

Sử dụng điện cực platin nano hình hoa biến tính trên bề mặt điện cực glassy cacbon để xác định Chì bằng phương pháp Von - Ampe hòa tan anot

Nguyễn Thị Liễu*

Khoa Khoa học Tự nhiên, Trường Đại học Quy Nhơn, Việt Nam

Ngày nhận bài: 17/10/2022; Ngày sửa bài: 08/11/2022;

Ngày nhận đăng: 30/11/2022; Ngày xuất bản: 28/02/2023

TÓM TẮT

Chì (II) được xác định bằng phương pháp Von – Ampe hòa tan anot sử dụng điện cực platin nano hình hoa biến tính trên bề mặt điện cực glassy cacbon (PtNFs/GCE). Các điều kiện thí nghiệm tối ưu là dung dịch đệm axetat 0,1 mol.L⁻¹ (pH = 4,5), thế điện phân làm giàu -1,1 V, thời gian điện phân làm giàu 120 s, biên độ xung 60 mV và tốc độ quét 0,23 V.s⁻¹. Khoảng nồng độ tuyển tính là 1-100 µg.L⁻¹ với R = 0,9981. Giới hạn phát hiện và giới hạn định lượng của phương pháp phân tích được xác định lần lượt là 0,398 µg.L⁻¹ và 1,272 µg.L⁻¹. Ảnh hưởng của một số ion kim loại như Zn, Cd, Cu đã được nghiên cứu. Điện cực đã được áp dụng để xác định chì (II) trong một số mẫu nước sông, nước hồ với kết quả hoàn toàn phù hợp về mặt thống kê với phương pháp quang phổ hấp thụ nguyên tử lò graphite (GFAAS).

Từ khóa: Phương pháp điện hóa, chì, platinum nanoflowers, biến tính điện cực, glassy cacbon.

*Tác giả liên hệ chính.

Email: nguyenthilieu@qnu.edu.vn

Using platinum nanoflowers modified glassy carbon electrode for determination of Lead by anodic stripping voltammetric method

Nguyen Thi Lieu*

Faculty of Natural Sciences, Quy Nhon University, Vietnam

Received: 17/10/2022; Revised: 08/11/2022;

Accepted: 30/11/2022; Published: 28/02/2023

ABSTRACT

Lead (II) was determined by anodic stripping voltammetric method using platinum nanoflowers modified glassy carbon electrode (PtNFs/GCE). Optimal experimental conditions were found acetate buffer solution 0.1 mol.L⁻¹ (pH = 4.5), an preconcentration potential of -1.1 V, preconcentration time of 120 s, pulse amplitude of 60 mV and scan rate of 0.23 V.s⁻¹. The peak current response increased linearly with the metal concentration in a range of 1-100 µg.L⁻¹ with R = 0.9981. The limit of detection and limit of quantity were 0.398 µg.L⁻¹ and 1.272 µg.L⁻¹, respectively. The interference effects of some metal ions such as Zn, Cd, and Cu were studied. The PtNFs/GCE was applied to analysis of lead (II) in some river water, and lake water samples with results in satisfactory statistical agreement with graphite furnace atomic absorption spectroscopy (GFAAS).

Keywords: Lead, electrochemical method, platinum nanoflowers, modified electrode, glassy carbon electrode.

1. INTRODUCTION

Pollution caused by heavy metals poses a serious menace to human health and ecological systems.¹ Among heavy metals, lead is especially pointed out for its toxicity and negative effects on human beings and living organisms, including carcinogenic and mutagenic effects.^{2,3}

Accordingly, it is highly desirable to develop highly sensitive methods for the determination of trace amounts of lead. A wide range of analytical methods are normally exploited for the quantification of lead that includes atomic absorption spectrometry,⁴ inductively coupled plasma mass spectrometry,⁵ atomic fluorescence spectrometry.⁶ However, they still have some drawbacks such as the expensive and sophisticated equipment, complex

operation, impossibility for on-site measurement, highly qualified operator demand. Recently, electrochemical methods^{7,8} are promising techniques for the determination of lead ions due to their low cost, high sensitivity, easy operation, and ability to analyze element speciation.

