

Nghiệm liouvillian hữu tỷ của phương trình vi phân đại số cấp một giống không

Nguyễn Trí Đạt^{1,*}, Ngô Lâm Xuân Châu²

¹Khoa Cơ bản, Trường Đại học Giao thông vận tải Thành phố Hồ Chí Minh, Việt Nam

²Khoa Toán và Thống kê, Trường Đại học Quy Nhơn, Việt Nam

Ngày nhận bài: 22/11/2019; Ngày nhận đăng: 22/12/2019

TÓM TẮT

Chúng tôi đưa ra một điều kiện cần và đủ để phương trình vi phân đại số cấp một, hệ số hằng $f(y, y') = 0$ có nghiệm liouvillian hữu tỷ, trong đó $f(X, Y) = 0$ là một đường cong đại số hữu tỷ (giống không) trên trường số phức C . Bài viết được xây dựng trên ba ý chính: mỗi đường cong đại số hữu tỷ luôn có phép tham số riêng, một cặp $(X(t), X'(t))$ luôn là tham số riêng của một đường cong đại số hữu tỷ nào đó, và điều kiện để phương trình vi phân cấp một $y' = f(y)$ có nghiệm liouvillian trên C .

Từ khóa: Nghiệm liouvillian, phép tham số hóa, đường cong hữu tỷ, phương trình vi phân đại số.

*Tác giả liên hệ chính:
Email: tridat.nguyen@ut.edu.vn

Rational liouvillian solution of algebraic ordinary differential equations of order one in genus zero

Nguyen Tri Dat^{1,*}, Ngo Lam Xuan Chau²

¹Faculty of Basic Sciences, Ho Chi Minh City University of Transport, Vietnam

²Faculty of Mathematics and Statistics, Quy Nhon University, Vietnam

Received: 22/11/2019; Accepted: 22/12/2019

ABSTRACT

We study a necessary and sufficient condition for having a rational liouvillian solution of the autonomous algebraic ordinary differential equation $f(y, y') = 0$, where $f(X, Y) = 0$ defines a rational algebraic curve (genus zero) over complex field \mathbb{C} . This article based on three ideas: every rational algebraic curve has proper parametrization, pair $(X(t), X'(t))$ is a proper parametrization of a certain algebraic curve, and the condition of differential equation of order one $y' = f(y)$ has liouvillian solution over \mathbb{C} .

Keywords: Liouvillian solution, parametrization, rational algebraic curve, algebraic differential equation.

1. INTRODUCTION

Let \mathbb{C} be an algebraically closed field of characteristic zero and view \mathbb{C} as a differential field with the trivial derivation $c' = 0$ for all $c \in \mathbb{C}$. Let

$$\mathbb{C}(X) = \left\{ \frac{P(X)}{Q(X)}, P(X), Q(X) \in \mathbb{C}[X], Q(X) \neq 0 \right\}$$

be a field of rational functions in one variable X . We are interested in the non-constant liouvillian solutions of the following differential equation the autonomous algebraic ordinary differential equation of order one given by $f(y, y') = 0$, where $f(X, Y) = 0$ is a rational algebraic curve.

Combining some results of parametrization of algebraic curve of genus zero, and a result of necessary and sufficient condition for the explicit differential equation,¹ $y' = R(y)$ with $R(y) \in \mathbb{C}(y)$ has a non-constant solution y which is liouvillian over \mathbb{C} , we show a result of necessary and sufficient condition for the implicit differential equation $f(y, y') = 0$ having a non-constant rational liouvillian over \mathbb{C} through parametrization.

2. PRELIMINARIES

2.1. Definitions

A derivation of the field k , denote by $'$ is an additive endomorphism of k that satisfies the Leibniz law $(xy)' = x'y + xy'$ for every x, y in k . A field equipped with a derivation map is called a *differential field*.

