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ABSTRACT

This paper gives an alternative equivalent condition for a finite family of normal matrices to be simultaneously diago-
nalizable via *-congruence. The matrices do not need pairwise commute. A corresponding MATLAB package is developed. Some

numerical tests for this package are also presented.
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1. INTRODUCTION

The problems of simultaneously diagonalizing a family
of matrices (via congruence or similarity) are known
to be long-standing due to their applications, for exam-
ples, signal processing, data analysis and multi-linear
algebra, ! quadratic equations and optimization, >3 ...

There is a relationship between two concepts of
simultaneous diagonalizations via similarity (SDS) and
via congruence (SDC); see, e.g., in the book of Horn
and Johnson.* One should, hence, need to distinguish
these existing concepts as follows.

Notations and definitions. Let ' denote the
field of real numbers R or complex ones C, and F"*"
be the set of all square matrices of order n with en-
tries in F. Let .", 27", and 4" denote the sets of real
symmetric, Hermitian, and normal matrices in F"*" | re-
spectively. By .*, .7, we denote the conjugate transpose
and transpose of a matrix, respectively. For A € 7",
we write A > 0 (resp., A > 0) for the meaning that A is
positive semidefinite (resp., positive definite). As usual,
I,«q denotes the n x d identity matrix, and we shortly
write I, if n = d.

Matrices Cy,...,C,, € F"*" are said to be

(1) simultaneously diagonalizable via similarity on
F, shortly F-SDS, if there exists a nonsingular ma-
trix P € F"" such that P~!C;P’s are all diagonal
matrices in F"*". When m = 1, we will say “Cj is
F-DS”, or F-diagonalizable as usual;

*Corresponding author.
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(i1) simultaneously diagonalizable via *-congruence
on [F, abbreviated %-SDC, if there exists a nonsin-
gular matrix P € F"*" such that P*C;P is diagonal
for every i=1,...,m. When m = 1, we will say
“Cy is x-DC”,

In case C;’s are all Hermitian, it is worth mention-
ing that the diagonal matrices P*C;P’s are always
real due to the Hermitianian of C;’s. Moreover, P
can be chosen to be real if C;’s are all real.’

(iii) simultaneously diagonalizable via T-congruence
on [F, abbreviated T-SDC, if there exists a nonsin-
gular matrix P € F"" such that PT C;P is diagonal
for every i = 1,...,m. When m = 1, we will say
“Cyis T-DC”.

Unlike the *-SDC case, the diagonal matrices
P*C;P’s do not need to be real even C;’s are real
symmetric. The readers are referred to the work
by Bustamante et. al.® for the 7-SDC properties;

(iv) commuting if they pairwise commute: C;C; =
CiCiforeveryi,j=1,...,m.

In the rest of this paper, the term “SDC” will
mean either “simultaneous diagonalization via con-
gruence” or “simultaneously diagonalizing via congru-
ence”, or “simultaneously diagonalizable via congru-
ence”, and depending upon the situation, we will rec-
ognize the - or T—congruence. It is analogous to the
term “SDS”.
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An overview of the SDC problem. The SDC
problem is known that first appeared in 1868 by Weier-
strass,” in the 1930s by Albert,® Finsler,® Hertenes, '°
and later studies developed some conditions ensuring
that two quadratic forms are SDC (see, e.g., in., works
by More!! and Pong!? and references therein). How-
ever, these works provide only sufficient conditions, ex-
cept for a few ones.*13

From the practical point of view, Bunse-Gerstne
et al.'* proposed a Jacobi-like algorithm for SDC two
commuting normal matrices, and this is numerically ex-
tended to several commuting ones by Mendle.'> Re-
cently, there have been some works 1617 that present
some (equivalent or sufficient) conditions for the -
SDC property of collections of either complex or real
Hermitian matrices, and another one deals with the 7T'-
SDC problem for complex symmetric matrices.® It is
noticed that the *- and T-congruences coincide only
when the initial matrices are real symmetric, which are
also real Hermitian. The two *-SDC and T-SDC prob-
lems are different, even if the initial matrices are sym-
metric. For example, Bustamante et. al.® show that the
two real symmetric matrices

01 11
Cl_{l 1}’@_[1 0]672

are T-SDC. But they are not *-SDC over C.>

Several works deal with the normal SDC prob-
lem, i.e., the simultaneous diagonalization of several
normal matrices via *-congruence.'®!® However, they
sound purely theoretical. There has been no algorithm
to detect whether the given normal matrices are x-SDC.

