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TOM TAT

Trong bai bao nay, chiing toi nghién ciiu bai toan wéc lugng 16i Ho, cho mot 16p hé ¢ tré véi dau vio khong
xac dinh. Dau tién, mot phép bién déi trang thai méi duge dé xuat dé bién ddi hé thong c6 tré dang xét thanh
mot he théng mdi trong dé s6 hang tré lien quan dén véc to trang théi duge chuyén dén dau ra va dau vio clia
hé théng. Sau d6, mot bo quan sat mdi duge thiét ké dua trén thong tin dau vio va dau ra dé gidi quyét bai
toan udc luong 161 Hoo. Stt dung Bo dé Kalman-Yakubovich-Popov téng quat, cac diéu kien di vé sy ton tai bo
quan sat ude lugng 16i H,, dude thiét lap va viee gidi cac ma tran quan sat dat dude quy vé viec giai mot tap
cac bat dang thitc ma tran tuyén tinh. Mot vi du s6 duge dua ra dé minh hoa tinh hiéu qué ctia phuong phap
duge dé xuat.

T khéa: Hé tré thoi gian, phép bién doi trang thdi, bo dé Kalman- Yakubovich-Popov tong quat, wdc lugng 1i.
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ABSTRACT

In this paper, we study the problem of H., fault estimation for a class of time-delay systems with unknown

inputs. First, a new state transformation is derived to transform the system into new coordinates where the delay

term associated with the state vector is injected into the system output and input. Then, an observer-based

H, fault estimator with input and output injections is proposed for fault estimation. Based on the Generalized

Kalman-Yakubovich-Popov Lemma, sufficient conditions on the existence of the H. fault estimator are derived

and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities. A numerical

example is given to illustrate the effectiveness of the proposed method.

Keywords: Time-delay systems, state transformations, generalised Kalman-Yakubovich-Popov Lemma, fault

estimation.

1. INTRODUCTION AND MOTIVATIONS

Fault detection and isolation is widely required
in various kinds of practical processes for safety
purposes and hence has been extensively stud-
ied in the past three decades by many authors

175 and the references therein).

(see,

As well-known, the time-delays are inherent
in many real physical systems, such as chemical
processes, long transmission lines in pneumatic
systems, power and water distribution networks,
air pollution systems, econometric systems, hy-
draulic and rolling mill systems. Since the de-
layed state is frequently the cause for instability

5 much atten-

and poor performance of systems,
tion has been paid to the fault detection design
problems of the linear state delayed systems and
many significant results have been achieved (see,
for example,”~!7). An adaptive observer based
fault estimator was used to estimate the abrupt
constant fault.® An iterative learning observer
was designed for fault estimation and accom-

modation for nonlinear time-delay systems.'? A

*Corresponding author.
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new performance index was introduced to de-
sign the reference model, and the fault detection
filter design problem was formulated as the H
model-matching problem.'® However, the above-
mentioned studies are characterized in the full
frequency domain. While, in many practical
systems, the faults usually emerge in the low
frequency domain, for example, in aerospace-

18,19

related fields (see, for instance, and in in-

dustrial processes®’:2!).

The generalised Kalman-Yakubovich- Popov
(GKYP) Lemma was established and, based on
this, the equivalence between finite frequency
domain inequality for a transfer function and a
linear matrix inequality (LMI) was built.>? The
authors have proposed a GKYP-Lemma based
approach to the fault detection and fault estima-
tion in a finite frequency domain.?® The robust
fault detection problem in low frequency domain
for linear time-delay systems was investigated.?*
The H filtering problem of discrete-time state-
delayed systems with finite frequency spec-
ifications was considered.?®> Some results on

56 | Quy Nhon University Journal of Science, 2021, 15(5), 55-74
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H, model reduction for continuous-time lin-
ear systems over finite frequency ranges were
obtained.?®

In recent years, the H,, problem of time-
delay systems has attracted a lot of attention
and many results have been reported in the lit-

27-29) Based on the state

erature (for instance,
transformation,®” the authors®! considered the
problem of H,, fault estimation for a class of
linear time-delay systems. Nevertheless, the ex-
istence conditions of the state transformations
reported®? are quite restrictive.??3* Thus, when
the existence conditions®” are not fulfilled, the
methods reported?! can not be applied. To sup-
port this statement, let us consider the following

motivated fourth-order example,
x(t) = Ail:(t) + Alx(t — Tl) + Agx(t — Tg)
-I-Bu(t) + de(t) + Bff(t), t>0,
(1)

y(t) = Cux(t)+ Dad(t) + Dy f(t), (2)
z(t) = o(t), t€[-7,0),
T =max{m, 72}, (3)

where () is the state vector, u(t) is the control
input vector, y(t) is the output measurement
vector, 71 > 0 and 7 > 0 are known constant
time delays, ¢(t) is a continuous initial function,
d(t) is the disturbance, f(t) is the potential fault
and

1 -1 0 0 ]
A:11007
-2 -2 -3 —4
-5 -5 0 0
[ 1 -1 -1 -2
4 = -2 -2 -3 —3’
-4 0 -3 -5
0 0 0 0
[ 4 —4 0 0 1
A2:1100’B:2’
2 -2 3 4 3
0 0 00 4

0.1 1.1
Bi=| gy | = [ 13 |

0.4 1.4
ni=| oy | o= [ 53]
o[reee]

Now, it is not hard to show that for the above
example, the condition for the existence of a
state transformation®’ (i.e., column unimodu-
lar) is not satisfied, and hence, the observer-
based H. fault estimator with input and out-
put injections for fault estimation with known
frequency range®' can not be applied.

Motivated by the above discussions, in this
paper, we consider the following class of time-
delay systems with unknown inputs in finite fre-
quency domain

B(t) = Asz(t)+ Y Aa(t— 1)+ Bu(t)
s=1

+Bgd(t) + By f(t), t >0, (4)
y(t) = Ca(t) + Dad(t) + Dy f(1), (5)
z(t) = o), te[-1,0), 7= 11213;{(]7'5, (6)

where z(t) € R" is the state vector, u(t) € R™
is the control input vector, y(t) € RP is the out-
put measurement vector, 7, > 0 (s = 1,2,...,q)
are known constant time delays, ¢(t) is a con-
tinuous initial function, d(t) € R™ is the distur-
bance, f(t) € R"f is the potential fault, d(¢) and
f(t) are assumed to be Ly-norm bounded, ma-
trices A, AS (S = 1,2,...,(]), B, C, Bd, Bf, Dd
and Dy are known constant and of appropriate
dimensions.