In recent years, modified electrodes have attracted much interest. Modified electrodes can be prepared by deposition of various compounds such as conducting polymers, metal complexes, transition metals and metal oxides on various electrodes.^{9,10} Metal nanoparticles have drawn renewed attention in recent years due to their wide range of applications in nanosensor, biosensors and many other fields.¹¹ They have special properties such as large surface area, catalyst, mechanical and electronics. Previous studies indicated that Pt nanoparticles could

*Corresponding author:

Email: nguyenthilieu@qnu.edu.vn

increase the surface area and conducive to electron transfer with strong catalytic properties, and have attracted more and more interests as electrode modified materials.^{12,13}

In this work, the electrochemical behavior of lead has been investigated with sensitive, fast and simple different pulse anodic stripping voltammetry (DPASV) method. This preliminary work is an initial step toward the fabricating one type of electrochemical sensors used for sensitive determination of Pb (II) at trace concentration.

2. MATERIALS AND METHODS

2.1. Reagents and apparatus

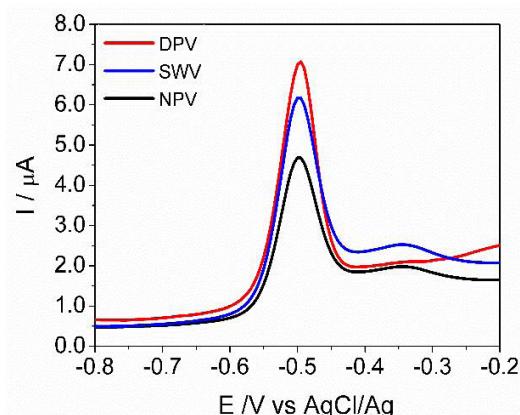
Reagents: Hexachloroplatinic (IV) acid hexahydrate ($\text{H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O}$) was used for the PtNFs modified GCE. It was purchased from Merck (KGaA, 64271 Darmstadt Germany). The electrolyte solution is made up of 1 mM H_2PtCl_6 and 0.1 M H_2SO_4 solution and a $[\text{Fe}(\text{CN})_6]^{3-}$ redox system in 0.2 M phosphate buffer solution pH = 7 was used for the study of electrochemical properties. CH_3COOH , $\text{CH}_3\text{COONa} \cdot 2\text{H}_2\text{O}$, NaOH, K_2HPO_4 , KH_2PO_4 , H_3PO_4 , H_3BO_3 , KCl, HCl were purchased from Merck (KGaA, 64271 Darmstadt Germany). Lead stock solution (1000 ppm) purchased from Merck (KGaA, 64271 Darmstadt Germany) was used for dilution. All of the solutions were prepared by using distilled water.

2.2. Preparation of modified electrode

The electrodeposition of platinum nanoparticles on the bare glassy carbon electrode (GCE) was carried out in H_2SO_4 0.1 M solution containing 1.0 mM H_2PtCl_6 at a constant potential of -0.2 V and deposition time of 150 s. Following that, the Pt/GCE was gently cleaned with distilled water before use.

2.3. Electrochemical measurements

Electrochemical measurements were performed using an Autolab Electrochemical (CPA-HH5). Electrochemical measurements were performed by a custom-made multi-functional potentiostat/galvanostat manufactured at Vietnam Academy of Science and Technology, Hanoi, Vietnam. The


formation of PtNFs/GCE and their properties were investigated by cyclic voltammetric method (CV). Measurements performed in 5 mM $[\text{Fe}(\text{CN})_6]^{3-}$ from -0.3 V to 0.8 V at a scan rate of 0.1 V.s⁻¹ was used to predict electrochemical features of electrodes and compare their electrochemically active surface areas. Detection of Pb(II) was performed by different pulse voltammetry (DPV) in an acetate buffer solution, pH of 4.5; the accumulation of Pb was carried out at a constant potential of -1.1 V for 120s; the potential was scanned from -1.2 V to +0.2 V with pulse amplitude 0.060 V; pulse time 0.050 s; step potential 0.007 V; step time 0.03s; sweep rate 0.23 V.s⁻¹. All experiments described in this section were performed at room temperature (25 ± 1 °C).

