potential of machine 
learning to revolutionize drug discovery by 
predicting small molecule binding affinities 
with high efficiency. Using the BELKA dataset, 
we demonstrated the capability of XGBoost 
models to achieve strong predictive performance 
while providing interpretability through SHAP 
analysis. However, challenges in generalization, 
particularly on unseen test datasets, reveal 

areas for methodological improvement. By 
combining robust predictive capabilities with 
interpretable outputs, this work advances 
computational approaches for drug discovery, 
enabling more efficient exploration of chemical 
space and paving the way for identifying novel 
therapeutics.
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