The remainder of this paper is organized
as follows. Section 2 proposes a novel state trans-
formation for system (4)-(6). The problem of
H, fault estimation is studied in Section 3. Fi-
nally, a numerical example to demonstrate the
obtained results is presented in Section 4.
Notations: For integer numbers m,n,p, n > p
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and matrices G € R™", H € R'X" we have
the following notations:

en,=n-+p-—1.

o MT M* M=+, M?* denote the transpose,
complex conjugate transpose, orthogonal com-
plement and the Moore-Penrose-inverse, respec-
tively.

o [, denotes the identity matrix of size n, O, ,,
denotes the m X n zero matrix.

o« 0 = | [Hy [H]g |, where [I], € RY*P,
[H]p € RV (=P),

e || || denotes the Euclidean vector norm of ().
e [ is the space of square integrable functions

1
over [0,00) with ||+ [[1, = (J5* Il |[%d¢) "
® 010x(G) denotes maximum singular value of

the transfer function matrix. Hy, norm of a

transfer function G(s) over a finite frequency
range [w| < @ is defined as [|G(s)]|%"" =

SUp Omax (G(iw)), V|w| < .
2. STATE TRANSFORMATION

Let us assume that matrix C' takes the following
form

Ch
C={ i =L Oy |
Cy
and denote

Mi = CiaHiszol,nai:lv--*apa

5:17-"7(]7 (7)
P
M; = M, A=) ok, (8)
k=1
P
Hjs = Mj—pAs_Z/gjksMkv (9)
k=1
P
Miyy = MA=Y o My, (10)
k=1
P
H(i+1)s = M;As+ HjsA— Z 5@+1)3Mk’7
k=1
(11)
where of, g5 (j = 1 2 k d
1 B (U p+1...,2p), aj; an
B@H)S (i = 2p,....n, — 1) are scalars will be

https://doi.org/10.52111/qnjs.2021.15507

determined. Let us now propose the following
change of coordinates:

Zi(t) = Miiﬂ(t) + ZHisx(t - Ts)

s=1

g p
+ Z( stMj>x(t—27'5),
1

s=1 j:
i=1,2,...,n,, t > 27, (12)

where l/fs = ( are scalars will be determined
later.

Theorem 2.1. For some scalars o], B, ~}",

Vs 1/]18, (i = p+Lp+2...,n,75 =
,2,....,p, s = 1,2,...,q, £ = p+ Lip+
2,....2p—1, m=12,....2p, r=p+1,p+
2,..ony, k=2p+1,2p+2,...,n,), if the fol-
lowing equations hold

i o

M;A - ’Z ngj]R= i (13)
J=p+1

_ L

_MZ-AS + Hj A — Z W{Hjs] . 01,n—p,(14)

j=p+1

_HisAs] R: Ol,n—pa (15)

_ .

_HisAs + <2; VgSM])A] R: Ol,n—p» (16)

]:

HitAm + HimAt} R: Ol,n—pa (17)

A

(Z Vgij)A[] R= Ol,n—p; (18)

j=1
M A= ) AM] =0y (19
j=p+1

_ Nz
M A+ Hy A - .Z ’yﬂLZHjS} = Do,
J=p+1

(20)

then (12) transforms (4)-(6) into the following
form

Az(t) + Bu(t) + Y Biu(t —7.)

s=1

£(t)

q
+ ) Blult - 27,) + Bad(t)

s=1

58 | Quy Nhon University Journal of Science, 2021, 15(5), 55-74
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+ ZB d(t— ) +ZBd (t - 2r,)
s=1 s=1

q
+ Bef(t)+) B f(t—7.)

s=1

+
M=

B]%Sf(t —275) + Ty(t)

»
Il
—_

q
Tiy(t =) + ) Tiy(t —2m)

+
M=

s=1 s=1
q

+ Zf‘yt—&'s +ZZ Byt — 1o —m)
s=1 s=1s#£l=1

+
I ﬁMQ

q
Z [y (t =275 — 1), t >3, (21)
C

y(t) ( )+ Dad(t) + Dy f (1), (22)
where

Op,p I, 0p,(n-—2p)
A= Op—1,p A?zgz Op—1,(n—2p)

On. —2p.p U —2p,p In, —2p
Ol,p A;11,2z Afzi
C= I Op,(nz—p)

A%Q c R(p—l)xz)’ Aﬁi € RI¥?, Aﬁi = ]R]-X(nz_zlj),
B ¢ R™=x1 Bl ¢ RwX B2 ¢ Re=x1
Bd c anX17 Bclls c anX17 Bgs c anx17
By € Ru=*L B}S e R=x1, BJ%S e R=*1 T ¢

R™=*P T1 € R%*P, T2 ¢ R%*P, ['3 ¢ RM=*P
(s=1,2,...,q), I‘ﬁ € R"*P qnd I‘?l} € Rn=xP
are defined as below
[ ptl +2
Yol Vppl - '7p+1
pHl pt2
./422 _ fyp+2 fyp+2 cee 7p+2
ne : : : ’
+1 2 2
| Vo1 Yop1 o Yt
AR =[P AR
AB = [t e
[ MB ] [ 0,1
M,B H,1)sB
: H(nz—l)sB
| M,.B | | Hps |

0O9p,1

5 < ?:1 V(]Qp-l-l)ij)B
s . 9

<E§=] V%ZSMJ> B

[ MBy Op,1
MsBy H(p+1)sBd
Bd = MBBd 5 Bclls = y
H(nz—l)sBd
L anBd i ansBd
_ 02:071 -

