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ABSTRACT

Using a recent result on intersection numbers over Grassmannians, we propose a characterization
for the degree of Fano varieties of linear subspaces on complete intersections in a complex projective
space in terms of the coefficient of a symmetric polynomial.

Keywords: Fano variety, degree formula.

1. INTRODUCTION

Let X be a general complete intersection of type
d = (di,...,d,) in the projective space P" over
the complex field C, provided that n,ds,...,d,
are natural numbers with n > 4,d; > 2 for all 7.
Recall that the Fano variety Fy(X) parametriz-
ing linear subspaces of dimension k contained in
X is a smooth subvariety of the Grassmannian
G(k+1,n+ 1) of linear subspaces of dimension
k in P", provided that

(k+1)(n—k)2i<dil—:k>

i=1
and X is not a quadric, in which last case
n > 2k + r is required' ~2. The degree of Fj,(X)
under the Pliicker embedding were formulated
by Debarre-Manivel (1998)? and Hiep (2016)°.

In this paper, we show that the degree of
Fi(X) can be expressed in terms of the coef-
ficient of a symmetric polynomial. For conve-
nience, we set

st ) = b+ D=0 -3 (1),
i—1

which is the expected dimension of Fj(X). Our
main result is the following:

"Corresponding author:
Email: ntmvanl8@gmail.com

Theorem 1. With the notations as above, if
d(n,d, k) > 0, then the degree of Fi,(X) under
the Pliicker embedding is given by

deg(Fy(X)) = AL k)

(k+ 1)
where c(n, d, k) is the coefficient of xj - - -z} in
the polynomial

P(n,d’k)<37(), ey Ty H((EZ — 1),
i#j
where

Pia k) (o, - on) = H H

1=1 a0+"'+ak:di,a1‘€N
(aowo + e + ak‘rk})(‘ro + e + Ik)é(n7d7k)'

The statement of Theorem 1 seems to be
similar to that of Debarre-Manivel (1998)2.
However, we here consider the coefficient of the
monomial x --- 2} in the product of the poly-

nomial P, 4 1y(To,...,7,) by the discriminant
A=T](wi—z)
i#j
instead of that of the monomial a7~z ~*

in the product of the same polynomial by the
Vandermonde determinant

V= H(l‘l - :L’j).

1<j
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In particular, our approach is completely dif-
ferent from that of Debarre-Manivel (1998)2.
We apply an integral formula for Grassmanni-
ans which has been recently explored by Hiep
(2019)® (see Theorem 3 below).

The rest of the paper is organized as follows:
Section 2 presents preliminary results. Section 3
presents the proof of the main theorem.

2. PRELIMINARY RESULTS

In this section, we review the basic notions and
results which are known.

2.1. Grassmannians and their Schubert
classes.

Let G(k,n) be the Grassmannian of k-
dimensional linear subspaces in a vector space
V' of dimension n. The tautological subbundle S
on G(k,n) is the vector bundle of rank k whose
fiber at W € G(k,n) is the vector subspace
W C V itself. The tautological quotient bundle
Q on G(k,n) is the vector bundle of rank n — k
whose fiber at W € G(k,n) is the quotient vec-
tor space V/W. The tangent bundle T on G(k,n)
is isomorphic to Hom(S, Q) = SV ® Q.

Let V be a flag in V, that is, a strictly in-
creasing sequence of linear subspaces

0OcVic---CV,,CV,=V,
where dim V; = 1.

For any sequence a = (aq,...,a;) of integers
with

n—-k>a >ay>--->a >0,
we define the Schubert cycle by ¥,(V), where
Y,(V)={W € G(k,n) :

dim(Vy_pyiza, NW) > dyi=1,... k}.

One can show that this is an irreducible subva-
riety of G(k,n) of codimension

k

lal = ax,

i=1

and its cycle class [X,(V)] does not depend on
the choice of flag. We then define the Schubert
class to be the cycle class 0, := [E4(V)].

