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TOM TAT

Trong bai béo nay, chiing to6i nghién citu bai todn uéc lugng 161 Hy, cho mot 16p hé c6 tré véi dau vio khong
x4c dinh. Dau tién, mot phép bién déi trang thai méi duge dé xuét dé bién ddi he thong o tré dang xét thanh
mot hé théng méi trong dé sé hang tré lien quan dén véc to trang théai duge chuyén dén dau ra va dau vao ciia
hé théng. Sau d6, mot bo quan sat mdi duge thiét ké dya trén thong tin dau vao va dau ra dé giai quyét bai
toan udc luong 161 Hoo. Stt dung B6 dé Kalman-Yakubovich-Popov téng quat, cac diéu kién di vé sy ton tai bo
quan sat udc lugng 161 Ho, duge thiét 1ap va viée giadi cac ma tran quan sat dat dude quy vé viée gidi mot tap
cac bat déng thic ma tran tuyén tinh. Mot vi du s6 dugce dua ra dé minh hoa tinh higu qué ctia phuong phap
duge dé xuat.

Tt khéa: He tré thoi gian, phép bién doi trang thdi, bo dé Kalman- Yakubovich-Popov tong qudt, wic higng 16i.
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ABSTRACT

In this paper, we study the problem of H., fault estimation for a class of time-delay systems with unknown

inputs. First, a new state transformation is derived to transform the system into new coordinates where the delay

term associated with the state vector is injected into the system output and input. Then, an observer-based

H . fault estimator with input and output injections is proposed for fault estimation. Based on the Generalized

Kalman-Yakubovich-Popov Lemma, sufficient conditions on the existence of the H. fault estimator are derived

and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities. A numerical

example is given to illustrate the effectiveness of the proposed method.

Keywords: Time-delay systems, state transformations, generalised Kalman-Yakubovich-Popov Lemma, fault

estimation.

1. INTRODUCTION AND MOTIVATIONS

Fault detection and isolation is widely required
in various kinds of practical processes for safety
purposes and hence has been extensively stud-
ied in the past three decades by many authors

1=5 and the references therein).

(see,

As well-known, the time-delays are inherent
in many real physical systems, such as chemical
processes, long transmission lines in pneumatic
systems, power and water distribution networks,
air pollution systems, econometric systems, hy-
draulic and rolling mill systems. Since the de-
layed state is frequently the cause for instability
and poor performance of systems,® much atten-
tion has been paid to the fault detection design
problems of the linear state delayed systems and
many significant results have been achieved (see,

for example,”17)

. An adaptive observer based
fault estimator was used to estimate the abrupt
constant fault.® An iterative learning observer
was designed for fault estimation and accom-

modation for nonlinear time-delay systems.!? A

*Corresponding author.
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new performance index was introduced to de-
sign the reference model, and the fault detection
filter design problem was formulated as the Ho
model-matching problem.'? However, the above-
mentioned studies are characterized in the full
frequency domain. While, in many practical
systems, the faults usually emerge in the low
frequency domain, for example, in aerospace-

18,19

related fields (see, for instance, and in in-

dustrial processes®’:21).

The generalised Kalman-Yakubovich- Popov
(GKYP) Lemma was established and, based on
this, the equivalence between finite frequency
domain inequality for a transfer function and a
linear matrix inequality (LMI) was built.?? The
authors have proposed a GKYP-Lemma based
approach to the fault detection and fault estima-
tion in a finite frequency domain.?® The robust
fault detection problem in low frequency domain
for linear time-delay systems was investigated.?*
The Hy, filtering problem of discrete-time state-
delayed systems with finite frequency spec-
ifications was considered.”” Some results on
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H., model reduction for continuous-time lin-
ear systems over finite frequency ranges were
obtained.?¢

In recent years, the Hy problem of time-
delay systems has attracted a lot of attention
and many results have been reported in the lit-

27-29) Based on the state

erature (for instance,
transformation,®® the authors®' considered the
problem of H., fault estimation for a class of
linear time-delay systems. Nevertheless, the ex-
istence conditions of the state transformations
reported®” are quite restrictive.??3* Thus, when
the existence conditions®’ are not fulfilled, the
methods reported?! can not be applied. To sup-
port this statement, let us consider the following

motivated fourth-order example,

3.
—
~
~—

Ax(t) + Arx(t — 1) + Asx(t — 7o)
+Bu(t) + Byd(t) + B f(1), t > 0,
(1)

y(t) = Ca(t)+ Dad(t) + Dy f(t), (2)
x(t) = ¢(t), te[-70),
7 =max{m, T2}, (3)

where z(t) is the state vector, u(t) is the control
input vector, y(t) is the output measurement
vector, 71 > 0 and 7 > 0 are known constant
time delays, ¢(t) is a continuous initial function,
d(t) is the disturbance, f(t) is the potential fault
and

