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TOM TAT

Du doan kha ning lién két cta cac phéan tir nhod véi cac muc tiéu protein 1a mot budce quan trong trong qué
trinh kham phé thudc hién dai, mo ra tiém ning day nhanh viéc x4c dinh cac liéu phap diéu tri hiéu qua dong thoi
giam chi phi thi nghiém. Trong nghién ctru nay, chung toi st dung bd dir licu BELKA, mot thu vién hoa hoc ma hoa
bang DNA (DEL) quy mé 16n, d huén luyén cac mé hinh hoc may nham du doan kha nang lién két. Bing cach ap
dung XGBoost, mot thuat toan gradient boosting dua trén cdu trac cdy quyét dinh, cing vdi cac budc tién xur Iy va
thiét ké ddc trung chuyén sau, chung toi di phat trién cac mo hinh du doan cho ba myc tiéu protein: BRD4, HSA,
va sEH dé dy doan kha nang lién két phan tir cho ba muc tiéu protein. Cac mé hinh nay thé hién ning lyc dy doan
manh mé, ddng thoi cho phép giai thich két qua thong qua phén tich SHAP nhim xac dinh cac dic trung phén tir
quan trong quyét dinh kha nang lién két. Danh gia trén bo dit lidu kiém tra BELKA cho thay nhiing thach thirc trong
viéc khai quat hoa, cung cp nhirng hiéu biét quy gia vé su phirc tap cia mé hinh du doan trong kham pha thudc.
Nghién ciru nay nhan manh tiém ning ctia hoc may trong viée thic ddy qua trinh kham pha thudc bang may tinh,
cho phép kham phéa khong gian hoa hoc hiéu qua hon dé tim kiém cac liéu phap diéu tri tiém nang.
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ABSTRACT

The prediction of small molecule binding affinity to protein targets is a critical step in modern drug discovery,
offering the potential to accelerate the identification of effective therapeutics while reducing experimental costs. In
this study, we employ the BELKA dataset, a large-scale DNA-encoded chemical library (DEL), to train machine
learning models for binding affinity prediction. Using XGBoost, a tree-based gradient boosting algorithm, and
extensive preprocessing and feature engineering, we develop predictive models for three protein targets: BRD4,
HSA, and sEH to predict whether a given small molecule is a binder or not to one of three protein targets. The
models demonstrate strong predictive capabilities, with interpretability achieved through SHAP analysis to
identify molecular features driving binding predictions. Evaluation of the BELKA test dataset reveals challenges
in generalization, providing valuable insights into the complexities of predictive modelling in drug discovery. This
work highlights the promise of machine learning in advancing computational drug discovery by enabling efficient
exploration of the chemical space for potential therapeutics.

Keywords: Drug discovery, machine learning, explainable artificial intelligence.

1. INTRODUCTION

The development of machine learning (ML)
models to predict the binding affinity of small
molecules to specific protein targets holds
transformative potential for drug discovery.
Predicting these interactions is central to
identifying new, effective drug candidates, as
small molecule drugs interact with cellular
protein machinery to influence disease-
associated biological processes.

Traditionally, screening and testing
small molecules for binding affinity to protein
targets involve labour-intensive and costly
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physical experiments, which severely limits the
speed and scope of drug discovery efforts.!?
The search space for small molecule drugs is
estimated to encompass approximately 10
chemical compounds, which is impractical to
screen physically.’

With the pharmaceutical landscape
evolving, the integration of ML-based predictive
models offers a promising alternative to these
conventional approaches, enabling efficient
exploration of the vast chemical space for
Traditional  high-
throughput screening (HTS) technologies can

potential  therapeutics.
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assess libraries of small molecules against
protein targets, but they are often restricted to
collections of tens of thousands to a few million
compounds.* In response to this limitation,
DNA-encoded chemical libraries (DELs) have
emerged as a more scalable solution.” DELs
use unique DNA barcodes to tag each molecule,
allowing the pooling of millions of compounds
and simplifying the identification of binders
through DNA sequencing. This method has
substantially expanded the feasible scale of
chemical libraries and presents an attractive
foundation for computational models aimed at
binding affinity prediction.

Advances in ML architectures and feature
representation techniques, such as Simplified
Molecular Input Line Entry System (SMILES)
and graph-based molecular representations, have
made it possible to capture complex chemical
properties and interactions computationally.®
SMILES, as a
representation, encodes atom connectivity

string-based  molecular

and stereochemistry, facilitating ML models’
application in molecular property prediction,
drug discovery, and materials design.