Let E be a differential field extension of k and let $'$ denote the derivation on E . We say that E is a *liouvillian extension* of k if $E = k(t_1, t_2, \dots, t_n)$ and there is a tower of differential field $k = k_0 \leq k_1 \leq \dots \leq k_n = E$ such that for each i , $k_i = k_{i-1}(t_i)$ and either $t_i' \in k_{i-1}$ or $t_i' \in k_{i-1}$ or t_i is algebraic over k_{i-1} . A solution of a differential equation over k is said to be liouvillian over k if the solution belongs to some liouvillian extension of k . Whenever we write $k \leq E$ as differential field, we mean that E is a differential field extension of k and we write $y \in E - k$ to mean that $y \in E$ and y is not in k .

Let $f(X, Y) \in \mathbb{C}(X, Y)$ be an irreducible polynomial in two variables over the algebraically closed field \mathbb{C} . The set $L = \{(a, b) \in \mathbb{C}^2 \setminus f(a, b) = 0\}$ defines an *algebraic curve* over \mathbb{C} .

*Corresponding author:

Email: dtridat.nguyen@ut.edu.vn

A rational parametrization of the algebraic curve $f(X, Y) = 0$ is a pair of rational functions $X(t), Y(t) \in \mathbb{C}(t)$ if two following conditions are satisfied:

- i) For almost all t_0 the point $(X(t_0), Y(t_0)) \in L$.
- ii) For almost all point $(x_0, y_0) \in L$ there exists $t_0 \in \mathbb{C}$ such that $(X(t_0), Y(t_0)) = (x_0, y_0)$.

An algebraic curve $f(X, Y) = 0$ is said to be *rational or rational algebraic curve* if it admits a rational parametrization.

A rational parametrization $(X(t), Y(t))$ of the algebraic curve $f(X, Y) = 0$ is said to be *proper* if for almost all point $(x_0, y_0) \in L$, there is a unique $t_0 \in \mathbb{C}$ such that $(X(t_0), Y(t_0)) = (x_0, y_0)$.

Rational function $X(t) \in \mathbb{C}(t)$ is called *rational liouvillian solution* of $f(y, y') = 0$ over \mathbb{C} if three following conditions are satisfied:

- i) $X(t)$ belongs to liouvillian extension of \mathbb{C} .
- ii) $X(t), X'(t) \in \mathbb{C}(t)$.
- iii) $f(X(t), X'(t)) = 0$.

With $X'(t) \in \mathbb{C}(t)$, so $X'(t) = \frac{\partial X}{\partial t} t' \in \mathbb{C}(t)$, and we obtain $t' \in \mathbb{C}(t)$. Write $X(t) = \frac{P(t)}{Q(t)}, P(t), Q(t) \in \mathbb{C}[t]$, we have $X(t)Q(t) - P(t) = 0$. Hence t is algebraic over $\mathbb{C}(X(t))$. So we obtain t belongs to some liouvillian extension field of \mathbb{C} . Since t is liouvillian, the differential field $\mathbb{C}(t)$ is contained in some liouvillian extension field of \mathbb{C} . If we say that $X(t)$ is a *non-constant rational liouvillian solution* of differential equation $f(y, y') = 0$ over \mathbb{C} , this means $X'(t) \neq 0$. So $t' \neq 0$, and t is obviously transcendental over \mathbb{C} . We refer the reader two books for basic theory of differential fields and rational algebraic curves.^{2,3}

2.2 Some results

For the reader's convenience and for easy reference, we record some basic results

concerning liouvillian extensions and rational algebraic curves in the following these lemmas and theorems.^{1,3-5}

Lemma 1. *Algebraic curve $f(X, Y) = 0$ can be parametrized if and only if it has genus zero.³*

Lemma 2. *Every rational curve can be properly parametrized.³*

Lemma 3. *Let $(X_1(t), Y_1(t))$ be a proper parametrization of rational algebraic curve $f(X, Y) = 0$. Then for any proper parametrization $(X_2(t), Y_2(t))$ of $f(X, Y) = 0$ there exists $R(t) = (at + b) / (ct + d) \in \mathbb{C}(t)$ such that $(X_2(t), Y_2(t)) = (X_1(R(t)), Y_1(R(t)))$.³*