-1 -1 0 0
A:11007
—92 -2 -3 —4
-5 -5 0 0 |
[ -1 -1 -1 -2 ]

4 = -2 -2 -3 —3’
-4 0 -3 -5
0 0 0 0
[ —4 —4 0 0 1

A2_1100’B:2’
—2 -2 3 4 3
0 0 00 4

0.1 1.1
Bi=| g | 5= | 13 |

| 04 1.4
ni=| oy | oe=[ 03]
e-[0ee]

Now, it is not hard to show that for the above
example, the condition for the existence of a
state transformation®® (i.e., column unimodu-
lar) is not satisfied, and hence, the observer-
based Hy fault estimator with input and out-
put injections for fault estimation with known
frequency range?! can not be applied.

Motivated by the above discussions, in this
paper, we consider the following class of time-
delay systems with unknown inputs in finite fre-
quency domain

z(t) = Az(t)+ Zq:Asa:(t — 7s) + Bu(t)

s=1
+Byd(t) + By f(t), t >0, (4)
y(t) = Cux(t) + Dad(t) + Dy f(1), (5)
z(t) = o), t€[-7,0), 7= max 75, (6)

1<s<g

where z(t) € R" is the state vector, u(t) € R™
is the control input vector, y(t) € R? is the out-
put measurement vector, 7, > 0 (s =1,2,...,q)
are known constant time delays, ¢(t) is a con-
tinuous initial function, d(t) € R is the distur-
bance, f(t) € R™ is the potential fault, d(t) and
f(t) are assumed to be Le-norm bounded, ma-
trices A, A; (s=1,2,...,q), B, C, Bq, By, Dy
and Dy are known constant and of appropriate
dimensions.

The remainder of this paper is organized
as follows. Section 2 proposes a novel state trans-
formation for system (4)-(6). The problem of
H, fault estimation is studied in Section 3. Fi-
nally, a numerical example to demonstrate the
obtained results is presented in Section 4.
Notations: For integer numbers m,n,p, n > p
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and matrices G € R™" H € R™™, we have
the following notations:

en,=n+p-—1

o MT M* M"Y, M*t denote the transpose,
complex conjugate transpose, orthogonal com-
plement and the Moore-Penrose-inverse, respec-
tively.

e [, denotes the identity matrix of size n, O, ,
denotes the m X n zero matrix.

o H = [ [H|, [H]gr }, where [H|, € R
[H]p € RM*(=p),

e || - || denotes the Euclidean vector norm of (-).
e [ is the space of square integrable fuflctions
over [0, 00) with |||, = (J;71|%dt)

® Opnax (@) denotes maximum singular value of
the transfer function matrix. H,, norm of a
transfer function G(s) over a finite frequency
range |w| < w is defined as [|G(s )H([joww] =
SUP Oax (G (iw)), Y|w| < @

2. STATE TRANSFORMATION

Let us assume that matrix C takes the following
form

C1

and denote

MZ‘ = CiaHiszol,na izl,...,p,

3:]-7~"an (7)
p
My = MA-Y oM, @)
k=1
H]'s - Mj pA Z Mk’ (9)
My, = MA- ZafﬂMk, (10)
k=1
p
k
Hiyrs = MiAs + HisA - Zﬁ(iJrl)sM’f’
k=1

(1)

(j=p+1....2p), aF, and

6@“)5 (z = 2p,...,n, — 1) are scalars will be

where a ﬁ

https://doi.org/10.52111/qnjs.2021.15507

determined. Let us now propose the following
change of coordinates:

s(t) = Ma(t)+ ) Hialt— )
s=1

(i M )alt — ),

j=1
1,2,...,n,, t> 21, (12)

+
i -

where l/fs = 0 are scalars will be determined

later.