Contribution of the paper. In this paper, we
solve the normal SDC problem, i.e., the simultane-
ous diagonalization of several normal matrices via *-
congruence. We first give a sufficient and necessary
condition for a finite family of normal matrices to be
simultaneously diagonalizable (via either congruence
or similarity). It is noticed that the SDC property of
a family of arbitrary square matrices can be checked
by splitting the matrices into their Hermitian and skew-
Hermitian parts.> The SDC property of the matrix fam-
ily is confirmed if a positive definite matrix exists that
solves a system of linear equations defined by the Her-
mitian and skew-Hermitian parts; see Theorem 7 below.
The number of linear equations depends upon the num-
ber of Hermitian and skew-Hermitian parts. This may
have a big computation complexity. Our (sufficient and
necessary) condition in this paper restricts the number
of such matrix linear equations.

On the other hand, we develop a MATLAB pack-
age to solve the normal SDC problem and its numerical
tests.

Auxiliary results. We now recall some existing
results on SDC that will be frequently used in this pa-
per.

Lemma 1. ° Suppose there is 0 # A € R™ such that

C(A) = 0, where, without loss of generality, we assume
A # 0. Then Cy,...,Cy € " is SDC if and only if
PTC;P and PTCjP commute for all 2 <i# j <m, where
P is determined such that PYC(A)P = I (the identity
matrix).

As shown in the paper of Jiang and Li,> the ma-
trix P in Lemma 1 is determined as P = UD'/ 2 where
U is orthogonal and D'/2 is the square root of the diag-
onal matrix D in an eigenvalue decomposition of C(1) :

D=UTC(A)U.
The following results can be found in many

books on Linear Algebra; their proofs are hence omitted
in this paper.

Lemma 2. “ (i) Every A € S can be diagonalized via
similarity by a unitary matrix. That is, it can be written
as A =UAU", where U is unitary, A is real diagonal
and is uniquely defined up to a permutation of diagonal
elements.

Moreover, if A € " then U is picked to be real.

(ii) Suppose each of Cy,...,Cy,, € " is F-DS.
Then, they are F-SDS if and only if they are commuting.

(iii) Let A € F"™" | B € F"™ ™ The matrix M =
diag(A, B) is diagonalizable via similarity if and only if
so are both A and B.

(iv) A complex symmetric matrix A is diagonaliz-
able via similarity, i.e., P~ AP is diagonal for some in-
vertible matrix P € C"*"_ if and only if it is complex or-
thogonally diagonalizable, i.e., Q'AQ is diagonal for
some complex orthogonal matrix Q € C™": QTQ =1.

(v) Suppose A = diag(oul,, ..., 0ly, ), 04’s are
distinct. If AB = BA then B = diag(By,...,By) with
B; € "% for all i = 1,...,k. Furthermore, B is Her-
mitian (resp., symmetric) if and only if so are B;’s.

Construction of the paper. Section 2 is devoted
to the SDC problem for normal matrices, in which we
give a sufficient and necessary condition for a family
of normal matrices to be SDC. And then, we propose
a corresponding algorithm. Section 3 discusses the nu-
merical experiments with respective our SDC algorithm
in Section 2. We also give a numerical example illustrat-
ing our algorithm. Section 4 presents the conclusion.

2. THE NORMAL SDC PROBLEM

In this section, we deal with the normal SDC problem.
Our conditions for a family of normal matrices to be *-
SDC can be viewed as a generalization of that in Theo-
rem 7 below. For convenience to the readers, we revisit
these results as follows.

2.1. SDC and SDS of Hermitian matrices: revisited

We first summarize some existin g results of the
SDC and SDS of several Hermitian matrices. The fol-
lowing is presented in the book of Horn and Jonhson
whose proof does not completely give a nonsingular
matrix that simultaneously diagonalizes the given ma-
trices.* Our proof leads to an algorithm that may be use-
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ful in practice. The idea is to follow that of proving The-
orem 9 in the paper of Jiang and Duan for real sym-
metric matrices.?