Lemma 4. *Let $(X_1(t), Y_1(t)), (X_2(t), Y_2(t))$ be two proper parametrizations of rational algebraic curve $f(X, Y) = 0$. The differential equation $t' = \frac{Y_1(t)}{\partial X_1}$ has liouvillian solution if and only if the differential equation $t' = \frac{Y_2(t)}{\partial X_2}$ has liouvillian solution.⁴*

Theorem 1. *If $(X(t), X'(t))$ is a rational parametrization of algebraic curve $f(X, Y) = 0$ then it is a proper parametrization.⁵*

Theorem 2. *Let \mathbb{C} be complex field and $c' = 0$ for all $c \in \mathbb{C}$. If E is a liouvillian extension field of \mathbb{C} then there is an element $z \in E - \mathbb{C}$ such that $z' = 1$ or $z' = az$ for some a in $\mathbb{C} - 0$.¹*

3. MAIN RESULT

Theorem 3. *Let $f(X, Y) = 0$ be a rational algebraic curve with proper parametrization $(X_1(t), Y_1(t))$. The differential equation $f(y, y') = 0$ has a non-constant rational solution $X(t) \in \mathbb{C}(t)$ which is liouvillian over \mathbb{C} if and only if there is an element $z \in \mathbb{C}(t)$ such that $\frac{\partial X_1}{\partial t} = \frac{\partial z}{\partial t}$ or $\frac{\partial X_1}{\partial t} = \frac{\partial z}{\partial t} = \frac{\partial z}{\partial a}, a \in \mathbb{C} - 0$.*

Proof.

(Necessary) If $y = X(t)$ is a non-constant rational liouvillian solution of differential equation $f(y, y') = 0$, then following Theorem 1 this means $(X(t), X'(t))$ is a proper parametrization of algebraic curve. Following

Lemma 4, there exists a non-constant liouvillian solution of differential equation $t' = \frac{Y_1(t)}{\frac{\partial X_1}{\partial t}}$. So we obtain $C(t, t')$ is contained in some liouvillian extension field of C . Following Theorem 2, there is an element $z \in C(t) - C$ such that $z' = 1$ or $z' = az$. Since $z' = \frac{\partial z}{\partial t} t'$, we obtain $\frac{\frac{\partial X_1}{\partial t}}{Y_1(t)} = \frac{\partial z}{\partial t}$ or $\frac{\frac{\partial X_1}{\partial t}}{Y_1(t)} = \frac{\partial z}{\partial t} \cdot a$, $a \in C - 0$.

(Sufficient) If there is an element $z \in C(t)$ such that $\frac{\frac{\partial X_1}{\partial t}}{Y_1(t)} = \frac{\partial z}{\partial t}$, then we consider differential field $(C(x), \cdot)$ with $x' = a \in C - 0$. Set $z(t) = \frac{x}{a}$, we obtain $z' = 1$, and t is algebraic over $C(x)$.

Since $\frac{X_1'(t)}{Y_1(t)} = \frac{\frac{\partial X_1}{\partial t}}{Y_1(t)} t' = \frac{\partial z}{\partial t} t' = z' = 1$, then $X_1'(t) = Y_1(t)$. From $f(X_1(t), Y_1(t)) = 0$, it means $f(X_1(t), X_1'(t)) = 0$. Since $X_1(t) \in C(t)$ and t is algebraic over $C(x)$, we obtain $X_1(t)$ is a non-constant rational liouvillian solution over C .