(Z?ﬂ V{Qp-l—l)ij) By

| (Savkaa)B,

[ M By ] [ 0,
M;By Hip41)sBy
: H,, 1)sBy
| M, B; | H,..By
: O -
g _ (Z?ﬂ V€2p+1)ij)Bf
fs : )
(2’;:1 u%zSMj)Bf
I Upg1 Cra ]
(x%p . agp
L(p+1.1) L(p+1,p)
r— : :
I'(2p-1,1) I'(2p—1,p)
(M%p_l_l e (Mgp+1
L F(nz, 1) F(nz,p)
where

Dlij) = [Mid- > M
k= p+1

D(n.j) = [MnA- 3 A
k=p+1 J

https://doi.org/10.52111/qnjs.2021.15507
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where
Diind) = [Mid+ Hid = 37 o]

Nz
Fi(”z:]) = [anAs +ansA - Z '}/sszs:|

=

P
I2(2p, j) = [H@p)sAs - Z V(2P+1)5Mk} L’
=1

riij) = [H¢5A5+(§p: Vi)

r 1
Blor)s Blp+1)s
6(121»5 ‘6?210)8
Iip+1,1) I'l(p+1,p)
ri(2p—1,1) Il(2p—1.p)
Bl P
(2p+1)s (2p+1)s
1 ,
n,s n,s
Ii(n.,1) Ii(n.,p)

2p

k=p+1

k=p+1
Op,l Op,l

[H(zp_1>,5As] 1

3 (2p,1)
2(2p+1,1)

2(n, —1,1)
Fi(nz, 1)

k=1

|:H(2p— 1)sAsj| Lp

I2(2p,p)
I3 (2p+1,p)

Fg(nz - 17p)
F%(nzap)

Fg(nz»]) = [anSAS-l_( k=1 nstk>A
2p+1
— Yt ( k=1 (2p+1 Mk)

(St

https://doi.org/10.52111/qnjs.2021.15507

j:]‘727"’7 7
021071

[( b1 Vé€2p+1)sMk>A5i| Lj

[(Zgﬂ Vsz.s Mk) AS] Lj

b
ANk Mk}
k=1

Lj

L)

Lj

(Shokn)al

Proof. By taking the derivatives of (12), we ob-

tain the following
zi(t) = Mia(t)

= M;(Ax(t) + ZA a(t— 7).

+Bu(t) + de(t + By f(t))

= M; Ax(t) + M; Z Agz(t — )
s=1
+M;Bu(t) + M;Bgd(t) + MiBff(t)

= zigp(t) + Dol y(t) +
j=1

¢ p
+ Z Z 5€i+p)syj (t—s)

s=1 j=1
+M; Bu(t) + M; Byd(t)

+M;Bef(t),i=1,...,p,
q
G(t) = Mia(t) + Y Hisi(t — 74)
s=1

q
s=1
xx(t — 7s) + M; Bu(t)

+M; Byd(t) + M; By f(t)

q
+ Z HisAsx(t - 27—3)
s=1

+ZH‘5[ Z Agz( t—Té—Tg)]

s#l=1
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q
+>  HiBu(t — 1)

s=1
q q
+ D HisBad(t = 7o)+ His By f(t = 7)
522110 _ - A
DI ORIV SR
j=p+1 J=p+1
x[y1(t) yalt) ... yp(t)]T
[ZMA +H7,5A_ Z f}/z ]s]
Jj=p+1
X[y (t — 75) yp(t — 7)]"

[Z H; A, ] [ya(t — 275) ... yp(t — 27)]7

+ [Z Z HisAe]L[yl(t — Ty — T1)

s=1 s#l=1
Yot — 75 — T0) yp(t_TS _Té)]T
-H\L-Bu(t) + Mind(t) + MiBff(t)

q q
+3N Hi Bu(t — 1) + Y Hi Byd(t — 7y)

s=1 s=1
q
+ Z H?stf(t - Ts)a
s=1
i=p+1,....2p—1, (24)

q
ZQP(t) = MQpi'(t) + Z H(Zp)si:(t - TS)

s=1

= 2p41(1) + Z a%p—l—lyj(t)

q p
+ZZB(2p+1)gyJ Ts)
=1

K] j=1
q P
Bt (),
s= j=
Xy(t —27) .. gyt —27)]"

271,
q
> HeypsA ot =7 =)
s#L=1

4822

oyt =7 — )]
+M2pBu(t) + ]\f/fngdd(t) + szBff(t)

q
+ Z H(Qp)SBU(t — Ts)
s=1

q
+ Z H(Qp)sde(t - TS)
s=1

q
+ > Hep)sBrf(t =), (25)

s=1

Zi(t) = A[Zl’(t) + Z Hisi'(t - Ts)
s=1

<zp:1/SMJ>3: L — 27y)

=1

M=

+

»
Il
—

<.

q
— MiAw(t) + S (MiA, + HigAar(t — 7,)
s=1

+

MQ

vl
I
—

P
(HisAs + Y vl M) A)x(t — 27,)
7=1
q
th[ Z o t—Tb—Tg)]
sAl=

(

+M; Bu(t) + M; Byd(t) + M; By f (t)
q
+Y " Hi Bu(t — 1)
s=1

+ i Hisde(t - Ts)
s=1
q
+> HisBpf(t—m)
a P
+ Z(Z y*lf’SMj>Bu(t — 275)
a P
+ 3 (3 M) Bad(t — 27,)

+Zq:(2p: stMa)Bff(t — 27y). (26)

From (10)-(11), we have for i = 2p,

Jar.
v; M;

18

Asx(t — 375)

“-

Il
—

+
M=
~—~

o
Il
—

J

+
MQ

s=1

M=
M’E

+ VZJSM]> [ Z Apx(t — 275 — T[)]

1 s#(=1

w0
Il
—

J

2 +1,...,n,—1,

M;Ax(t) = My 2(t +Zaz+1y] 27)
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(]\[A + HZSA) (t - 7'5) = H(i-l—l)sm(t - TS) n

+Zﬁ]+1 —1), s=1,2,...,q. (28)

_|_

Substltutlng (27)-(28) into (26) and using
(15) - (18), we obtain

_|_

= zi1(t) + Z%H%

q P
+Zzﬁ(z+l)syJ( Ts) +

_I_

q

s=

M- i 1-

(

.
Il
—

Hy,_ s

z

p

Mws

E J
Vnzs

anSA +Z nzs
1

M

x(t — 275)