3. RESULTS AND DISCUSSION

3.1. Optimization of experimental parameters

3.1.1. Effect of electrochemical technologies

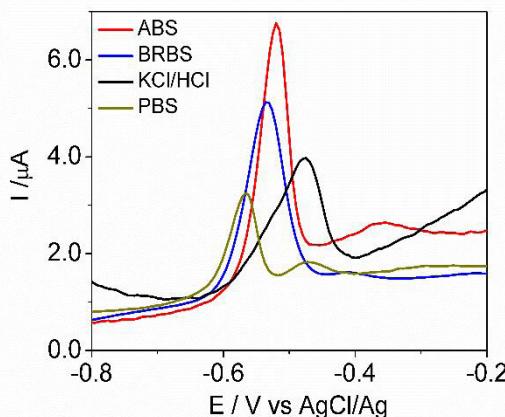

Electrochemical technologies such as differential pulse voltammetry (DPV), square wave voltammetry (SWV), and normal pulse voltammetry (NPV) are studied. These electrochemical techniques are comparatively used in the detection of Pb(II) on the PtNFs/GCE as shown in Figure 1. The result shows that the electrochemical signal of DPV is larger than that of SWV, and NPV. Therefore, the DPV technique is used in the following electrochemical experiments.

Figure 1. Different electrochemical techniques for the detection of Pb(II) in 0.1 mol.L⁻¹ acetate buffer (pH 4.5) solution containing 10 $\mu\text{g} \cdot \text{L}^{-1}$ Pb(II).

3.1.2. Effect of electrolytic solution

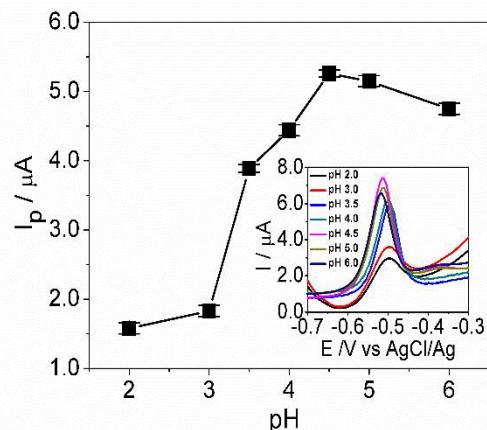

The effect of the various electrolytic solution including acetate buffer solution (ABS), Britton - Robinson buffer solution (BRBS), phosphate buffer solution (PBS), KCl/HCl on the stripping peak currents of Pb(II) is studied (Figure 2). The concentration of Pb(II) was $10 \mu\text{g.L}^{-1}$. The best electrolytic solution is received in acetate buffer solution. Thus, 0.1 mol.L^{-1} acetate buffer solution is chosen as the electrolytic solution in the subsequent experiments.

Figure 2. Effect of electrolytic solution on the peak current of $10 \mu\text{g.L}^{-1}$ Pb(II).