Hence, in this work, we explore the
application of a tree-based gradient boosting
approach, specifically XGBoost, for predicting
binding affinity.” In addition to model
development, an Explainable Al (XAI) method
is integrated to interpret model behaviour,
enhancing transparency and interpretability
in the prediction of molecular binding. The
findings from this study aim to contribute to the
broader field of computational drug discovery,
leveraging ML to identify promising drug
candidates with high precision and potentially
reduce the costs associated with traditional
drug development methods. By enabling more
efficient exploration of chemical space, this
work aspires to pave the way toward discovering
new lifesaving therapeutics for complex
diseases. Conclusively, in this study, we make
the following contributions:

o Dataset Utilization: We leverage the
BELKA dataset®, a large-scale DNA-encoded
chemical library, providing a comprehensive
resource for binding affinity modelling.

o Predictive Modelling: We employ
the XGBoost model optimized with advanced
preprocessing and feature reduction techniques
to predict binding affinities for three biologically
significant protein targets: BRD4, HSA, and
sEH.

o Interpretability: Through XAl analysis,
we enhance the interpretability of the models,
offering molecular-level insights into the features
influencing binding predictions.

e Benchmarking: We evaluate our
methodology on the BELKA dataset, highlighting
the challenges of generalization for unseen cases.

2. RELATED WORK

2.1. Drug discovery and protein-target
interactions

The pharmaceutical field relies heavily on
understanding and predicting protein-target
interactions, as these molecular interactions
are critical in developing effective drugs.
Small molecule drugs are typically designed
to modulate specific protein targets linked to
disease mechanisms. Protein-ligand binding is
fundamental to this process, as the ability of a
drug candidate to bind to a specific protein target
determines its efficacy and safety.

Traditional drug discovery methodologies,
such ashigh-throughputscreening (HTS), involve
synthesizing large libraries of small molecules
and testing their affinity with the protein targets.
However, HTS is costly, time-intensive, and
limited in scope due to physical constraints,
allowing only a fraction of potential drug-like
compounds to be examined. Innovations, such as
DNA-encoded chemical libraries (DELs)®, have
addressed some of these limitations by enabling
more extensive exploration of chemical space. In
DELs, small molecules are tagged with unique
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DNA barcodes, allowing millions of compounds
to be screened in a pooled format. As such,
DELSs offer a scalable and efficient alternative to
traditional HTS. Advances in molecular biology
and DNA sequencing have further accelerated
DEL technology, facilitating its adoption in both
academia and industry.

2.2. SMILES and molecular representations

SMILES is one of the most widely adopted
formats for encoding chemical structures in
computational chemistry.® SMILES strings
represent molecular structures in a linear form,
capturing atoms, bonds, and stereochemistry in
a machine-readable format. This notation has
become essential for ML applications in drug
discovery due to its simplicity and the ease with
which it can be integrated into computational
pipelines. SMILES can also be converted to
other representations, such as 3D structures and
molecular graphs, allowing flexibility in model
input formats.

Alternative molecular representations,
such as molecular fingerprints and molecular
graphs, offer distinct advantages. Molecular
fingerprints encode the presence or absence of
substructures, providing a high-dimensional,
fixed-length vector representation suited for
various ML tasks.>'* Meanwhile, molecular
graphs represent the connectivity of atoms in
the molecule, capturing spatial information that
can be valuable for models like graph neural
networks (GNNs).'*'7 Recent studies suggest
that combining multiple representations, such
as SMILES with molecular graphs, can enhance
predictive accuracy by leveraging diverse
information formats.

2.3. Machine learning in molecular binding
prediction

ML has become essential to molecular binding
prediction, with recent models achieving high
performance by leveraging large datasets and
sophisticated algorithms. ML models, especially
deep learning (DL) frameworks, can capture
complex relationships in chemical and biological

https://doi.org/10.52111/qn;js.2025.19110

data, allowing them to predict molecular
properties with increasing accuracy.

Traditional ML methods, such as

quantitative  structure-activity  relationship
(QSAR) models, relied on engineered molecular
descriptors to predict binding affinity. Still, recent
ML approaches enable the use of raw chemical
representations such as SMILES and molecular
graphs, reducing the need for extensive feature
engineering.'®?° Convolutional neural networks
(CNNs)?!, graph neural networks (GNNs)??, and
recurrent neural networks (RNNs)* have been

widely used to encode molecular structures.