Theorem 2.1. For some scalars ozg, ﬂgs, 7
7;;2} V]zy (i p+ Lp+2...n,]
,2,....p, s = 1,2,...,¢, £ = p+1,p+
2,...2p—=1, m=1,2,....2p, r=p+1,p+
2, .., k=2p+1,2p+2,...,n,), if the fol-
lowing equations hold

i L
MzA - Z 71]MJ:| R: OLn—pa (13)
j=p+1
i /2
MzAs + HZSA - Z VgHjs} R: Ol,n—p)(l4)
J=p+1
HiAy| =0, (15)

_ [
HiA, + (Zl ygij)A} =0y (16)
j:

HitAm + HimAt} R: Ol,nfpa (17)
_p

(v ) A| =01 (18)
N

Mo A= 0 M| =0 (19)

j=p+1
) Ny ‘
_anAs + ansA - Z 'Y%ijs} R: 01,n7p>
J=p+1
(20)

then (12) transforms (4)-(6) into the following

form

Az(t) + Bu(t) + Eq: Blu(t — )

s=1

£(t)

q
+ ) Blu(t - 2r,) + Byd(t)

s=1
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)
s=1

+ Bif(t) + Z B} f(t—s)
s=1

t—Tg +ZBd 27’3

B} f(t —275) + Ty(t)
ZW (t —27,)
q
+ ZFyt—?ws —|—Z Z T2yt — 75— 7p)

Fyt—TS

s=1 s=1 sAl=1
g q
+ Z Z 27—5 - TZ): t> 37—a (21>
s=1 s£0=1
y(t) = Cz(t)+ Dyd(t) + fo(t), (22)
where
Opp I, Op,(n.—2p)

A= Op—1p A12L2z Op—1,(n-—2p)

Onz —2p,p Onz —2p,p I nz—2p
42 43
OLP ‘Anz Anz

C=|1 Op,(nrp) J

A2 ¢ RP=Dxp p12 ¢ RIxp ASS ¢ RIX(na=20)
B ¢ Rwxl Bl ¢ Rwxl B2 ¢ RwXl
By € R»=*1, B} e R™*!, B € R™*,
By € R=*1, B; € R™x, BJ%S e R=x1 T ¢
R™>P, Tt € R%*P, T? € R"™*P, T3 € R"=XP

(s =1,2,...,q), I''2 € R"*P qnd I'}} € R"=*P
are defined as below
+1 +2 2
Yot pp1 o gﬁl
p+1 p+2
AQQ _ 7p+2 ﬁ)/p+2 cee 7p+2
nz . . . !
1 2 2
’ng 1 75;; JRERER 725—1
A2 =R AR
21 2p+2
Afi = [ 'Yn€+ 'Ynlz)+ e '725 ] )
[ M,B ] [ 0p1
M>B Hg,1)sB
: Hp,,_1)sB
M,.B | Hn.sB |

O2p,1

<Z§:1 V{2p+1)ij> B

5N
O
Il

(Z? 1 V%ZSMJ)B

[ MBy 0p1
M;By H(p+1)sBd
Bd = MgBd s Bés frg E ,
: H(nz—l)sBd
L anBd i ansBd

02p.1

9 <Z§=1 V€2p+1)ij>Bd
Bds = . I

( 2 1ynst)Bd

[ MB; ] Op.1

M; By Hpi1)5 By
Bf = M?’Bf ) B}S = 5
: H(nz—l)st
| M,.By | | Hu.sBy |
i 02p7 -
b
BQ - ( (2p+1) M; )Bf
fs = : ’
(320 vi.oM;) By
[ %174-1 ozf;+1 1
a%p ozgp
T(p+1,1) T(p+1,p)
. -
O3pi1 L
o
| D(ns, 1) T(n.,p)
where
2p
CGj) = [MA= Y ofa]
k=p+1 J

Ny
D(ns,§) = [MnZA— 3 yf;szL
k=p+1 7
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1
Bips1)s

5(12;))3
I'l(p+1,1)

Fl

F; (2]7 - 17 1)
1
B(2p+1)s
1

I'l(n,,1)

where

Pli.j) = [Mid+ HigA -

Nz
P;(TLZ,]) = [anAs"'ansA_ Z ’Yﬁszs}L

Op.1
[H(pﬂ)sfls} o

[H@p*l')sAS] L1

r’=
: I'3(2p,1)

B€p+1)s

4
Biap)s
Il(p+1,p)

I''(2p—1,p)

ﬁ;(02p+1)s
hes
Fi (nz,p)

2p

k=p+1

k=p+1
Op,l

[H(p-é—l)sAS} Ly

|:H(2p71')sAs:|
I'2(2p, p)

Lp

Z 'szHkS}L

J

J

12 _
Fsi -

(Srdan)ad, |

Proof. By taking the derivatives of (12), we ob-

tain the following

Zi(t) = Myi(t)

= M;(Ax(t) + zq: Asa(t — 75).
+Bu(t) + de(st_)1+ By f(t))

= M;Az(t) + M; Zq: Asx(t —75)

s=1
—I—MiBu(t) + Mind(t) + MiBff(t)