To shorten the notation, we write ¥, in
place of £4(V), write ¥4, a,,0q,,..q, Whenever
a = (a,...,as0,...,0) and ¥, 0, whenever
a= (p,...,p,0,...,0) with ¢ the first compo-
nents equal to p. Then the cycle classes 0,1 =
1,...,n—Fkand oy:,9 =1,...,k are called spe-
cial Schubert classes.

The special Schubert classes are inti-
mately connected with the tautological bun-
dles on G(k,n), and both {01, 09,...,0,_} and
{o1,012,...,001} are minimal generating sets
for the Chow ring of G(k,n). More precisely, we
have the following statements.

Proposition 1 (Manivel (2001)!° and Eisen-
bud-Harris (2016)3). The Chern classes of S

and @Q are as follows:
CZ(S) = (—1)i0117 1= 1, ce ,k

and

CZ'(Q):O'Z‘, i:1,...,n—k.

By Corollary 3.5 in Eisenbud-Harris (2016),
the Schubert classes form a free Z-basis for
A(G(k,n)). The multiplication is determined by
the following formulas.

Proposition 2 (Duality formula). (See Corol-
lary 8.2 and Proposition 3.4 in Fisenbud-Harris
(2016)?) If |a| + [b] = k(n — k), we have

Oty i ai +bg—y =n—k foralli,
O Op =
0 otherwise.

Moreover, both (o,_1)* and (01:)"™* are equal
to the class of a point in the Chow ring of
G(k,n).

Proposition 3 (Pieri formula). (See Proposi-
tion 3.7 in Eisenbud-Harris (2016)®) For any
Schubert class o, € A*(G(k,n)) and any integer
1 with 0 <i<n-—k, we have

O'a'O'Z‘ZE Oc
c

where the sum is over all ¢ withn —k > ¢; >
ap>cy> > > ap >0, and |c| = |a| + 1.

Journal of Science - Quy Nhon University, 2020, 14(3), 53-59 | 55



KHOA HOC

TRUONG DAl HOC QUY NHON

Proposition 4 (Giambelli formula). (see Sec-
tion 1.5 in Griffiths-Harris (1978)°) For any
a=(a1,...,ax) withn—k>a >ag > - >
ap > 0, we have

0 = det(0a;4j—i)1<ij<k

where o9 = 1 and o, = 0 whenever m < 0 or
m>n—k.

Pieri’s formula shows how to determine the
product of an arbitrary Schubert class and a spe-
cial Schubert class. Giambelli’s formula shows
how to express an arbitrary Schubert class in
terms of special ones. Therefore, both formulas
give us an effective way to determine the prod-
uct of two arbitrary Schubert classes.

2.2. Splitting Principle.

The splitting principle is a useful technique for
reducing questions concerning vector bundles to
questions concerning line bundles.

Let E be a vector bundle of rank r on a va-
riety X. The splitting principle says that we can
regard the Chern classes of E as the elementary
symmetric polynomials in r variables «; for all
i =1,...,r, which are called the Chern roots of
E. More precisely, we have

C()(E) = 17

CI(E) = Z ajg,
1<i<r

c(F) = Z Qi
1<i<j<r

(E)=a1as...qp.

By the splitting principle and the Chern roots,
one has the following statements.

Proposition 5. (See Remark 3.2.3 and Exam-
ple 3.2.6 in Fulton (1997)*) Let E and F be two
vector bundles with Chern roots (o;); and (B;);,
respectively. Then we have the following state-
mants:

(i) EV has the Chern roots (—«;);. Hence
cr(EY) = (=1)*cp(E) for all k.

(ii)) E® F has the Chern roots
(i + Bj)ij-
(iii) Sym? E has the Chern roots
(i 4+ iy )iy <o <ig-
(iv) NE has the Chern roots
(Qviy + - 4 iy)iy <<y

Here we denote by Sym® E the d-th symmetric
power of E, and AYE the d-th extorior power of
E.