In addition to DL approaches, gradient-
boosting algorithms like XGBoost have gained
recognition for their efficacy in molecular
property prediction. XGBoost suits tasks
involving structured, high-dimensional data,
such as molecular fingerprints. By leveraging an
ensemble of decision trees, XGBoost iteratively
refines predictions, minimizing error while
maintaining interpretability. Unlike DL models,
XGBoost offers a computationally efficient
alternative that is well-suited for datasets with
tabular or fingerprint-based representations.
Recent studies have shown that integrating
molecular representations, such as Extended-
(ECFPs)*  with
XGBoost, yields highly accurate binding affinity

Connectivity  Fingerprints

predictions while retaining transparency. These
models are particularly valuable in scenarios
where interpretability is crucial, such as drug
discovery pipelines.”**” Additionally, XGBoost's
robustness to overfitting, especially when
combined with appropriate feature selection and
regularization, makes it a strong candidate for
handling imbalanced datasets often encountered
in molecular binding tasks.

2.4. Explainability in ML for drug discovery

As ML models become increasingly complex,
understanding the decision-making process
within these models is critical for their adoption in
sensitive fields like drug discovery. XAl methods
aim to make the behaviour of complex ML
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models more interpretable by providing insights
into how input features influence predictions. In
drug discovery, XAl can offer insights into which
molecular features contribute most significantly
to binding affinity, helping chemists understand
and validate model predictions.?3?

While tree-based models such as XGBoost
provide inherent interpretability through their
structured decision paths, this interpretability
becomes limited when applied to high-
dimensional and large-scale datasets. In such
cases, the complexity and volume of features
make it challenging to discern the specific
contributions of individual features to each
prediction, thereby reducing the practical utility
of feature importance metrics provided by these
models. To address this limitation, XAl methods,
like SHAP (SHapley Additive exPlanations)?®!
values and LIME (Local Interpretable Model-
agnostic Explanations)®, are often applied to
these models, enabling the decomposition of
predictions into contributions from individual
features. For example, SHAP values, derived
from cooperative game theory, were especially
used to quantify each feature’s influence on
the prediction.”> These explanation methods
not only facilitate model interpretation but also
foster trust in ML predictions, an essential factor
for the integration of Al into pharmaceutical
workflows.

3. DATASET

The BELKA dataset used in this study comprises
training and test samples that detail the
interactions between various small molecules
and three protein targets: bromodomain-
containing protein 4 (BRD4), soluble epoxide
hydrolase (EPHX2/sEH), and human serum
albumin (ALB/HSA).> The dataset presents a
binary classification of whether a given small
molecule is a binder or not to one of three protein
targets.

3.1. Dataset targets

The BELKA dataset encompasses three distinct
protein targets: BRD4, EPHX2/sEH, and ALB/

HSA. Each target represents a unique class of
biomolecular interactions, selected to provide
a diverse benchmarking ground for modelling
small molecule-protein interactions. These
targets were carefully chosen for their biological
significance and existing therapeutic relevance.
Their acquisition and preparation followed
rigorous protocols to ensure data fidelity and
reproducibility.

3.1.1. BRD4

Bromodomain-containing protein 4 is a pivotal
member of the BET protein family, involved in
recognizing acetylated lysines on histone tails.*
BRD4 has emerged as a prominent therapeutic
target in oncology, with inhibitors designed to
disrupt its role in transcriptional regulation,
particularly in cancer proliferation pathways.
Recombinant BRD4 was acquired through
baculovirus expression in insect cells to preserve
post-translational modifications critical for
its bromodomain function. Protein purity and
structural integrity were validated through size-
exclusion chromatography and binding assays
with known BRD4 inhibitors. These quality-
control measures ensured that the BRD4 used
in DEL screenings retained its native binding
characteristics, enabling high-confidence small
molecule-protein interaction studies.

3.1.2. BPHX2/sEH

Soluble epoxide hydrolase is an enzyme
involved in metabolizing lipid epoxides,
converting them into diols through hydrolysis.*
This enzymatic activity has been implicated
in numerous physiological and pathological
processes, including inflammation, pain, and
cardiovascular diseases. Recombinant human
EPHX2 was expressed in Escherichia coli and
purified via affinity chromatography. Its activity
was verified using substrate-based fluorescence
assays to confirm functional integrity before
integration into DEL screening assays. By
selecting sEH as a target, the BELKA dataset
facilitates the evaluation of ligand binding in the
context of enzymatic specificity and inhibition.
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3.1.3. ALB/HSA

Human serum albumin, the most abundant
plasma protein, plays a key role in drug
pharmacokinetics by binding and transporting
a wide range of endogenous and exogenous
compounds.’® For this dataset, HSA was
isolated from human plasma and subjected
to additional purification to remove potential
impurities. Its binding activity was assessed
through equilibrium dialysis and competitive
ligand-binding assays to confirm its ability to
interact with small molecules®’. Using HSA in
the DEL screening enables exploring protein-
small molecule interactions that influence drug
bioavailability and distribution.