Vf;stj)Asx(t — 37%)

L;:;l Apr(t — 15 — T[)]

J)[Z Ay ( t—27'5—7'g)]

o s=1 j=1 s#l=1
=1 j=1 s=1 +M,, Bu(t) + My, Byd(t) + My, By f(t)
P q q
+ (Zugij) (Zum MJ) +Y " HuBult — 1) + Y HyoBad(t — )
j=1 j=1 L s=1 s=1
(e =2m) (e = 2m))” S Ho By Sl )
q ' - ‘
[ r8) 4] e -3 L
s=1 =1 +Z(Zygstj)Bu(t—zrs)
ya(t —375) ... yp(t — 377 s=1 j=1
¢ q g P
+[Z Z HjsAg]L[yl(t—Ts—Tg) +Z<Z rjzst)de(t_QTS)
s=1 sAl—1 s=1 j=1
a P
wt=r=m) o ylt—7 - ) + 3 (D My ) By f(t - 2m). (30)
P s=1 j=1
+ ! M)A
[;s;;l(]ZIV J> 4 From conditions (19)-(20), equation (30)
becomes

X[yi(t — 275 —7¢) ... yp(t — 275 — Tg)]T
-I-Ml-Bu(t) + Mind(t) + MiBff(t)

>

q q j=p+l
+ Z HisBu(t - 7'3) + Z Hi,sde(t - Ts) +ande(t) + anBff(t)
s=1 s=1 q
@ P +Y H,..Bu(t -7

w
—
w
Il
—

<
Il
—

»
Il
—_
<.
Il
—

+ Z(Z VLM ) By f (£~ 2m),

s=1 j=1
i=2+1,...,n,—1. (29)

From (26), we have

in. (£) = My, Ax(t)

q
+ Y (Mo As+ Hy (A)a(t - 7y) +
s=1

https://doi.org/10.52111/qnjs.2021.15507
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Ny

+ My A~ Z 7 M] i(t) o m()]”

=p+1
q Ny
_ im.
+ [Z My A+ Hid= Y vnijs] ,
s=1 Jj=p+1
1t —7s) ya(t —7s) yp(t — )"

p

+ Z Hy,_sAs + (Z V%;ij)A
s=1 j=1

(=]

-y %z(z Mi)

J=p+1 I

X[y (t —271¢) ...yt — 21"
H[3 (S 8) A = 3m)
s=1 j=1

Yp(t — 37'5)]T
q q
+ {Z Z ansAE}L[yl(t — Ts — T@)
s=1s#l=1

Yot — 75— 14) ...
q

X 3 ()]

s=1s#l=1 j=1

[yl(t— 27'5 — Tg)

Yp(t — 75 — TZ)]T

yp(t — 275 — TZ)]T'

Finally, (23)-(25), (29) and (31) can now be ex-
pressed in the form (21)-(22). This completes
the proof of Theorem 2.1.

In the following, we will solve unknowns in
Theorem 2.1. For this, we first express (13)-(18)
into the following compact form:

anan = Ynz7 (3]‘)
where
o= 8 T
T
Xoo= [ XLox2oxp ]
Y, = [ vl ypra-l ypta }
z Nz z )

where, xi_, X} (i =1,2,...,p+2) are as de-

Nz

fined below

= [ N2 (32

. azljﬂ Soab
o ] )
ST
12 _ 1 D 1
02 = [ Blan - B Bl
4 ﬁl P
(p+1)2° Flp+lg " Flp+l)g |
o= ], (33)
21 _ O‘zl;+2 O
Xn, = pt1 2p )
L T2 o Tt
[ Al D
12 _ B(p-l—Z)l B(p+2)1
Xn, = Al P )
L Plp+2)g 0 F(p+2)q
01 ~1)2
A IV G } (34)
P! P
1 Aop—1 Qo)
X7(1pz ! Pg—l A%g ! ]7
2p—1 /2p 1
r oAl »
- ﬁ(?p 1 ’8(12])—1)1
anz = B(gp_l) )
P
(2p—1)q
2 2 2
I A Rl
(35)
1 D
p) 5(21))1 1 ﬂ(Qp)l
Xﬁzp = ﬁgp)q ,
(2p)q
Bl ]
(2p+1)1
D
p(2p+1) _ (2p+1)1
Xn. 31 )
(2p+1)g "~
P
(2p+1)q J
1 P i
e R L
n.q v Pnaq |
1 ay, o,
X{’lj agp a}lz_l , (36)
0‘7212—1 aﬁz_l
Xp+2
X%jQ nngp+1 p+2 ) (37)
_an(2p+2) e Xnans
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1 2 .
) Vip+ri1 Yip+rin
P+ _ 1
— 1%
Xn. (2p+1) (2p+1)g
P
L (2p+1)g  J
- ) -
Vip+2)1 Yip+o)1
P
p+2 _ T (2p+2)1
an(2p+2) - vl
(2p+2)q
p
1%
L (2p+2)g |
p+2 1 2 P
annz - |: Vnzl Vnzl Vnzl
1 2 »
Vn.g Vn.g --- Vnug } ,

Ny

X, = [ X’rllz]. X%ﬂ }v
Xt = [ XMoo (a+2)(a+1)
nzl Mz (g t2), g (np)

Op(q+2)7%(n—p) ] ’

1 11 129 124
Xia=| XM, X% X

N2
Op(q+2).,(n-~2p)a?(n—p) ] ;
1
X&Lﬂ = Op(g+2),(n=—2p+1)q(n—p)>
12
an% = Op(g+2),(n2—2p+1)(g—1)(n—p)>
12
X2 = Op(g+2),(n.—2p+1)(n—p)>

p—1_ [ yp-1 yp-1
X - anl XnZQ ’

Ny

5;:_11 - Op(q+2)»%(n—p)
OP(Q+2)y%(n—p) XW% ] )
" = XUt x o
ngiglﬂq 0p(q+2),(nz—2p)q2(n—p) i|7