Example 1. Let E be a vector bundle of rank
2 on a variety X of dimension 4. We want to
compute the Chern classes of Sym® F in terms
of the Chern classes of E. If a; and o are the
Chern roots of E, then Sym?® E has the Chern
roots 3o, 2a + g, ap + 209, 3. Thus we have

cl(Sym3 E) =301 + 201 + as + a1 + 205 + 30y
= 6(0[1 + Oéz)
- 661(E)

Similarly, we have

c2(Sym?® E) = 11¢1(E)* + 10c2(E),
3(Sym® E) = 6¢1(E)? + 30¢1 (E)ca(E),
c4(Sym?® E) = 18¢1(E)*cy(E) + 9¢o(E)%.

2.3. Fano varieties: the hypersurface
case.

Let X be a general hypersurface of degree d in
the projective space P™ over the complex field
C. The Fano variety Fj,(X) is defined to be the
set of k-dimensional subspaces of P which are
contained in X. This is a subvariety of the Grass-
mannian G(k+1,n+1). For convenience, we set

6:(k+1)(n—k)—<dzk>.

Suppose that d # 2 (or n > 2k +r) and § > 0.
Langer (1996)” showed that FJ,(X) is smooth of
expected dimension d. By the language of Schu-
bert calculus, Debarre-Manivel (1998)? showed
that the degree of Fi(X) is equal to a certain co-
efficient of an explicit polynomial, gives as the
product of linear forms. Hiep (2016)° proposed

56 | Tap chi Khoa hoc - Truong Pai hoc Quy Nhon, 2020, 14(3), 53-59



SCIENCE

QUY NHON UNIVERSITY

and proved an explicit formula for computing
the degree of Fi(X) via equivariant intersection
theory.

Consider the diagonal action of T = (C*)"*!
on P" given in coordinates by

(toy - wvtn)(zo oot @n) = (toxo & ... @ tpy)

This induces an action of T" on the Grassman-
nian G(k 4+ 1,n + 1) with (Zﬁ) isolated fixed
points L; corresponding to the coordinate k-
subspaces in P, which are indexed by the sub-
sets [ of size k+ 1 of the set {1,...,n+ 1}. Let
T denote the set of all these subsets. Then the
degree of Fi(X) can be expressed as a sum of
rational polynomials, where the sum ranges over
all elements I of T.

Theorem 2. (See Theorem 1.1 in Hiep
(2016)°) Let X C P™ be a general hypersurface
of degree d and k < n be a positive integer. Then
the degree of the Fano variety Fy,(X) can be com-
puted by the following formula

S1QS
T,

deg(F3 (X)) = (-1)")

Ier

where

Sr= ] <Z v,-h,-) ,

0ENYcpvi=d \i€l

Q[ = Zhj and T] = HH(}LZ — h])

jel i€l 5l

are polynomials in Clhy, ..., hyt1].

Remark 1. The right-hand-side of the formula
in Theorem 2 is the sum of rational polynomi-
als, and the above theorem claims in other words
that it is in fact a constant function, moreover it
is an integer. Namely, for any numbers h; such
that h; # h; for ¢ # j, the right-hand-side of the

formula becomes the same integer.

Example 2. Let £k =1 and X C P? be a gen-
eral cubic surface. In this case, the Fano variety
Fi(X) has the expected dimension § = 0. The
degree of F1(X) can be computed as follows:

deg(Fi(X))= )
{i1,i2}C{1,2,3,4}
3hiy (2R, + hiy)(hi, + 2hi,)3hi,

(hi1 - hj1)(hi1 - hj2)(hi2 - hj1)(hi2 - hj2)’
where {j1, 72} is the complement of the subset
{i1,92} in the set {1,2,3,4}. After simplifying,
we obtain the degree of Fy(X) is 27 as desired.

2.4. Intersection numbers on Grass-
mannians.

Consider the following intersection number on
the Grassmannian G(k,n)

| )
G(k,n)

where ®(S) are respectively characteristic
classes of the tautological sub-bundle S.