3.2. Dataset acquisition

The raw readout acquisition process is visualized
in Figure 1. The primary library, AMAO14, is
a triazine-based shree-cycle library designed
to resemble DEL-A. An additional orthogonal
DEL, termed kinaseO (kin0), was designed to
mimic kinase inhibitor chemistry.

The screening methodology involved
combining the DEL with the target protein,
isolating DEL/target complexes, eluting the
bound DEL through heat application, and
repeating the selection with the fresh target
protein. This iterative process, conducted over
three rounds for AMAO14, aimed to enrich
high-affinity binders. Each selection series for
AMAO14 was performed in triplicate to assess
reproducibility. In contrast, the smaller kinaseO
library underwent a single selection round,
performed in duplicate with a single negative
control. Post-selection, the eluted DELs were
subjected to sequencing to quantify binding
events. The dataset includes both binary binding
labels and raw sequencing counts, facilitating
diverse analyses, including evaluating hit-calling
methods and experimental design parameters.
The raw dataset encompasses approximately
4.25 billion physical measurements, with
compressed data totalling around 600 GB.

https://doi.org/10.52111/qn;js.2025.19110

All protein targets underwent rigorous
selection and preparation to maintain high
experimental reproducibility. For each target,
protein binding assays were conducted to
confirm the enrichment of small molecule
binders across multiple rounds of DEL screening.
The screening workflow included initial binding
assays with the target protein, iterative selection
and amplification of enriched libraries, and
sequencing to quantify binding events. These
protocols were designed to capture high-affinity
interactions and a broad spectrum of molecular
binders, ensuring a comprehensive dataset for
benchmarking predictive models.

3.3. Dataset description

Each row in the dataset encapsulates the chemical
composition and binding characteristics of a
small molecule with a specific protein target,
providing a structured basis for learning binding
patterns across different protein targets and
molecular configurations.

The training dataset Dyrqin, contains
98,415,610 samples and D4 contains 878,022
samples. The training dataset Dyqin (as shown
in Table 1) includes molecular structures
represented by SMILES strings, with each
sample specifying four chemical building
blocks, a complete molecular structure, the
protein target, and the binary binding label
(1 for binding, 0 for no binding) as the output
variable. The test dataset Dyes; follows a similar
structure without the binding label, providing
the molecular structure and target protein only.
Each feature of the data is described as follows:

e id: A unique identifier for each record.
Every unique combination of small molecule
features is represented by three consecutive
rows, each corresponding to a specific protein
target: BRD4, HSA, or sEH. This structure
allows for direct comparisons of binding affinity
predictions across the three protein targets for
the same molecular structure.
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A SMILES
string representing the first building block of

* buildingblockl_smiles:

the molecule. This component forms part of
the molecular structure and contributes specific
chemical properties to the final molecule.

A SMILES
string for the second building block. Together
with the first and third building blocks, it helps
define the molecule's structure and potential

* buildingblock2 smiles:

binding characteristics.

* buildingblock3_smiles: A SMILES
string representing the third building block of
the molecule, completing the combination of
foundational elements used to form the final
molecule.

* molecule_smiles: A SMILES string
for the entire molecule, constructed from the
building blocks and representing the complete
molecular structure, including atoms, bonds, and
stereochemistry. This column is a primary input
for machine learning models to predict binding
affinity based on the molecule's overall chemical
structure.

* protein_name: The name of the protein
target for each molecule, which can be one of
three values—BRD4, HSA, or sEH. Each protein

target has a specific biological significance and
is used to determine the binding affinity of the
molecule to a particular protein. For each unique
molecule, the dataset includes rows for all three
proteins to allow cross-target comparisons.

e binds (Di¢rain only): A binary label
indicating whether the molecule binds to the
specified protein target. A value of '1' signifies
that the molecule binds to the target, while '0'
indicates no binding. This label is used as the
output variable y.

For instance, the 2D representation of a
molecule in the BELKA dataset is demonstrated
in Figure 1.

—_—
=
’Q

HN
= ’Q/\u ,{N\ii" K

, =

=
Figure 1. The 2D representation of a BELKA

molecule (C#CCOclccc(CNe2ne(NCC3CCCN3c3ce
cnn3)nc(N[C@@H](CC#C)CC(=O)N[Dy])n2)ccl).