Theorem 3. ° The matrices I,Cy,...,Cpn € A", m>1,
are SDC if and only if they are commuting. Moreover,
when this is the case, they are SDC by a unitary matrix,
and the resulting diagonal matrices are all real.

Theorem 4. Let Ay,..., A, € FP" m > 1, be such
that each of them is diagonalizable via similarity. Then,
these matrices are simultaneously diagonalizable via
similarity (shortly, SDS) if and only if they pairwise
commute.

The following are not hard to prove, we omit
their proofs.

Lemma 5. The matrices Cy,...,Cy, € F" are SDC if
and only if for any A € R™ with a A; # 0, the matrices
Cl, e ,C,;l,z;n:l &ChCiH yoos ,Cm are SDC.

Lemma 6. ° The matrices C; = {C(‘)l (())} ooy Gy =
k

[%’” (ﬂ are SDC if and only if so are Cy,...,Cp,.
k

Using Theorem 3, we comprehensively describe
the SDC property of a family of Hermitian matrices as
follows.

As a consequence of Theorem 3, every commut-
ing collection of Hermitian matrices can be SDC. How-
ever, this is just a sufficient but unnecessary condition.
For example, the matrices

-1 -2 0 1 2 0
C12727280 2 20 0],
0 0 -3
2 40
=14 1 0
0 0 7
are SDC by
1 0 -2
P=10 0 1
01 O

but C,C, # C,C;. The following provides some equiv-
alent SDC conditions for Hermitian matrices. It turns
out that the SDC property of a family of such matrices
is equivalent to the feasibility of a positive semidefinite
program (SDP). This also allows us to use SDP solvers,
for example, “Cvx”,%° ... to check the SDC property of
Hermitian matrices.
Theorem 7. 7 The following conditions are equivalent:
(i) Matrices Cy,...,C,, € H" are SDC.

(ii) There exists a nonsingular matrix P € C"™" such
that P*C\P,...,P*C,P are commuting.

“In fact, the skew-Hermitian part of A is usually defined as 4

https://doi.org/10.52111/qnjs.2025.19107

(iii) There exists a positive definite matrix X=X
—1)

JC" solves the following system of —_ lmear
equations

CiXCj:CjXCi, 1<i<j<m. (1)

IfCy,...,Cy, are real, then one can pick P and X to be
real.

2.2. The normal SDC problem

Recall that a square matrix N € F"™" is said to be
normal if
N*N = NN*.

It is well-known that (real or complex) Hermitian, uni-
tary, orthogonal matrices are normal, but the converse
is not true in general. The readers are referred to, e.g.,
the work by Grone et al.,! for equivalent conditions for
a normal matrix.

The third condition of Theorem 7 leads us to a
sufficient and necessary condition for the x-SDC prop-
erty of a family of arbitrary square matrices. This can be
done by splitting the matrices into their Hermitian and
skew-Hermitian parts as follows. For square matrices

Aq,..., A, € F"" their Hermitian and skew-Hermitian
parts” are
A +AT A — AT
i B C)
2 2i

where i is the imaginary unit, i = —1. Noticing thatA?

and A7 are Hermitian and that
A=AV FiAf, AT =AD —iA?. 3)

It is not hard to show that Ay, ...
only if so areA?,Af7 i=1,....m

, Ay are x-SDC if and

Lemma 8. '3 The square matrices Ay, .. Am € Frnxn

are SDC if and only if so are Ab AP i=1,.

Theorem 7 and Lemma 8 lead to a sufficient and
necessary condition for a family of arbitrary square ma-
trices to be *-SDC, in which, after splitting up the ini-
tial matrices into Hermitian and skew-Hermitian, there
are m(m — 1) matrix equations as in (1). One can apply
Theorem 7 and Lemma 8 to normal matrices. Below,
we will introduce a smaller number of normal matrix
equations; see Theorem 11.

Since any normal matrix is always diagonaliz-
able by a unitary one,* it is diagonalizable via both
sense similarity and congruence.

It is well-known that any finite family of com-
muting square matrices can be simultaneously upper
triangularized by a unitary matrix.4 Moreover, if these
matrices are normal, then so are the resulting upper tri-
angular matrices, and hence they are diagonal. Theorem
4 thus leads to the following observation.
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Lemma 9. # Normal matrices N; yeors Ny are SDC by a
unitary matrix if and only if they pairwise commute.