3.1.3. Effect of solution pH

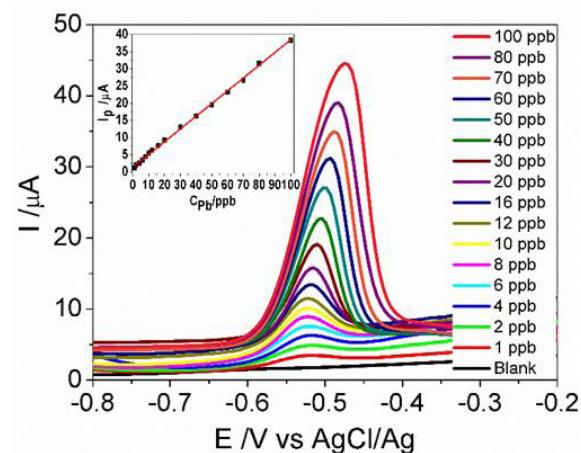
The effect of pH on the stripping peak current was studied in 0.1 M acetate buffer solution, with pH values ranging from 2.0 to 6.0 (Figure 3). With increasing pH, the stripping peak increased initially and then decreased at higher pH. Possibly because in the low pH, metal exists as a weak link (labile form), so it can be reduced and accumulated easily on the electrode surface. In the high pH, metal can be in the form of strong bonds (bound form), so it is difficult to be eliminated. As a result, less efficient enrichment happens, leading to the lower stripping peak current. Particularly, the peak current reaches a maximum value at pH 4.5. The continuous increase in pH values results in a decrease in peak current. In order to obtain good sensitivity, we chose pH 4.5 as the optimal pH value for subsequent experiments.

Figure 3. Effects of pH value on the peak current of $10 \mu\text{g.L}^{-1}$ Pb(II) in an acetate buffer solution.

3.1.4. Effect of Pb preconcentration time and potential on its signal

The preconcentration time and potential (accumulation time/ potential) are the time/ potential to accumulate the analyte onto the electrode surface. The influences of accumulation time and potential on Pb stripping signal were studied in the ranges from 60 s to 300 s and from -0.8 V to -1.4 V , respectively that have been shown in our previous publication.¹⁴ According to the results, an accumulation time of 120s was chosen as the optimal value since it provided high peak current. In addition, under this optimized condition, the time of analysis performance could be economized and the wide range of calibration curve could be acquired. Besides, -1.1 V was chosen as the preconcentration potential for the subsequent experiments because of the highest Pb signal and the lowest relative standard deviation obtained at this value.

3.1.5. Optimization of DPV parameters


The pulse voltammetric response depends considerably on instrumental conditions. To obtain a much more sensitive peak current, the optimum instrumental conditions, for example, amplitude and step potential, were studied for $10 \mu\text{g.L}^{-1}$ Pb(II) solution. The effect of pulse amplitude and step potential were studied. The result is the best peak definition was recorded

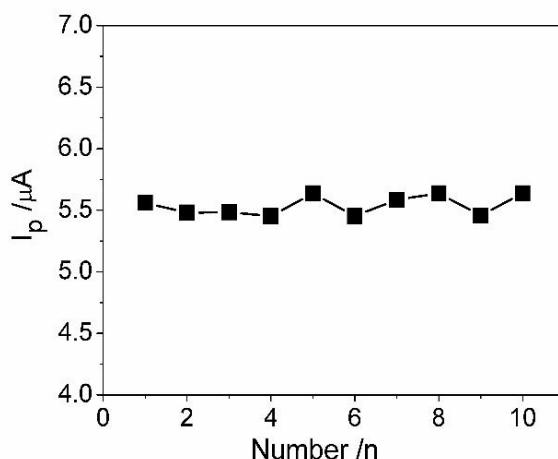
when using 60 mV pulse amplitude, and 7 mV step potential.

3.2. Calibration data and detection limit

The linear range and detection limit were evaluated under the optimized conditions. The analytical calibration curve was obtained by varying the concentration of Pb(II) in the accumulating medium, in the range from $1 \mu\text{g}\cdot\text{L}^{-1}$ to $100 \mu\text{g}\cdot\text{L}^{-1}$. Figure 4 shows the DPASV responses for the determination of Pb(II) at the PtNFs/GCE in 0.1 M acetate buffer solution (pH 4.5). The different pulse peak current showed a linear range of Pb(II) concentration: $1 \mu\text{g}\cdot\text{L}^{-1}$ - $100 \mu\text{g}\cdot\text{L}^{-1}$ with correlation coefficients of 0.9981. The corresponding calibration plot is $y = 0.371x + 1.603$ (x: concentration ($\mu\text{g}/\text{L}$), y: current (μA)). The limit of determination (LOD) calculated using the definition $3S_B/b$ (where S_B is the standard deviation of 10 measurements of the blank and b is the slope of the calibration line), was calculated to be $0.398 \mu\text{g}\cdot\text{L}^{-1}$. The comparison results of the proposed sensor with some reported sensors for the determination of Pb(II) are given in Table 1. It can be seen that the PtNFs/GCE offered a wider linear range than the one in many previous reports.^{15,16} The limit of detection (LOD) of this our electrode is higher than that of some sensors reported in Table.^{15,16} It