Table 1. Training dataset excerpts for 3 targets: BRD4, HSA, and sEH.

. buildingblock1_ buildingblock2 buildingblock3 X protein_ .
id . . . molecule_smiles binds
smiles smiles smiles name
C#CC[C@@H]
C#CCOclece(CNe2ne(NCC3CCC
(CC(=0)O)NC(=0)  C#CCOclcce (CN)  Br.Br.NCCICC
0 N3c3ccenn3)ne(N[C@@H](CC#C) BRD4 0
OCClc2cccec2- ccl.Cl CNlcleeennl
CC(=O)N[Dy])n2)ccl
c2ccecc2l
C#CC[C@@H]
C#CCOclece(CNe2ne(NCC3CCC
(CC(=0)O)NC(=0)  C#CCOclcce (CN)  Br.Br.NCCICC
1 N3c3ccenn3)ne(N[C@@H](CC#C) HSA 0
OCClc2cccec2- ccl.Cl CNlclceennl
CC(=O)N[Dy])n2)ccl
c2ccecc2l
C#CC[C@@H]
C#CCOclece(CNe2ne(NCC3CCC
(CC(=0)O)NC(=0)  C#CCOclcce (CN)  Br.Br.NCCICC
2 N3c3ccenn3)ne(N[C@@H](CC#C) sEH 0
OCClc2cecec2- ccl.Cl CNlclceennl
CC(=O)N[Dy])n2)ccl
c2ccecc2l
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4. METHODOLOGY
4.1. Data preprocessing

In the data preprocessing phase, as demonstrated
in Figure 2, the dataset was processed in
increments of 10* rows to manage memory
efficiently, given its large size. Each molecule in
the dataset, represented by SMILES strings, was
processed to create ECFPs, a commonly used
molecular representation in cheminformatics.
The SMILES strings for each molecule were
converted into RDKit molecular objects, and
ECFPs were generated with a radius of 2 and
a fingerprint size of 2048 bits. The ECFPs
were transformed into sparse matrix format
to optimize memory usage, and additional bit
information for each fingerprint was captured to
enhance interpretability.

To reduce the dimensionality and
improve computational efficiency, each of the
building blocks (as shown in Section 3), namely
buildingblockl smiles, buildingblock2 smiles
and buildingblock3 smiles were mapped to
unique integer identifiers, with dictionaries
created for each set of SMILES strings.

For instance, building blocks in
buildingblockl smiles were mapped to integer
values in blocks dict 1, while a shared
dictionary, blocks dict 23, was created for
buildingblock2 smiles and  buildingblock3
smiles due to the overlap between these blocks.
These mappings were then saved, allowing
for efficient lookup and reuse. To address the
class imbalance, particularly given the scarcity
of positive binding cases, the dataset was
downsampled for non-binding entries, retaining
all rows where the binding was detected and
sampling a subset of non-binding cases. This
balanced dataset provided an optimal size and
improved training stability.

Processed data, including the sparse
ECFP matrices and integer-encoded building

https://doi.org/10.52111/qn;js.2025.19110

blocks, were saved into a training balanced
set &,4n, and a test set &y, in compressed
formats for efficient storage and retrieval. This
preprocessing pipeline allowed for structured
and memory-efficient representation of the
dataset, supporting effective model development
for binding prediction across the three protein
targets.

4.2. Model implementation

In this section, we described our implementation
of a multi-step model training and evaluation
process to predict the binding affinity of small
molecules to three protein targets: BRDA4,
HSA, and sEH. This approach involved model
selection, feature reduction, model training and
evaluation.

4.2.1. Training setup and data partitioning

To control randomization across the training
process, we initialized a fixed seed as 42,
allowing for reproducibility in sampling and
shuffling steps. The dataset &;,,;, wWas then split
into a training set 4,,,;, (90%) and a validation
set Ayq (10%) based on a shuffled index of
samples. This partitioning enabled model tuning
on the training set while using the 4,4 to assess
model generalization and prevent overfitting.

4.2.2. Feature reduction by variance threshold

The initial input data contained high-
dimensional molecular fingerprints generated
from ECFPs. To reduce dimensionality and
enhance model performance, we applied a
variance threshold to the ECFP feature matrix.
Features with variance 6 below 0.005 were
removed, as low-variance features contribute
minimally to distinguishing between classes.
This filtering reduced computational complexity
and mitigated overfitting by retaining only the
most informative features.
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‘ Load Data in Chunks ’

‘ Process Each Chunk lteratively ’

Encode Building Blocks with
Unique Integers

/ N

Map Block 1 to Map Blocks 2 & 3 to
Unique Integer IDs Shared Dictionary

Load Training & Test Data

‘ Load Train ECFP Sparse Matrix

. /

Convert SMILES
to RDKit Objects

Generate ECFP with
Radius 2, 2048 Bits

Store ECFPs as Sparse Matrix
(CSR format)

Restructure Data by
Protein Targets

Save Training/Test
ECFP Sparse Matrix

Extract Binary Binding Labels:
BRD4, HSA, sEH

Sample to Balance Positive
and Negative Classes

Save Balanced Training
ECFP Sparse Matrix

Figure 2. The pipeline of preprocessing dataset.