(r-11 _

Xni2 —Op(q+2)>(nz—2p+1)q(n—p)’
(r-1)22 _

Xoa 7 = Op(gr2) (ne—2p4 1) (g—1)(n—p)>

—1)2
Xfflz = Op(q+2),(nz—2p+1)(n—p)>

P P P
an - |: anl an2 ’
P _
anl = [ O(m—%ﬂ):ﬂ%%(n—p)

0
(n>—2p+1)pq, F2UeTD (5 _p)
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(40)

0(@—%“)7)%%(71—1)) } ’

Xr, = [ X xPptD): XP@+g
Nz z z z
On.~2p+1)pa,(n-~2p)a?(n—p) ] ’
Xg:rl = [ Xﬁjll Xg;l } ) (41)

p+1 _
Xno1 = [ O(nz—Zp)p.W(n—p)

O(nz —2p)p, (ST (1) } '

xXrH) = [ XEHP D@D

(p+1)(p+1)
Xn. " O(na—2p)p,(na—2p)g?(n—p) } '
p+2 P42
an(2p+1)1 an(2p+1)2
p+2 Xp+2
Xp+2 _ nz(2p+2)1 nz(2p+2)2 (42)
ny . . )
2 i
X'rz;nzl ngan
+2
Xﬁz(Qp'f‘l)l - [ Opq,%(n—p)

0
pq, LU () |5

p+2
annz]- - |: Opqv (q+2)2(q+1) (n—p) ’

0
pq, LU () | 5

p+2 _ (p+2)p
an(2p+1)2 - |: nz(2p+1)2
xPHAE+H)e ¢ (p+2)(p+2) ]

n.(2p+1)2 n:(2p+1)2 )

p+2 _ [ (p+3)p (P+3)(p+1)2

nz(2p+2)2 n.(2p+2)2 nz(2p+2)2
(P+3)(p+1)g 5 (p+3)(p+2) ]
n.(2p+2)2 n(2p+2)2 ?

Xiiea= [ xmw o, X[t

NyNy2 Nyny2 )

Nyny2 Nyny2

Xn(p+1)q Xn(p+2) } ,

where

+2)(g+1)
X! e RP(0+2)x L2 (n—p)

i(p+1)e
anpjz f= Opqy(nz—2p+1)(q—z+1)(n—p)7

i=p+2,...,n, j=2p+1,...,n,,
(=2,3,....,q,

64 | Quy Nhon University Journal of Science, 2021, 15(5), 55-74



QUY NHON UNIVERSITY

IS SCIENCE

X e R(7==2p+1)pgx (n.—2p+1)q(n—p)

xPtle ¢

Ny

R(=—2p+1)pgx (nz—2p+1)(q—f+1)(n—p)’

(=2,3,...,q,
X (1) (1)

Nz

c ]R(nz—2:v)zvx(nz—210+1)(q—f+1)(n—10)7

(=23,...,q,
X(PHDp ¢ R(n==2p)px(nz=2p+1)a(n—p)

Nz

ip pgXx(nz—2p+1)q(n—p
X7, eRM (n Ja(n—p)

Ny
1=p+2,...,n, j=2p+1,...,n,,

Xi(pﬁg2) € RP1*<(n=—2p)¢*(n—p)
nyj ’

i=p+2,...,n,j=2p+1,...,n,

are defined as below

R B - )
where
Xll _ Z 02p,q(n—p) O2p,(q—1)(n—p)
" A Qf o1 ’

lel2 _ 02p,(q—21)(n—p) OQPin—p
xpo= [ xmoxm, )
where
_ Q! 2 -
1
Opg,q(n—p) Q
X" = | Opgatn—p) Opgatn—p) |,
L Opq,q(n—p) Opq,q(n—p) i
3 Qe
0?2 . Qe
1 n.—2p—1
X£f2 = Q Q P 7
L Opq,q(n—p) Ql J
X££p+1)z — [Xgiziﬂ)z Xgi];ﬂ)z , (45)
where
+1
A =

@, o7,
(I)l
pq,(q—{+1)(n—p) (-1

Oq
Opg,(g—t+1)(n-p)  Opg,(q—t+1)(n—p) |,

L Opqy(q—€+1)(n—p) Opq,(q—€+1)(n—p) |

+1
X
r n,—2p+1 7]
‘1’22’_1 @Z_lf;
n,—
¢€_1 (D[:§ f1
D)y R ) ! )
1
L Opg,(g—t+1)(n—p) - P,y J
X7(£+1)p XT(LI;-{l)p Xflzgrl)p . (46)
where
_ -
Op,q(n—p) =
0 0
+1 p,q(n—p)  Vp,g(n—p)
X'I('LZI )p = . )
L OIMI(TL—P) Op,q(n—p)
=2 L Eew
( ) =1 —=n.—2p—1
+1 = =
XnZQ b= : )
L Op,g(n—p) =!
+1)(p+1 +1)(p+1 +1)(p+1)
Xr(lzz J(p+1) Xr(zil )(p+1) Xr(i2 )(p :
(47)
where
+1)(p+1)
XT(lzil )p+1) _
Op,(g—t+1)(n—p) \I}}—1

Opy(q—€+1)(n—p) 0p,(q—£’+1)(n—p)

)

Opy(q—€+1)(n—p) 0p,(q—£+1)(n—p)

(r+1)(p+1) _
n,2 -
2 nz_2p
Ui, \IJZ_% 1
1 nz—2p—
v, )
. . . ’
1
0p,(g—+1)(n—p) Uy
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2 +2 +2
X(p2p [Xr(zil )p X7(52 w, (48)
where
ryv(p+2)p
an(2p+1)2
X(p+3)p
2 2z
X7(5+ po n(2'p+2)2
np
L NyNz2
Opg,q(n—p) v
Opy a(n_m O
+2 pg,q(n—p)  Vpg,q(n—p)
XT(lI;]. » = . : !
L Opq,q(n—p) Opqvq(n—p)
Opg,g(n—p) Opg,q(n—p)
\Y% ... 0 _
) pq.q(n—p)
Xfli? ¥ = : - :
L qu(n—z)) \Y
Xﬁi+2)(p+2) - X,(,ZTZ)(”H) X7(,Z§2)(p+2) 7
(49)
[ v (+2)(p+2) ]
n.(2p+1)2
(p+3)(p+2)
X (P+2)(p+2) nz(2p+2)2 ,
'n('p+2)
L nynz2 i
I Opq,q2(n—p)
0,2 II
+2)(p+2 Pq:q*(n—p)
X7SZ1 Np+2)  _ : : 7
L Opq,qz(n—p) Opq,qg(n—p)
Opg,q2(n—p)
0,, .2
+2) (p+2 p4,q*(n—p)
X7(1122 )p+2)  _ .
II