can be attributed to the longer Pb deposition period (300 s) and more negative accumulation potential (-1.4 V),¹⁷ while, in reference,¹⁵ the authors used different analysis method—adsorptive stripping voltammetry method that spend much more time on Pb adsorption onto electrode surface (40 min) for preconcentration. Thus, the analysis procedure in this study waste less time. Furthermore, the LOD is much lower than recent publication with LOD of $1.12 \mu\text{g}\cdot\text{L}^{-1}$.¹⁸ In addition, this electrode is prepared more simply than the ones in¹⁶. Meanwhile, the LOD obtained by using this electrode is far below the acceptable limit by World Health Organisation.

Figure 4. DPASVs of Pb(II) samples ranging in concentration from 1 to $100 \mu\text{g}\cdot\text{L}^{-1}$ and relationship between Pb(II) concentrations with corresponding peak current (inset).


Table 1. A comparison of the different methods reported for the detection of Pb(II).

Electrode	Modifier	Method	LOD ($\mu\text{g}\cdot\text{L}^{-1}$)	Linear range ($\mu\text{g}\cdot\text{L}^{-1}$)	Ref
GCE	ETO	AdSV	0.035	0.104-2.07	[15]
GCE	PANI/MMT	DPASV	0.207	0.828-20.7	[16]
GCE	EG/Bi	DPASV	0.11	1-100	[17]
GCE	ZnFe ₂ O ₄	DPASV	1.12	10-130	[18]
GCE	PtNFs	DPASV	0.398	1 – 100	This work

GCE: glassy carbon electrode; EG/Bi: electrochemically deposited graphene/bismuth; AdSV: adsorptive stripping voltammetry; ETO: etodolac; PANI/MMT: polyaniline/montmorillonite; ZnFe₂O₄: Nano sized zinc ferrite; SWASV: square wave anodic stripping voltammetry.

3.3. Repeatability of PtNFs/GCE

A series of repetitive DPASV response measurements for $10 \text{ }\mu\text{g.L}^{-1}$ Pb(II) in 0.1 M acetate buffer solution was performed to further evaluate the stability of the PtNFs/GCE. As shown in Figure 5, the relative standard deviation (RSD) values were calculated to investigate repeatability of the PtNFs/GCE is 1.51%. Therefore, the PtNFs/GCE has an excellent stability for repetitive DPASV measurements.

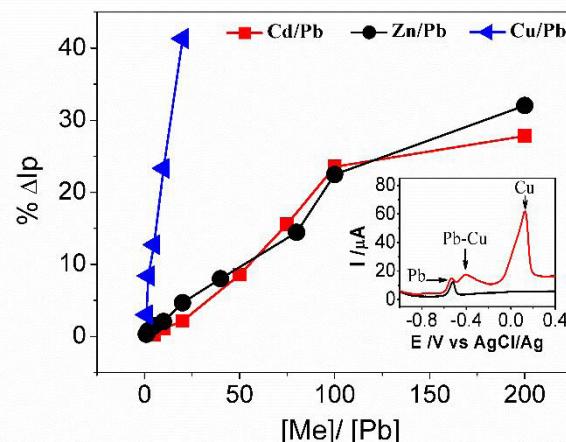


Figure 5. The stability of 10 repetitive measurements of $10 \text{ }\mu\text{g.L}^{-1}$ Pb(II) on the PtNFs/GCE in solution.