Train Blocks Unique SMILES

‘ Combine Unique SMILES Sets ‘

Variance Threshold Selection (#) ‘

Split into Train (90%) and
Validation (10%)

Train XGBoost with Targets:
BRD4, HSA, sEH

D)

Evaluate with MAP
(Mean Average Precision)

%

l Generate Test Predictions ‘

Figure 3. The pipeline of model training, validation

and inference.
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4.2.3. Model training and inference

In this step, we employed XGBoost, a gradient
boosting algorithm, to train separate binary
classification models for each protein target:
BRD4, HSA, and sEH.

For each model, we configured the
objective function as binary logistic regression
with a learning rate » of 0.2, and the evaluation
metric as the average precision score (AP). Early
stopping was applied with a patience p of 100
rounds to prevent overfitting, and the model was
allowed up to 4000 iterations for convergence.
To handle imbalanced data, we computed a
scale positive weight for each target, defined as

N
w=—"9  where Npeg and Ny, represent the
pos

counts of non-binding and binding samples,
respectively.

4.3. Model explanation with XAI

To understand the contribution of specific
molecular features to each model’s predictions,
we applied an interpretability method, namely
SHAP.

We utilized the SHAP TreeExplainer
for XGBoost, which computes Shapley values
efficiently in tree-based models. SHAP summary
plots and bar charts were generated to visualize
the global importance of features in predicting
binding affinity for each target.

5. RESULTS
5.1. Model performance

To evaluate the effectiveness of our predictive
models on the binding affinity classification task,
we conducted a comprehensive performance
assessment across the three protein targets:
BRD4, HSA, and sEH. The metrics used for
evaluation included accuracy, mean average
precision (MAP), recall, and the area under
the precision-recall curve (AUCPR), which
are presented in Table 1. Results were reported
separately for the training set A4,,.;, and the
validation set A4,, to provide insights into
training stability and generalization.

https://doi.org/10.52111/qn;js.2025.19110

5.1.1. Evaluation metrics

Accuracy measures the overall correctness of
predictions and is defined as the ratio of correctly
classified samples (both positive and negative)
to the total number of samples. Mathematically,
accuracy is expressed as:

TP+TN
TP+TN+FP+FN

Accuracy =

where TP represents true positives, TN
represents true negatives, FP represents false
positives, and FN represents false negatives.
While accuracy provides a general assessment
of the model's classification capability, it can
be less informative in imbalanced datasets, as it
may overemphasize the correct classification of
the majority class.

Recall
proportion of actual positive cases correctly
identified by the model. It is defined as:

TP
TP+ FN

(Sensitivity) measures the

Recall =

Recall focuses on the model's ability
to capture true binders, which is critical in
applications where missing positive cases (e.g.,
potential drug candidates) could have significant
consequences. A high recall ensures that the
model effectively identifies most true binding
interactions.

Mean Average Precision (MAP) evaluates
the ranking quality of predictions, particularly
the precision of positive cases across various
thresholds. It is calculated as the mean of the
Average Precision (AP) scores over all classes,
where AP combines precision and recall into a
single metric that emphasizes the ranking order
of positive predictions. MAP is computed as:

I~
MAP = NZAP(ytrue' ypred)
i=1

where Ry, is the recall at rank k and Pj is the
precision at rank k. MAP is particularly valuable
for imbalanced datasets, as it prioritizes the
correct ranking of true positives, making it
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sensitive to the quality of predictions for the
minority class.

Area Under the Precision-Recall
Curve (AUCPR) quantifies the trade-off
between precision and recall across all decision
thresholds.

Characteristic (ROC) curve, the Precision-

Unlike the Receiver Operating

Recall curve is more informative in imbalanced
datasets, as it emphasizes the model's ability to
classify the positive class correctly. AUCPR is
calculated as the area under the curve formed
by plotting precision against recall at varying
thresholds. A higher AUCPR indicates a better

balance between precision and recall, reflecting
the model's ability to maintain high sensitivity
(recall)  without
(precision).

compromising  specificity

These four metrics were chosen to provide
a comprehensive evaluation of the models,
capturing their overall classification accuracy,
ranking quality, sensitivity to true positives, and
the precision-recall trade-off. By analyzing these
metrics, we can gain deeper insights into the
strengths and limitations of the models for each
protein target, enabling targeted improvements
in future iterations.