In (32), Vi € RXGHL+E50n) (; =
1,2,...,p — 1), £ e Rx(n=pa yril ¢
RUx(=p?a-1)  yP+2 o RIX(-p(e-2)
Yn(f-l_q_l) S Rlx(n—p)2’ Yé)jq = 01,q2(n2—2p)(n—p)
are defined as follows

vio= [vii v 60
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where
2 1 1
Yil _ XY, .. Yz’q
Nz - 1 1
vy
1 1
i Zz',12 Zz',1q
ny2 1 1 )
Zigs o Zigg-ng

fori=1,2,...,p—1,

vi= v ovE v ] )

1 _ 1 1 1
= v e v ]

2 _ 2 2 2
R IR I
G AR CE I

(52)
Y755+1)1 = { Z; 12 Z; 1q } )
Yéfﬂ)z - [ Zzglz Zp21q } '
YD) - [ Zy 7 }

yre? = [ y 2 y (p+2)(n=p) ] :

(53)
Yrsf-l_Q)l - [ 21}723 25,24 Z;,Zq ] ,
Y2 — [ 75 7057 } ,

ijq_l — [ Y(p+q—1)1 Y(p+q—1)(n—p)

(54)

Nz Nz
(p+q-1)1 _ 1
Ynf ! - Zp7(q—1)q’
(p+q—1)2 _ 2
Ynf ! - Zp,(q—l)q’

(p+q=1)(n—p) _ n—p
Y"z ! - Zp-(q—l)q'
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From (31), a solution for x,, exists if and
only if

rank [ );"Z ] = rank [ X, } : (55)

Nz

Next, we express (19)-(20) into the following

form
anan = Tnz? (56)
where
Cn, = 047112 ... ah, ’yﬁjl R s },
(57)
an = anl ZnZZ anS an4 } y
(58)
_ X _
X
Zn;l = Z%,z (2]? +2,n— p) y
Z'rll (nz - ].,Tl—p)
Z}Lz(nZWn _p)
_ T} _
X,
Zno = | Zo.2p+2,n—p) |,
Z,%z(nz —1,n—p)
an(nz7n _p)
- ?; -
=1
X,
Z3 (2p+1,n—p)
Zns = | Z3.2p+2,n-p) |,
Zgz(nz —1,n—p)
Zgz(n27n _p)

. % _
Tq
ZEN2p+ 1,n - p)
Tna = | ZE2p+2,n—p)
Zi (. —1,n — p)

Z;]le(nzwn - p)

T, o= |11 T T ] (0)

Ny

In (58)-(59), T;. and Z (k,n — 1) (s =
2,3,....q+1), (k=2p+1,2p+2,...,n,) are
defined as follows

p
1 _ ny—2p+2 7 ny—2p+1
1, =X, E 0, X
Jj=1

J nz—2p J 3
—|—a2p+1Xj —|—...—|—anz_2Xj

-|—a¥lz_1XJ2> ) (60)

p
s _ ynz—2p+1 i xonz—2
T =Yg =2 <a;pyj(s_1§’ +

j=1

j Nz —2p—1 j 1
+a§p+11/}7(15—1§) +...+ azzz—lyvj(s—l)

i Ny—2p J 1
+5(2p+1)(s—1)Xj +..F 6nz(s—1)Xj> ’

(61)

p
Z).(kn = p) = X7 =) (X
j=1

j k—2p—1 j 1
+a~;p+1Xj —|—...—|—ak_1X»>7

J
(62)
k2 Y
Z: (=) = V% - Y (a%pm_%
=1
i rk—2p—2 i %
+0“§p+1yj(s—11)) Tt O[l]c—].le(s—].)
Y k—2p—1
+B(2p+1)(5—1)Xj + ...+
j 1
Ble—1)(s-1)%; ) : (63)

Since Z,,, and T, are two known constant

matrices, it follows form (56) that, a solution for
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(n. always exists if and only if

rank [ Zn: ] = rank[ Zn, } : (64)
T,
Algorithm 1

Step 1: Check if condition (55) is satisfied or not.
If so, obtain xn, = Yy, X .

Step 2: Substitute Bis and ai into (58)-(59) and
obtain Z,, and T,,_. Check if condition (64) is
satisfied or not. If so, obtain (,, =T, Z, .
Step 4: From (7)-(11), obtain the state transfor-
mation (12) and (21)-(22).

3. THE DESIGN OF FAULT ESTIMATOR

Consider the following observer-based fault de-
tection filter

z*(t) = AZ(t) + Bu(t) + i Blu(t —7y)

s=1

+
M=
&

u(t — 275) + Ty(t)

w
Il
—_

n
M=

q
Tiy(t— 7o)+ Y Toy(t—2m)
s=1

»
Il
—

_'_
M=
oo

y(t — 375)

w
Il
—_

ng(t —Ts — TZ)

+
NE
NE

»
Il
—_
o
T
~
Il
_

Fgl}y(t — 275 — TZ)

+
NIE
NIE

s=1 s#l=1

+ L(y(t) - §(t)), t > 37, (65)
() = CAt) (66)
fit)y = Vi) -9), (67)

where 2(t) € R"=, §(t) € R, f(t) € R" are the
state, output and fault estimation vectors, re-
spectively; L and V are observer gain matrices
to be determined. Define

We have the following estimation error system

&(t) = (A — LC)e(t) + Bad(t)

https://doi.org/10.52111/qnjs.2021.15507

q q

+Y Bd(t—T)+ Y B d(t—2r)

s=1 s=1

q
+Bsf(t)+ Y B f(t—7.)

s=1

q
+Y B} f(t—2r)

s=1

—LDgd(t) — LD¢ f(t), (68)

r(t) = VCe(t) + VDyd(t)