Consequently, the normal matrices Ny,...,Ny,
are SDS if and only if they are SDC by a unitary ma-
trix.

Proof. Suppose Ni,...,N, pairwise commute. There
exists a unitary matrix U such that U*N;U is upper tri-
angular for every i = 1,...,m.* Since U*N;U =: T; is
normal due to the normality of N;, T; must be diagonal.
Thus Ny,...,N,, are SDC by the unitary matrix U.

Conversely, if Ny,...,N,, are SDC by a unitary
matrix U, then U*N;U’s are diagonal and pairwise com-
mute. This implies the commutativity of U*N;U’s and
that of N;’s.

The last part is obvious. O
Lemma 10. Let M,N be normal matrices and X be a

square matrix of the same order n. The following state-
ments are true:

i) The conditions
MXN = NXM “)
MXN* = N*XM 5)

hold if and only if all the following conditions hold:

MY X-NY =ND.XxX.MD, (6)
MY.X.N* =N°.X-MY, (7
M®-X-NY =NbY.x.M5, )
M®-X-N° =N°-X-M°. )

ii) Moreover, with the above materials and if X
is Hermitian then (7)&(9) can be replaced by

MY X -M® =M5-X-MY, (10)
N°-X-NY =Nb.x.N5. (11)

Proof. The observation is derived from direct compu-
tations, see the Appendix 4, using the expansions (2)
and (3) for M and N. O

The following is our main theorem.

Theorem 11. Let Ny,...,N,, € V" m > 2. The follow-
ing conditions are equivalent:

i) Ni,...,Ny are SDC.

ii) There exists a nonsingular matrix P such that
the matrices P*N,P, P*N;P, t = 1,...,m, pairwise
commute.

iii) There exists a positive definite matrix X such that
Nl'XNj = NjXNi and
NiXN; =N;XN;, 1<i<j<m. (12

iv) The matrices Nth,Nf, t=1,...,m, are SDC.

Proof. The equivalence of i) and iv) is obvious due to
the authors’ work.> Theorem 3.1

i) = ii). Suppose Ny, ...,Ny are SDC by a non-
singular matrix P, that is the matrix P*N;P is diagonal,
and so is P*N; P, for every i = 1,...,m. It is then obvi-
ous P*N;P, P*N/P,t = 1,...,m, pairwise commute.

if) = iii). Suppose the 2m matrices
P*N;P,P*N/P, i = 1,...,m, pairwise commute, for
some nonsingular matrix P. Then

(P*N;P) - (P*N;P) = (P*N,P) - (P*N;P),
(P*NiP) - (P*N}P) = (P*N}P)- (P*NP),

for every i # j. This implies

N;(PP*)N; = N;(PP*)N;,
Ni(PP*)N} = N} (PP*)N;

for every i # j. The conclusion is obvious with X =
PP*.

iit) = i). Let Q be the square root of X > 0 sat-
isfying (12). Note that Q = Q™. It follows from (12) that
the matrices ON;Q,ON;Q’s pairwise commute. This
implies that, for 1 <t¢,1 <m,

N,Q’N; = N;Q*N;, N,Q>N; = N; Q*N..

Applying Lemma 10 to each pair of (¢,/) and X = Q> =
0*Q > 0, one obtains the commutativity of the Hermi-
tian matrices

QNthQa QN,EQ, t=1,....m.

By Lemma 9, these latter matrices are SDC by a unitary
matrix V, and hence so are the matrices QN,Q’s due to
Lemma 8. This yields Ny,...,N,, are SDC by the non-
singular matrix U = QV. O

Algorithm 1. SDC of normal matrices.

INPUT: Ny,...,N, € 4",

OUTPUT: A nonsingular matrix U such that U*N;U’s
are diagonal.

Step 1: If the system (12) has a positive definite solu-
tion X, go to the next step.
Otherwise, conclude the initial matrices are not
SDC.

Step 2: Compute the square root X > of X by using
eigenvalue decomposition of X .