Table 2. The model performance on the training and validation set with accuracy, mean average precision (MAP),

recall and area under the precision-recall curve (AUCPR).

BRD4 HSA sEH BRD4 HSA sEH
Accuracy MAP
Arain 0.9637 0.9164 0.9798 0.5708 0.3341 0.7913
Ayl 0.9583 0.9082 0.9767 0.5364 0.3006 0.7754
Recall AUCPR
Arain 0.9910 0.9543 0.9979 0.9098 0.6751 0.9773
Apar 0.9275 0.8467 0.9778 0.8663 0.6076 0.9629

Train and Validation AUCPR for BRD4

Train and Validation AUCPR for HSA

Train and Validation AUCPR for sEH

~—— HSA Train AUCPR
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Figure 4. The area under the precision-recall curve (AUCPR) visualization of the model on the training (in green)

and validation (in orange) set.

5.1.2. Performance evaluation

For BRD4, the model achieved a high
accuracy of 0.9637 on A, and 0.9583 on
A, indicating minimal overfitting and strong
predictive performance. However, the MAP
values, which assess the ranking quality of
positive predictions, were relatively modest
at 0.5708 for A4,,,, and 0.5364 for 4,, . This

reflects the inherent difficulty of ranking positive
binders for BRD4. Despite this, the recall values
were consistently high, reaching 0.9910 for 4,,;,
and 0.9275 for 4,,, demonstrating the model's
capability to identify a significant proportion
of true binders. The AUCPR scores, 0.9098 for
Ayrain and 0.8663 for 4, , further confirms the
model's effectiveness in differentiating binders
from non-binders.
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Figure 5. The global explanation (top influencing features) for the model’s prediction of the binding affinity for 3

targets: BRD4, HSA and sEH.
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Figure 6. The confusion matrices for the model’s prediction of the binding affinity for 3 targets: BRD4, HSA

and sEH.

For HSA, the model exhibited slightly
lower accuracy than BRDA4, with values of
0.9164 for 4,,,;, and 0.9082 for 4,,. The MAP
scores for HSA, 0.3341 for 4,,,;,, and 0.3006
for 4,,,, were the lowest among the three targets,
indicating challenges in ranking true binders
effectively. Nevertheless, the recall metrics for
HSA were robust, achieving 0.9543 on 4,4,
and 0.8467 on 4,,,. The AUCPR values, 0.6751
for 4., and 0.6076 for A4,,, suggest the
model's reasonable ability to identify binding
patterns, though there is room for improvement

in precision-recall balance.

The model's performance on sEH was the
strongest overall. The accuracy reached 0.9798
for 4,.,, and 0.9767 for A4,,, showcasing
exceptional classification accuracy. Similarly,
the MAP scores, 0.7913 for 4,,,, and 0.7754

https://doi.org/10.52111/qn;js.2025.19110

for 4,,, were significantly higher than those
for BRD4 and HSA, indicating superior ranking
performance. Recall values were near perfect
at 0.9979 for 4,,,,, and 0.9778 for 4,,;, further
emphasizing the model's sensitivity in detecting
true binding events. The AUCPR scores, 0.9773
for A4,,, and 0.9629 for 4,,, reinforce the
robustness of the model for sEH, highlighting its
capability to separate binders from non-binders
with high confidence effectively.

In addition to evaluating model
performance on the 4,,,,, and 4,,; sets, the final
models were assessed on the BELKA test dataset
Eest» as part of a Kaggle competition. Since
the test labels for each target were not made
available, the evaluation relied solely on the
predictions' final test scores. On the public test
set, the model achieved an accuracy of 0.2042,
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while the private test set yielded a slightly lower
accuracy of 0.1843.

Finally, these results demonstrate that the
boosting models, when combined with efficient
data preprocessing and dimensionality reduction,
can achieve reliable predictions across diverse
protein targets. The differences in MAP and
AUCPR scores among the targets underscore
the varying complexities of binding prediction,
with sEH being the most tractable and HSA
presenting the greatest challenges. The results on
the test datasets highlight the challenges posed
by the BELKA dataset, particularly the difficulty
in achieving generalizable predictions across
unseen data. The gap between validation and
test performance underscores the potential for
further enhancements in model robustness and
generalization.