+(VDy = 1) f(t). (69)
Let us now denote

A=A-1C, C=VC,

By=| B B, By B3 B .
Br=[8 B, .. B B, .. B |
Tr=|10 .. 0],
Di=[Ds 0 ... 0],
Dy=[D; 0 .. 0],
By=By— LDy, By =By — LDy,
Dy =VD4, Dy =VD; — 1y,
d)=[ d@) dt-n) ... dt-,)

d(t — 2m) d(t — 2r,) ]T
fo=[rw re-mn . fe-m)

T
flt=2m) ... ft-2m) |
Then we can rewrite system (68)-(69) as

é(t) = Ae(t)+ Bud(t) + By f(t), (70)

r(t) = Ce(t)+ Dyd(t) + D f(t). (71)

In the following development, we will design

an H. fault estimatior, i.e. to find matrices L

and V such that the error system (70)-(71) with

d(t) = 0 and f(t) = 0 is asymptotically stable

and, for given v > 0, A > 0 the following perfor-
mance is satisfied

G AT < o, (72)
1Grglle < A, (73)
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and G, 4(

T

Since Nd®)l, = V2¢+T1[|d®t)||z, and
70, = VIS Note it
G, A" = gmllGulle™ and

1Gille = o Grall.

The following lemmas are essential for the
proof of our results.
Lemma 3.1. Consider a transfer function ma-
triz G(s) = O(sI — A)"'B + D. Letting a sym-
metric 11 be given, the following statements are
equivalent:

(a) The finite frequency inequality

[ G(;w) ] I [ G(;’w) ] <0, Yjw| < w. (74)

(b) There exists Hermitian matrices @ > 0,
P of appropriate dimmension such that

T
A B -Q P A B
I 0 P w?Q I 0
cpl [cop
+OI OI<O'(75)

Lemma 3.2. Consider a transfer function ma-
triz G(s) = O(sI — A)"'B + D. Letting a sym-
metric 11 be given, the following statements are
equivalent:

(a) The infinite frequency inequality

Glw) | 1 [ Gliw)
[ . ]H[ . ]<O,VwER. (76)

(b) There exists a Hermitian matriz P > 0
of appropriate dimmension such that
T

A 51 [oP][A B
r ol lrpollr o
cpl" [cop
0. (77
0 I 0o 1 |° (77)

Lemma 3.3. Given a symmetric matriz ® and
two matrices I' and A, there exists a decision
matriz X, that satisfies

®+TXA+(TXANT <0 (78)

if and only if the following conditions are satis-
fied

T
riort’ <o, TTer™ <0, (79)

Theorem 3.1. For given matrix R =
{O 1 O], scarlars v > 0, A > 0, w > 0,
the error system (70)-(71) is aymptotically sta-
ble and performances (72)-(73) hold if there ex-
ist Hermitian matrices QQ > 0, P, real matrices
W >0, X and V with appropriate dimmensions
such that the following LMIs hold

[ Q1 Q2 } <0 (80)
[ Qs Q4 } <0 (81)
where
Q P-W
Q=" ‘ ;
* *
* *

Q=a’Q+ATW + WA

—cTxT - xcr
[ 0 0
WB; — XDy cryT
QZ - 2[ ETVT TT )
- Vo

i * —1

[ ATW +WA-CTXT - XC
Q3 = * ;

*

[ WB, - XD, CTvT
Qi = Dovt a2

i % -1

Proof. We first prove that performance (72) is
satisfied if LMI (80) holds. Applying Lemma 3.1
I 0

d letting II =
and letting 0 2T

, then inequality

(72) becomces

G, f(iw) G, f(iw) — y*I <0, V]w| < w.
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That means performance (72) is satisfied if and
only if there exists n, x n, Hermitian matrices
@ >0, P such that

~ ~ T ~ ~
A By -Q P A By
I 0 P w?Q I 0
¢ p; ] [e b
A f 2
+ 0 I 0 I < 0. (82)
. AT 10
By denoting Y = BT 0 1 ] and
-Q p 0
o = P w?Q+CTC  CTDy ,
0 DiC  DiDy—~*1
(82) can be written as
voyT <o. (83)

On the other hand, by denoting M =
I 00
00 I

be seen that Y = M=+ and N is the null space
of R. Hence, from Lemma 3.3 we see that (83)
and inequality

. 4T
-1 A Bf} and N = ] , it can

NTON < 0 (84)

hold, if and only if there exists an n, x n, real
matrix W > 0 such that

®+MWR+ (MWR)T <. (85)

We can express (85) in the following form

[P1 Py ] <0 (86)
where
e P-W
P = x w2Q+ATW 4+ WA+ CTC |,
kS k
[ 0
P, = | WB;+CTDy
i D?Df—72l

By letting X = WL and using Schur®!, it
follows that (86) is equivalent to (80).

https://doi.org/10.52111/qnjs.2021.15507

Next, we will derive sufficient conditions
ensuring the asymptotic stability of the error
system (70) - (71) and the performance (73).
By applying Lemma 3.2 and letting II =

I 0
0 2 | inequality (73) becomces
G, 4(iw0)* G, g(iw) — NT < 0, Yw € R.

That means performance ||G,j/lcc < A is sat-
isfied if and only if there exists a n, x n, real
symmetric matrix W > 0 such that

~ ~ T ~ ~
A By 0 W||A By
I 0 W 0 I 0
¢ o1 [é b
d d
+ 0 I 0 7 <0, (87)

which is equivalent to
ATW+WA WB; CT
% ~X T DT | <0 (88)

* * -1

Let X = WL, it follows that (88) is equivalent
o (81). If (81) holds, then ATW + WA < 0,
which implies that system (70)-(71) asymptoti-
cally stable. Note that, we can solve the follow-
ing optimization problem in order to get optimal
fault estimation:

min~y, s.t.(80),(81). (89)

Remark 1. The results of this paper can be
extended to the case where the time delays 75
(s =1,2,...,q) are time varying, that is, Ts(t),
7, < 15(t) < 7 for all t > 0, where 77 > 0,
5 > 0. Indeed, we can approzimate terms
xs(t—75(t)) by xs(t—77), where T = 57'54# By
this way, systems with time-varying delays can
be reduced to systems with time-invariant delays
of the form (4)-(6), where T4(t) are replaced by
7 foralls=1,2,...,q.