If there is an element $z \in C(t)$ such that $\frac{\frac{\partial X_1}{\partial t}}{Y_1(t)} = \frac{\partial z}{\partial t}$, then we consider differential field $(C(x), \cdot)$ with $x' = ax \in C - 0$. Set $z = z(t) = x$, we obtain $z' = az$, and t is algebraic over $C(x)$. Since $\frac{X_1'(t)}{Y_1(t)} = \frac{\frac{\partial X_1}{\partial t}}{Y_1(t)} t' = \frac{\partial z}{\partial t} t' = \frac{z'}{az} = 1$, one obtain $X_1'(t) = Y_1(t)$. Repeating previous argument, we conclude $y = X_1(t)$ is a non-constant rational liouvillian solution.

4. EXAMPLES

Example 1. Consider the differential equation

$$f(y, y') := -9y^2 + 30y - 12y^2 + 36y' - 25 + y^3 = 0 \quad (1)$$

The corresponding algebraic curve

$$f(X, Y) := -9X^2 + 30X - 12Y^2 + 36Y - 25 + Y^3 = 0 \quad (2)$$

has a proper rational parametrization

$$(X(t), Y(t)) = \left(\frac{(4t-1)(164t^2-58t+5)}{3(6t-1)^3}, \frac{4t^2}{(6t-1)^2} \right).$$

We have $\frac{\frac{\partial X}{\partial t}}{Y(t)} = \frac{34t^2-12t+1}{(t(6t-1))^2}$. Set $z = \frac{1}{3(6t-1)} - \frac{1}{t} \in C(t)$, then $\frac{\frac{\partial z}{\partial t}}{Y(t)} = \frac{\frac{\partial X}{\partial t}}{Y(t)}$. Following Theorem 3 $X(t)$ is a non-constant rational liouvillian solution of equation (1).

Example 2. Consider the differential equation

$$f(y, y') := -9y^2 + 36yy' - 36y^2 + 216y^3 - 432y'y^2 + 288y^2y - 64y^3 = 0 \quad (3)$$

The corresponding algebraic curve

$$f(X, Y) := -9Y^2 + 36XY - 36X^2 + 216X^3 - 432YX^2 + 288Y^2X - 64Y^3 = 0 \quad (4)$$

has a proper rational parametrization

$$(X(t), Y(t)) = \left(\frac{9}{8} \frac{t(4t^2-4t+1)}{27t^3-54t^2+36t-8}, \frac{9}{8} \frac{(4t^2-4t+1)}{27t^3-54t^2+36t-8} \right).$$

We have

$\frac{\frac{\partial X}{\partial t}}{Y(t)} = -\frac{2(3t-1)}{(2t-1)(3t-2)}$. Set $z = \frac{2t-1}{(3t-2)^2} \in C(t)$, then $\frac{\frac{\partial z}{\partial t}}{z} = \frac{\frac{\partial X}{\partial t}}{Y(t)}$. So $X(t)$ is a non-constant rational liouvillian solution of equation (3).

Example 3. Differential equation

$$y^2 + y'^2 = 1 \quad (5)$$

has a rational liouvillian solution over C .

$$\text{Algebraic curve } X^2 + Y^2 = 1 \quad (6)$$

has proper parametrization $(X(t), Y(t)) = \left(\frac{2t}{t^2+1}, \frac{-t^2+1}{t^2+1} \right)$. We have $\frac{\frac{\partial X}{\partial t}}{Y(t)} = \frac{2}{t^2+1}$.

Set $i = \sqrt{-1}$ and $z = \frac{t-i}{t+i} \in C(t)$, since $\frac{\frac{\partial z}{\partial t}}{z} = \frac{2i}{(i+t)^2}$, we obtain $\frac{\frac{\partial X}{\partial t}}{Y(t)} = \frac{\frac{\partial z}{\partial t}}{iz} = \frac{2}{t^2+1}$. So $X(t)$ is a non-constant rational liouvillian solution of equation (5).

Example 4. Differential equation

$$f(y, y') := y^5 - 3y^2y' + y^2y^3 - y^2 = 0 \quad (7)$$

has no non-constant rational liouvillian solution.