Using an identity involving symmetric poly-
nomials, Hiep (2019)® expressed the intersection
number in terms of a coefficient of a certain
monomial in the expansion of a symmetric poly-
nomial.

Theorem 3. (See Corollary 1 in Hiep (2019)%)
Suppose that ®(S) is represented by a symmetric
polynomial P(x1,...,x1) of degree not greater
than k(n—k) in k variables x1, ...,y which are
the Chern roots of S. Then we have the following
formula:

n_iy C(k,n
R ORISE T
G(k,n) :
n—1

where c(k,n) is the coefficient of 7" .. .z,
in the polynomial

P(xy,... ) H(:UZ — ;).
J#i

2.5. Debarre-Manivel’s result.

As mentioned in the introduction, our main re-
sult seems to be similar to that of Theorem 4.3
in Debarre-Manivel (1998)2. Let us recall the re-
sult of Debarre-Manivel for comparison.
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Theorem 4. (See Theorem 4.3 in Debarre-
Manivel (1998)*) With the notations as men-
tioned in the introduction and d(n,d, k) > 0.
Then the degree of Fi,(X) under the Plicker em-
bedding is given by

deg(Fi(X)) = e(n, d k),

where e(n,d,k) is the  coefficient  of
a2t i the polynomial
P(n,d,k)<x07 e ,mn) H(Iz — Ij).
1<j

Example 3. Let us come back Example 2
above. By the statement of Theorem 4, the de-
gree of Fi(X) can be computed as follows:

deg(Fl (X)) = 6(3) (3)7 1)7

where e(3, (3),1) is the coefficient of z3z7 in the
expansion of the polynomial

31‘0(2$0 + 1‘1)(.@0 + 2:1)1)3:[‘1(1’0 — $1).

After expanding, we obtain e(3,(3),1) = 27,
then the degree is 27 as desired.

3. PROOF OF THEOREM 1
We first prove the following lemma.

Lemma 1. (see Proposition 6.4 in FEisenbud-
Harris (2016)° and Lemma 8 in Hiep-Tu-Van
(2019)7) Let X C P" be a general complete in-
tersection of type (di,...,d.). The variety F' =
Fy(X) is the zero locus of a global section of the
vector bundle

F= éSymdi SV,

i=1
Proof of Lemma 1. Assume that X is the
intersection of r hypersurfaces Xi,..., X, with

deg(X;) = d; for all i. Each Fy(X;) is the zero
locus of a global section s; of Sym® SY. Thus
the variety F', which is the intersection of the
Fi(X;), is the zero locus of a global section
s = (s1,...,8;) of the vector bundle F.

We now prove Theorem 1. By the Gauss-
Bonnet formula (see, for example, Section 3.5.3
in Manivel (2001)'%), the class of Fj,(X) is the

top Chern class of the vector bundle F. If
d(n,d, k) > 0, then the degree of Fj(X) can be
expressed as follows:

deg(Fi(X)) =

r

/ HCtop(Symdi S\/) . CI<S\/)(5(71,Q,IC)7
G(k+1,n+1) ;2

where ciop (E) is the top Chern class of the vector
bundle E. By the splitting principle, the char-
acteristic class

H Crop(Sym® §V) - ¢ (SY)° (k)
i=1

is represented by the symmetric polynomial

(1) EDER Py (o, - - ).

Note that g, ...,z are the Chern roots of the
tautological sub-bundle S on the Grassmannian
G(k+1,n+1). By Theorem 3, Theorem 1 fol-
lows.

Example 4. Let us come back Example 2
above. By the statement of Theorem 1, the de-
gree of F1(X) can be computed as follows:

c(3,(3),1)

deg(F1(X)) = TR

where ¢(3, (3), 1) is the coefficient of 2323 in the
expansion of the polynomial

3z (2x0 + x1) (20 + 221)321 (20 — 1) (21 — Z0).

After expanding, we obtain ¢(3,(3),1) = 54,
then the degree is 27 as desired.
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