Step 3: Simultaneously diagonalizing the commuting
and Hermitian matrices

1.1 ol A1 1
EXZ(Ni‘i‘Ni )X, EXf(N,- —N)X 7,
fori=1,...,m, by applying the Jacobi-like al-

https://doi.org/10.52111/qnjs.2025.19107
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gorithm,? to determine a unitary matrix V. Re-
turn U = QV.

The last step of Algorithm 1 can apply the
Jacobi-like algorithm Algorithm 3.1 exploiting the
works by Bunse-Gerstner et. al. and by Mendl. 51415

Example 1. The real symmetric matrices

0 1 11
Cl_|:1 1:|a C2_|:1 0:|7

which are normal, are C-SDC as shown in the work of
Bustamante and collaborators.® However, they are not
R-SDC due to Theorem 7. Indeed, we want to check if

there is a positive semidefinite matrix X = [; )Z] } >0,
which is equivalent to x > 0 and xz > y?, such that
C1XC, =G XC (= (C1XC)Y).
This is equivalent to
{ x>0,  xz>y?
x+y+z =0.
But the last condition is impossible since there do not

exist x,z > 0 such that xz > y* = (x+2)?. Thus C; and
C, are not SDC on R. o

Example 2. . Let

1 1 1 0O 1 0
N=1[1 1 1], N=|1 -1 1],
1 1 1 0o 1 0
3i i i
N3=|—- 5i —i
i —i 3i

Theorem 11 leads to finding a positive definite matrix

Xy z
X=1y t u|l >0, x,t,veR, (13)
Z u v

which is equivalent to that
& x> 0,xt > |y]?,det(X) >0,
such that
NiXNj=N;XN;,
N:XN; = N;XN;,
1 <i< j<3. By directly computing, with the help of

the expansion y = Re(y) + ilm(y) and similarly to u,z,
the linear system above (in X) is equivalent to

V=X, t=X—YyY+z, u=y=y, z=2.

https://doi.org/10.52111/qnjs.2025.19107

We then pick x =3, z=2, y=u =0, =5 and then
30 2
X=1(0 5 00
2 0 3

makes XINX?, XINoX2, XIN;X2, XINiX2,
X%NE‘X%, X%N3*X% to be commuting by Theorem 11.
Thus three initial matrices are SDC on R, and so are
they on C.

We will see Example 3 showing the numerical
experiment of computing a square root of X and a non-
singular for *-SDC Ny, N, and Ns. o

3. NUMERICAL TESTS

In this section, we perform some numerical tests il-
lustrating our main algorithm implemented in MAT-
LAB R2022a running on a PC with Intel Core i3 CPU
3.3GHz, 8GB RAM, Windows 10 x64 operating sys-
tem.

It is well known that a matrix N is normal if
and only if it can written as N = A +iB with A* = A,
B* = —B and AB = BA. Notice furthermore that A = A*
has only real eigenvalues, while B is skew-Hermitian,
and hence its eigenvalues are all purely imaginary, As
an existing result,> A and B are *-SDC by a unitary
matrix. This leads us to set up a collection of normal
matrices that are for sure *-SDC as follows. Fix a uni-
tary matrix Q, and pick m diagonal matrices D; whose
diagonal elements are real in (1,1), and m diagonal
ones S; whose diagonal elements are purely imaginary
in (1,1). Then the corresponding normal matrices are
constructed as

N,':Q(D[-i-iS[)Q*, i=1,....m,

which are #-SDC by Q. . The first stage of Algorithm
3.2 is implemented with the CVX toolbox [19] call-
ing SDPT3 version 4.0 [36] that solves the following
semidefinite program:

min{s ‘ X>=0,5s> S,NiXNj :NjXNi,
NiXN; =NjXN;, 1 <i<j<m}, (14)

where the tolerance € > 0 is given. We then exploit
the MATLAB function sqrtm.m, which executes the
algorithm proposed by Deadman and collaborators, >
to compute the square root Q of X. For the second
stage, we thank the works of Mendl for executing the
Jacobi-like algorithm.!5 In our experiment, we pick € as
the floating-point relative accuracy eps(%) of MAT-
LAB for detecting the SDC property as in (12), while
we keep their tolerance for the last stage to be eps to

the power of 3.15 We have performed the tests with the

collections of at most 20 normal matrices (of common
sizes 5,10,...,30, respectively). All experiments give
the backward errors approximately bounded above by
1078,
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Example 3. We continue Example 2 with finding a non-
singular matrix U that *-SDC N;,N, and N3. We first
numerically compute the square root of X as