Algebraic curve

$$f(X, Y) := Y^5 - 3X^2Y + X^2Y^3 - X^2 = 0 \quad (8)$$

has a proper parametrization

$$(X(t), Y(t)) = \left(\frac{t^5}{t^2+1}, \frac{t^2}{t^2+1} \right).$$

We have $\frac{\frac{\partial X}{\partial t}}{Y(t)} = 2t^2 - 6 + \frac{6}{t^2+1}$. If there exists $z \in C(t)$ such that $\frac{\frac{\partial X}{\partial t}}{Y(t)} = \frac{\frac{\partial z}{\partial t}}{az}$, one can write $z = \frac{r(t)}{s(t)}$, $r(t), s(t) \in C[t]$. Since $\frac{\partial z}{\partial t} = \frac{1}{a} \left(\frac{\partial r}{\partial t} - \frac{\partial s}{\partial t} \right)$, $\deg \left(\frac{\partial r}{\partial t} \right) < \deg(r(t))$ and $\deg \left(\frac{\partial s}{\partial t} \right) < \deg(s(t))$. So there is not an element z such that $\frac{\frac{\partial z}{\partial t}}{az} = 2t^2 - 6 + \frac{6}{t^2+1}$. If $\frac{\frac{\partial X}{\partial t}}{Y(t)} = \frac{\partial z}{\partial t}$, one can write $z = \frac{r(t)}{s(t)}$, with $r(t), s(t) \in C[t]$ and $\gcd(r(t), s(t)) = 1$, where gcd is abbreviated word of “greatest common divisor”. Then we have $\frac{\partial z}{\partial t} = \frac{\frac{\partial r}{\partial t} s - \frac{\partial s}{\partial t} r}{s^2} = \frac{2t^4 - 4t^2}{t^2+1}$. So we obtain $s(t)$ divides $(t^2 + 1)$. Rewrite $s(t) = q(t)(t^2 + 1)^k$, $k \geq 1$, with $\gcd(t^2 + 1, q(t)) = 1$. Then we have $\frac{\partial r}{\partial t} q(t) \cdot (t^2 + 1)^k - \left(\frac{\partial q}{\partial t} (t^2 + 1)^k + 2t(t^2 + 1)^{k-1} q(t) r(t) \right) = (2t^4 - 4t^2) q^2(t) (t^2 + 1)^{2k-1}$. So $q(t) \cdot r(t)$ divides $(t^2 + 1)$. This is a contradiction. Hence there is not an element z such that $\frac{\frac{\partial X}{\partial t}}{Y(t)} = \frac{\partial z}{\partial t}$. Following Theorem 3, differential equation (7) has no non-constant rational liouvillian solution.

5. CONCLUSION

In this article, we focus on rational liouvillian solution of differential equation $f(y, y') = 0$, with form $y = X(t) \in C(t)$ and $t' \in C(t)$. This means y, y' belongs to some certain differential field $C(t)$ through parametrization. In the future, we hope to develop some techniques to find condition for differential equation $f(y, y') = 0$ having a liouvillian solution in other forms.

REFERENCES

1. Varadharaj Ravi Srinivasan. Liouvillian solutions of first order nonlinear differential equations, *Journal of Pure and Applied Algebra*, 2017, 221(2), 411- 421.
2. Antoine Chambert-Loir. *A field guide to algebra*, Springer, NewYork, 2000.
3. J. Rafael Sendra, Franz Winkler, Sonia Pérez-Díaz. *Rational Algebraic Curves: A Computer Algebra Approach*, Springer- Verlag, Berlin Heidelberg, 2008.
4. Ngô Lâm Xuân Châu, Lê Minh Dương and Hà Trọng Thi. Liouvillian solutions of algebraic ordinary differential equations of order one in genus zero, *Tạp chí khoa học Đại học Quy Nhơn*, 2018, 12(3), 5-12.
5. Ruyong Feng, Xiaoshan Gao. *Rational General Solutions of Algebraic Ordinary Differential Equations*, ISSAC'04 Proceedings of the 2004 international symposium on Symbolic and algebraic computation, 2014.