Remark 2. Let us consider the case where the
output vector of system (4)-(6) is delayed, that
is, y(t) = Cx(t) + Cya(t —7)+ Dqd(t) + Dy f(2).
For this case, we introduce an integral output

vector z(t) = bfy(@)d@ such that 2(t) = y(t) =
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Ca(t) + Cqx(t — 7) + Dyd(t) + Dy f(t). By de-

noting ((t) = [ ;8

, we obtain an augmented

system of the form (4)-(6), where state variable
is ((t) and the output is not delayed. By this
way, we can extend the results of this paper to
systems with delayed outputs.

4. A NUMERICAL EXAMPLE

Let us consider the motivated fourth-order ex-
ample in Section 1. According to Step 1 of the
Algorithm 1, we obtain matrices X5 and Y3 from
X5
Y;
rank [ X5 }, condition (55) is satisfied and we
get

equations (38)-(54). Since rank =34 =

v =[x 2 ]

= 6 8 8 x|
¢ = | ad o} o o]

— [ 21 —08333 -1 08333 |,
X%Q = I 5%2 ﬁ%z 5%3 [3§3 ]

— [ 23 13333 —3 —3.3333 ],
X§5 = _Bil 521 % 522 ]

_ [ -8 -3 4 3},
Xgﬁ = _5%1 ﬂgl 5%2 ﬂgz_

= [ —1.636 52082 05657 —0.8032},
= ol o} | =] -10561 268 |,
R Y T A LU}

Next, in Step 2, by substituting B,
5217 ﬁiQa @%27 ﬁ%l? Bglv 5%27 6%27 O‘}L and O‘Z
into (58)-(59) and obtain matrices Z; and

Ts. Since rank Z = 2 =
5

condition (64) is satisfied. Hence, we ob-

[od a2 a3 ot 2] =

rank [ Zs ],

tain C5 =

—1.2007 —0.6244 —1.2007 —0.6244 0.0823
Then according to Step 3, we obtain
alt) = (),
2(t) = (1),
z3(t) —0.1667x2(t) + 221 (t — 71)
+ 0.3333x9(t — 1) — a3(t — 1)
— 2zy4(t — 1) — 21(t — 72) — 0.6667z9(t —

a(t) = 2.0561z, (1) + 368352, (t) + 621 (L — 71)
+ xo(t—71) — 33t — 1) — 3xa(t — 1)
— z1(t — 1) — 0.6667z2(t — 12),

() = 2.828121(t) + 2.251815(2)

+ 8213z (t — ) + 1.3688x9(t — 71)
— 4.1065x3(t — 1) — 3.162614(t — 71)
— 4.1065%‘1(15 - TQ) - 2.7377332(t - 7'2).

And then, a transformed system of the form
(21)-(22) is obtained, where
(10000
101000
B, =B3 =B}, =051, [} =13 =T} =T3 =
05,2 and

c B =B =B =

00 1 0 0
00 0 1 0
A= 100 -1 0833 0 |,
00 0 0 1
| 0 0 —1.2007 —0.6244 0.0823 |
C T
2 0
B = | -03333 |, Bi=| -8.3333 |,
9.4230 ~13
| 7.3317 | —14.019 |
[0 0.1
0 0.2
By = | -2.3333 | ,By=| —0.0333 |,
-7 0.9423
| —9.5818 | 0.7332
C T
0 0
By = | —08333 |, B}, =| -0.2333 |,
-1.3 —0.7
| —1.4019 | | —0.9582 |

T2)7
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1.1 ] 0
1.2 0
1
By = 02 |, By =] -L5
6.6818 -0.3
| 5.8131 | | 0.9109
0
0
1
Bfg = —].9 5
—5.7
—7.8023 |
-1 —0.8333 ]
—1.0561 —2.6835
r = 1.5467  2.7362 |,

~1.2007 —0.6244
04748 1.3382 |

-3 —1.3333 ]
-8 -3
I'l = | 17.6667 11.8333 |,
~1.636  5.2082
15322 10.7619 |
[ -3 -3.3333 ]
4 3
Iy = | —3.3333 —21667 |,

0.5657  —0.8032
~10.4279  —9.5159 |

0 0
0 0
I = | 1.3333 —2.6667 |,
4 -8
| 5.4753 —10.9506 |
- -
0 0
T2 = | 33333 33333 |,
10 10
| 13.6883 13.6883 |
C 0
0 0
Iy = | 56667 —5.6667 |,
~17 ~17
| —23.2701 —23.2701 |

https://doi.org/10.52111/qnjs.2021.15507

11
F21

0 0
0 0
2.3333  2.3333
7 7
| 9.5818 9.5818 |

On the other hand, we have the following

matrices

I =

Dy =

10000
0.1 0
0.2 0

—-0.0333 —0.8333
0.9423 -1.3 -0.7

)

0
0

—0.2333

| 07332 —1.4019 —0.9582
1.1 0 0 0
1.2 0 0 0
02 15 —19 0
6.6818 —03 —57 0
| 58131 0.9109 —7.8023 0
Jo1 000 0]
02 000 0]
(03 000 0]
04 000 0

o O O O O
o O O O O

O O O O O

Set A = 0.5. Solving the optimization prob-
lem (89), we obtain i, = 0.7 and

5. CON

[ 15.1993
—5.8977
L= 53.7296
—47.5788
| —35.4247

—4.1548 ]
21.5871
—37.7022
118.5215
102.6286 |

V= o564 —47344 ]

CLUSION

A novel method has been proposed for comput-

ing state transformations of time-delay systems

in this paper. The H,, fault estimation problem

for time-delay systems has been re-formulated

as the corresponding problem for linear time in-

variant systems. A numerical example has been

given to demonstrate the obtained results. In the

72 | Quy Nhon University Journal of Science, 2021, 15(5), 55-74
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future, we will extend the results of this paper to
address the problem of H., fault estimation for
interconnected systems with time-varying delays
and unknown inputs.
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