1 1.6180 0 0.6180
X2 ~ 0 2.2361 0
0.6180 0 1.6180

Noticing that N;,N, are real symmetric and
N3 is complex symmetric. Furthermore, for a nonsin-
gular matrix P. P*N3P does not need to be normal.
So, we cannot apply the extended Jacobi-like algo-
rithm. 1> However, we can apply the SDP-SDC method
to the matrices X IN; X2, X2N,X2, X2 3 (N3 +N§‘)X%
and X2 %(Ng‘ —N3)X 2.3 which are all Hermitian and are
commuting, to obtain the nonsingular matrix

—0.4082 —-0.7071 0.5774
V~| 0.8165 0 0.5774
—0.4082 0.7071  0.5774

that simultaneously diagonalizes the latter matrices
above. Finally, a nonsingular that simultaneously diag-
onalizes the initial matrices Nj, N, N3 is

1 —-0.9129 —-0.7071 1.2910
U=X?2V ~ | 1.8257 0 1.29101 ,
—-0.9129 0.7071 1.2910
where

U*N,U ~ diag(0,0,15),
U*N>U =~ diag(—10,0,5),
U*N3U = diag(30i,2i, 15).

4. CONCLUSION

We have provided a sufficient and necessary condition
for a finite family of normal matrices to be simultane-
ously diagonalizable via x-congruence. A correspond-
ing MATLAB package has been developed, and some
numerical tests have also been performed.

Acknowledgment

This study is conducted within the framework
of science and technology projects at the institutional
level of Quy Nhon University under the project code
12024.830.01.

REFERENCES

1. L. D. Lathauwer. A link between the canoni-
cal decomposition in multilinear algebra and si-
multaneous matrix diagonalization, SIAM Jour-
nal on Matrix Analysis and Applications, 2006,
28(3), 642-666.

2. J. B. H. Urruty. Potpourri of conjectures and
open questions in nonlinear analysis and opti-
mization, SIAM Review, 2007, 49(2), 255-273.

3. R. Jiang, D. Li. Simultaneous diagonalization

10.

11.

12.

13.

14.

15.

16.

. K. Weierstrass.

of matrices and its applications in quadratically
constrained quadratic programming, SIAM Jour-
nal on Optimization, 2016, 26(3), 1649-1668.

. R. A. Horn, C. R. Johnson. Matrix analysis.

Cambridge University Press, Cambridge, 2013.

. T. H. Le, T. N. Nguyen. Simultaneous diago-

nalization via congruence of hermitian matrices:
some equivalent conditions and a numerical so-
lution, SIAM Journal on Matrix Analysis and
Applications, 2022, 43, 882-911.

. M. D. Bustamante, P. Mellon, M. V. Velasco.

Solving the problem of simultaneous diagonal-
isation via congruence, SIAM Journal on Ma-
trix Analysis and Applications, 2020, 41, 1616—
1629.

Zur theorie der quadratis-
chen und bilinearen formen, Monatsbericht der
Berliner Akademie der Wissenschaften, 1868,
19-44.

. A. A. Albert. A quadratic form problem in the

calculus of variations, Bulletin of the American
Mathematical Society, 1938, 44, 250-253.

. P. Finsler. Uber das vorkommen de niter und

semide niter formen in scharen quadratischer for-
men, Commentarii Mathematici Helvetici, 1937,
9, 188-192.

M. R. Hestenes, E. ] McShane. A theorem on
quadratic forms and its application in the calcu-

lus of variations, Transactions of the American
Mathematical Society, 1940, 47(3), 501-512.

J. J. Moré. Generalization of the trust region
problem, Optimization methods and software,
1993, 2, 189-209.

T. K. Pong, H. Wolkowicz. The generalized trust
region subproblem, Computational Optimiza-
tion and Applications, 2014, 58, 273-322.