5.2. Model intepretability

To provide insights into the decision-making
process of the predictive models, we employed
SHAP to quantify the contribution of individual
molecular features to the model's output.
SHAP explanations are particularly valuable in
understanding which molecular substructures,
represented as SMILES fragments, had the
most significant impact on the binding affinity
prediction for each protein target: BRD4, HSA,
and sEH. The SHAP summary plots for the
three targets are presented in Error! Reference
source not found., with the x-axis representing
the mean absolute SHAP value, indicative of the
average magnitude of a feature’s impact on the
model's predictions.

BRD4 (Error! Reference source not
found.a): the most influential molecular feature
was the fragment "CCNCC," which exhibited
the highest mean SHAP value, highlighting its
strong association with binding predictions.
Other significant contributors included fragments
with nitrogen and aromatic substructures such
as "CCC(N)C(N)=0" and "C(c)(H)C(Nc=In),"
suggesting that these groups may play a key
role in interacting with BRD4's bromodomains.

Notably, the diversity of impactful features
underscores the model's ability to capture
complex molecular patterns that influence
binding specificity.

HSA (Error! Reference source not
found.b): SHAP analysis revealed "CC(C)
(C)CCS" as the most impactful feature. This
fragment aligns with HSA's known affinity
for hydrophobic and bulky molecular groups,
which are critical for its role as a drug carrier
protein. Additional significant features included
"ccececlCCI" and "CI1CSCI1," suggesting a
preference for aromatic and cyclic substructures.
These insights provide a molecular-level
understanding of the interactions influencing the
binding of small molecules to HSA.

sEH (Error! Reference source not
found.c): the SHAP summary plot demonstrated
that the fragment "CC(C)(C)CCS" had the largest
average impact on model predictions, followed
by "ccccclCCIl" and "C=C(C)C(CC)." These
features are consistent with known hydrophobic
binding pockets in sEH, highlighting the model's
ability to identify molecular characteristics
critical for binding affinity. Notably, the sEH
model exhibited a larger range of SHAP values
than the other targets, reflecting a higher
sensitivity to specific molecular fragments.

The SHAP analysis across all three targets
highlights the models’ reliance on chemically
meaningful features, providing interpretability
and transparency in their predictions. These
findings not only enhance confidence in the
models but also offer valuable insights for the
rational design of small molecules with desired
binding properties. Future efforts could involve
leveraging these SHAP-derived insights for
feature engineering or guiding experimental
further  refine

validation  to predictive

performance.
6. DISCUSSION

This study demonstrates the potential and
challenges of ML in molecular binding
prediction. The XGBoost models achieved high
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performance on training and validation datasets,
particularly for sEH, which benefited from its
consistent molecular binding patterns. However,
BRD4 and HSA presented unique challenges due
to more diverse binding chemistries, resulting in
slightly lower scores. SHAP analysis revealed
chemically meaningful features, providing
valuable insights into the molecular determinants
of binding and guiding potential drug design
efforts. The evaluation of the BELKA test
dataset highlights a notable performance drop,
with public and private test scores of 0.2042
and 0.1843, respectively. This gap underscores
the inherent difficulty of generalizing predictive
models to unseen data in large, diverse chemical
spaces. It also highlights the importance
of robust feature selection, additional data
augmentation, and more generalized learning
methods to bridge the gap between validation
and test performance. Hence, in our future work,
we would like to investigate the influence of
more feature selection, dimensional reduction
and data augmentation techniques.

While tree-based models like XGBoost
are interpretable and effective for structured data,
the reliance on binary binding labels rather than
continuous affinity scores limits their ability to
capture nuanced interactions. Future work could
integrate graph-based molecular representations
or hybrid approaches combining DL with
traditional ML to improve prediction accuracy
Additionally,
leveraging semi-supervised learning or transfer

and generalizability.!%17383

learning could further enhance model robustness

in unseen data scenarios.’*>°

7. CONCLUSION

This study highlights the potential of machine
learning to revolutionize drug discovery by
predicting small molecule binding affinities
with high efficiency. Using the BELKA dataset,
we demonstrated the capability of XGBoost
models to achieve strong predictive performance
while providing interpretability through SHAP
analysis. However, challenges in generalization,
particularly on unseen test datasets, reveal

https://doi.org/10.52111/qn;js.2025.19110

areas for methodological improvement. By
combining robust predictive capabilities with
interpretable outputs, this work advances
computational approaches for drug discovery,
enabling more efficient exploration of chemical
space and paving the way for identifying novel
therapeutics.
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