3.4. Interference study

Analytical selectivity is one of the important parameters that affect the accuracy of the analysis. In order to evaluate the selectivity of the proposed method for the determination of lead, the influence of some metal ions such as zinc, cadmium, and copper on the stripping voltammetric measurements were examined in 0.1 M acetate buffer containing lead ($20 \text{ }\mu\text{g.L}^{-1}$) under the optimized working conditions (Figure 6). The results showed that the effect of zinc, cadmium ions on the Pb signal is insignificant in the large concentration. When $1500 \text{ }\mu\text{g.L}^{-1}$ of cadmium ions, $1600 \text{ }\mu\text{g.L}^{-1}$ of zinc were added, stripping response of lead decreased by

15.56%, 14.45%, respectively. Cu (II) affected lead stripping response at the concentration ratio (ppb/ppb) of $\text{Cu}^{\text{II}}/\text{Pb}^{\text{II}} > 10$. Furthermore, there is a small peak observed at about -0.4 V when the concentrations of Cu(II) increased to $200 \text{ }\mu\text{g.L}^{-1}$. This peak may be attributed to the formation of a Pb-Cu alloy.¹⁹ However, the addition of ferrocyanide ions can overcome the effect of Cu (II) because it forms a stable complex with Cu(II), as suggested previously.¹⁹

Figure 6. Influence of zinc, cadmium, and copper on the anodic stripping peak current of $20 \text{ }\mu\text{g.L}^{-1}$ Pb(II) on PtNFs/GCE under the optimized working conditions.

3.5. Analysis of real samples

The PtNFs/GCE was employed for the determination of Pb(II) in the local environment by using standard addition method. All water samples were added to 0.1 mol.L⁻¹ acetate buffer (pH = 4.5) and determined under the optimal conditions. The experimental values were shown in Table 2. The comparative results as shown in Table 2 suggest that the concentrations of lead ions were in good agreement with the results found in the graphite furnace atomic absorption spectrometry (GFAAS) measurement. Therefore, the PtNFs/GC electrode is potentially useful for the analysis of trace heavy metals in real samples.

Table 2. Analytical results for the determination of lead (n=3) in real water samples.

Sample	Pb(II) ($\mu\text{g.L}^{-1}$)			
	Sample location	DPASV ^a	GFAAS ^b	Error (%)
Phu Hoa Lake's water	13°46'18.6"N 109°11'23.9"E	12.04±0.34	12.83±ND	6.16
Ha Thanh River's water	13°47'21.9"N 109°13'15.9"E	11.62±0.26	12.30±ND	5.52
Thi Nai Lake's water	13°47'00.7"N 109°13'53.2"E	9.38±0.20	10.30±ND	8.93
Nui Mot Lake's water	13°47'34.5"N 108°58'50.8"E	9.44±0.41	8.70±ND	8.50
Tra O Lake's water	14°18'15.4"N 109°07'28.4"E	7.41±0.18	7.80±ND	5.01

DPASV: different pulse anodic stripping voltammetry; GFAAS: graphite furnace atomic absorption spectrometry

^aMean of three repetitive measurements at a 95% confidence level; ^bn=1, ISO/IEC17025:2005

ND: Not determined

4. CONCLUSIONS

This work is useful for producing the electrochemical sensor for determination of Pb(II) at trace concentration. A simple, sensitive, and inexpensive method for determination of lead is proposed. The PtNFs/GCE demonstrated better detection sensitivity and higher DPASV signals than the bare GCE, with the limit of detection of about 0.398 $\mu\text{g.L}^{-1}$. Further studies will be focused on detection of other metals (cadmium, zinc, cobalt, mercury, etc.) by combining with different electrochemical technique.