R. A. Horn, C. R. Johnson. Topics in matrix
analysis, Cambridge University Press, Cam-
bridge, 1991.

A. B. Gerstner, R. Byers, V. Mehrmann. Nu-
merical methods for simultaneous diagonaliza-
tion, SIAM Journal on Matrix Analysis and Ap-
plications, 1993, 14(4), 927-949.

C. Mendl., simdiag.m. MATLAB central file
exchange. Available at https://www. mathworks.

com/matlabcentral/fileexchange/46794-simdiag-m,
2020.

B. D. Sutton. Simultaneous diagonalization of
nearly commuting Hermitian matrices: do-one-
then-do-the-other, IMA Journal of Numerical
Analysis, 2024, 44(2), 1061-1089.

https://doi.org/10.52111/qnjs.2025.19107

Quy Nhon University Journal of Science, 2025, 19(1), 79-86 | 85



QUY NHON UNIVERSITY

I SCIENCE

17. J. F.  Watters. Simultaneous  quasi-
diagonalization of normal matrices, Linear Al-
gebra and its Applications, 1974, 9, 103-117.

18. G. Pastuszak, T. Kamizawa, A. Jamiotlkowski
On a criterion for simultaneous block-
diagonalization of normal matrices, Open Sys-
tems and Information Dynamics, 2016, 23(1),
1650003.

19. M. Grant, S. P. Boyd. CVX: Matlab software for
disciplined convex programming, version 1.21.
Apr. 2011. https://cvxr.com/cvx/.

20. R. Grone, C. R. Johnson, E. M. Sa, H. Wolkow-
icz. Normal matrices, Linear Algebra and its
Applications, 1987, 87, 213-225.

21. E. Deadman, N. J. Higham, R. Ralha. Blocked
Schur algorithms for computing the matrix
square root, Lecture Notes in Computer Sci-
ence, Springer-Verlag, Heidel berg, 2013.

Appendix
Proof of Lemma 10. 1) By applying (3) to M and N, one
has
MXN = (MPXN" — M*XN*®)
+i(MYXN* +MXN"),
NXM = (NYXM" — N°XM?)
+i(N°XM" + N XM*?),
MXN* = (MYXNY + M°XN*)
—i(MPXN® — M*XNY),
N*XM = (NYXM" + N°XM*)
—i(N°XM" — N XM*®).

Substituting the above identities into (4)-(5) one obtains
that

MOXND — MSXN® = NYXMY —N°XM*,
MYXN® + M*XN" = N°XM" + NOXM*,
MYXNY + MSXN® = NOYXMY + N°XM*,
MYXN® —M*XN" = N°XM" — NYXM*.

Adding side-by-side the first and the third (resp., the
second and the fourth) equations one has

MYXNY =NOXMY, MOXN® =N°XM".

Subtracting side-by-side the first and the third (resp.,
the second and the fourth) equations one has

M®XN® = N°XM*, M°XNY = N"XM*,

Conversely, from (2), the identities (6)-(9) are equiva-
lent to

(M +M*X(N+N*) = (N+N*)X (M +M"),
(M+M*)X(N—N*)=(N—N"X(M~+M"),
(M —M")X(N+N*) = (N+N)X(M—M"),
(M —M*)X(N —N*) = (N —N*)X(M —M*),

respectively. Expanding the above identities leads to
that

MXN +MXN*+M*XN+M"XN*
NXM +NXM* +N*XM + N*XM*,
MXN —MXN*+M*XN —M*XN* =
NXM +NXM* —N*XM —N*XM",
MXN+MXN* —M*XN —M*XN*
NXM —NXM* +N*XM — N*XM",
MXN —MXN*—M*XN+M*XN*
NXM —NXM* —N*XM +N*XM".

By adding side-by-side the above identities, we have

MXN = NXM.

Similarly, by adding the first and the third, then sub-
tracting the second and the fourth identities, side-by-
side, we additionally obtain

MXN* =N*"XM.

ii) This is an immediate consequence of the first part
with noting that X* = X and

M+M"=U(Ay+Au)U*,
M—M*=U(Ay —Ay)U",
N+N*=V(Ay+AN)V",

N—N*=V(Ay —Ay)V*,

where M = UAyU*, N = VANV are eigenvalue de-
composition of the normal matrices M and N (Ayr, Ay
are complex diagonal and U,V are unitary matri-
ces). O
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