REFERENCES

1. L. Fu, X. Li, J. Yu, and J. Ye. Facile and simultaneous stripping determination of zinc, cadmium and lead on disposable multiwalled carbon nanotubes modified screen-printed electrode, *Electroanalysis*, **2013**, 25(2), 567-572.
2. P. Elliott, R. Arnold, D. Barltrop, I. Thornton, I. M. House, and J. A. Henry. Clinical lead poisoning in England: An analysis of routine sources of data, *Occupational and Environmental*, **1999**, 56(12), 820-824.
3. I. Gęca and M. Korolczuk. Anodic stripping voltammetry following double deposition and stripping steps: Application of a new approach in the course of lead ion determination, *Talanta*, **2017**, 171, 321-326.
4. S. Erarpat, G. Özzyebek, D. S. Chormey, and S. Bakırdere. Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry, *Chemosphere*, **2017**, 189, 180-185.
5. K. E. Murphy, E. S. Beary, M. S. Rearick, and R. D. Vocke. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials, *Fresenius Journal of Analytical Chemistry*, **2000**, 368(4), 362-370.
6. B. Beltrán, L. O. Leal, L. Ferrer, and V. Cerdà. Determination of lead by atomic fluorescence spectrometry using an automated extraction/pre-concentration flow system, *Journal of Analytical Atomic Spectrometry*, **2015**, 30(5), 1072-1079.
7. E. L. Pui Mun Lee, Z. Wang, X. Liu, Z. Chen. Glassy carbon electrode modified by graphene-gold nanocomposite coating for detection of trace lead ions in acetate buffer solution, *Thin Solid Films*, **2015**, 584, 85-89.
8. S. Lee, S. Bong, J. Ha, M. Kwak, S. K. Park, and Y. Piao. Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals, *Sensors and Actuators B: Chemical*, **2015**, 215, 62-69.
9. J. V. Piovesan, C. A. de Lima, E. R. Santana, and A. Spinelli. Voltammetric determination of

condensed tannins with a glassy carbon electrode chemically modified with gold nanoparticles stabilized in carboxymethylcellulose, *Sensors and Actuators B: Chemical*, **2017**, 240, 838-847.

10. D. Valera, P. J. Espinoza-Montero, J. Alvarado, P. Carrera, P. Bonilla, L. Cumbal, L. Fernández. Development and evaluation of a glassy carbon electrode modified with silver and mercury nanoparticles for quantification of cysteine rich peptides, *Sensors and Actuators B: Chemical*, **2017**, 253, 1170-1179.

11. L. Q. Hoa, Y. Sugano, H. Yoshikawa, M. Saito, and E. Tamiya. Structural assembly effects of Pt nanoparticle-carbon nanotube-polyaniline nanocomposites on the enhancement of biohydrogen fuel cell performance, *Electrochimica Acta*, **2011**, 56(27), 9875-9882.

12. P. K. Kalambate, B. J. Sanghavi, S. P. Karna, and A. K. Srivastava. Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode, *Sensors and Actuators B: Chemical*, **2015**, 213, 285-294.

13. G. G. Gerent and A. Spinelli. Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers, *Journal of Hazardous Materials*, **2017**, 330, 105-115.

14. T. L. Nguyen, V. H. Cao, T. H. Y. Pham, and T. G. Le. Platinum nanoflower-modified electrode as a sensitive sensor for simultaneous detection of lead and cadmium at trace levels, *Journal of Chemistry*, **2019**, 1-10.

15. S. Lee, S. K. Park, E. Choi, and Y. Piao. Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode, *Journal of Electroanalytical Chemistry*, **2016**, 766, 120-127.

16. Y. Dong, Y. Ding, Y. Zhou, J. Chen, and C. Wang. Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode, *Journal of Electroanalytical Chemistry*, **2014**, 717-718, 206-212.

17. M. L. Yola, N. Atar, M. S. Qureshi, Z. Üstündag, and A. O. Solak. Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination, *Sensors and Actuators B: Chemical*, **2012**, 171-172, 1207-1215.

18. A. K. N. S, S. Ashoka, and P. Malingappa. Nano Zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium, *Journal of Environmental Chemical Engineering*, **2018**, 6(6), 6939 - 6946.

19. D. F. Tibbetts, J. Davis, and R. G. Compton. Sonoelectroanalytical detection of lead at a bare copper electrode, *Fresenius Journal of Analytical Chemistry*, **2002**, 368(4), 412-414.