I3(2p+1,1) I3 (2p+1,p)

= zigp(t) + Yol yi(t) +
j=1

q P
+ Z Z Bgi—\—p)syj (t - TS)
s=1j=1

-I-MiBu(t) + Mind(t)
—}—MiBff(t)J =1,...,p,

(' ). - 1p)
(n27) F(?’Lz,p) A

F2(2p,) = |HiappAs - fum Mk} }
p k=1 p (23
2 k
e {HWA +<zfz >A ;V(Hl)sMkhf zi(t)sz(t)+Zq:Hisdc(t—rs)
[2(ns,) = [Hosds + (S v M) A !
- T2£+1( b1 Vép-l—l)sMk)_"'
—73:?( ileﬁstk)] .
i=1,2,...,p,

O2p,1
K =1 Vépﬂ)sM’“)AS] Lj

q
= M;Ax(t) + Y (M;As + Hi A)
s=1
xz(t — 75) + M;Bu(t)

+M; Byd(t) + M; By f(t)

q
+ Z HisAsz(t — 275)
s=1

+2His[ Z Apz(t — 75 — 1)

s=1 s#l=1

(O
Ly j=1,p

https://doi.org/10.52111/qnjs.2021.15507
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q
+> " Hi Bu(t —7y)

s=1
+ zq: Hisde(t - Ts) + zq: Histf(t - Ts)
s=1 s=1
2p 2p
= Y lm+ [MA- Y Al
j=p+1 Jj=p+1
x[pa(t) wa(t) .. yp(t)]T
[ZMA Hj A — Z VI H }
J=p+1
[y (t - TS) <o yp(t - Ts)]T

)
2

H; A
1
q
Z } [y1(t =75 — 70)

fi Ma i Me

y2(t —Ts —Ty) Yp(t — 75 — TE)]T
+M;Bu(t) + M;Bqd(t) + M; By f(t)

q q
+ Z H;sBu(t — 15) + Z H;sByd(t — 75)
s=1 s=1

q
+> Hi Brf(t— 1),

s=1

i=p+1,...,2p—1, (24)

q

22p(t) = MQpi'(t) + Z H(2p)sj3(t - TS)

s=1

= zop41(t) + Z a%p+1yj (t)

q P

+ Z Z ﬂ€2p+1)syj(t =)
s=1 j=1
q ' L
+ [Z Heagpas = (3 i3 )| L
s=1 j=1

yp( — 7))’
-I—MQpBU( ) + Mngdd(t) + Mngff(t)

q
+ > Heap)sBu(t —75)

s=1

As (e =2m) gyt = 2m)"

q
= MZA ‘|‘ Z MA + HHA):I:(t - 7_5)

S

_Q

S=

1
p
+ (HiAs+ > vl M) A)a(t — 27,)
1 J=1

Agx(t — 375)

p .
(Z v M;

j=

st[zq: eﬂﬁt—Ts—Te)}

(

+M1‘Bu(t) + Mind(t) + MiBff(t)

_|_
[M]=
N~—

V)
I

—

—

+
MQ

1

Vo)
Il

+
M=
.ME

I/ijij> [ Z Apx(t — 275 — Tg):|

1 s#l=1

@
Il
—_

<
Il

q
+>  HiBu(t —7y)
s=1
q
+ " Hi Byd(t — 7,)
s=1
q

s=1 j=1
q
+ 3 (Y vy Badt - 27,)
s=1 j=1
a
+ 3 (vl Byt - 2m). (26)
s=1 j=1

From (10)-(11), we have for i = 2p,

2 +1,...,n,— 1,

M;Az(t) = My q12(t Jrzaz Ly, (27)

https://doi.org/10.52111/qnjs.2021.15507

Journal of Science - Quy Nhon University, 2021, 15(5), 55-74 | 61



SCIENCE

QUY NHON UNIVERSITY
(M'A + HisA)z(t — 75) = H(jp1)sz(t — 75)
+Z’8]+1 yJ

Substltutlng (27)-(28) into (26) and using
(15) - (18), we obtain

)+ Z iyt

- 7), s=1,2,...,q. (28)

- ZH—I

a q
T Z Z%H) Yt —7s) + Z HisAs
s=1j=1 s=1
p p
* (Z VZJSMj)A B <Z V€z+1)sMJ>
Jj=1 j=1 I
[yi(t—27) ... ypt—27)]"
¢ P
()4 -5
s=1 j=1
Yo (t — 375) yp(t — 37)]7
7 q
"’{Z Z HisAf} it — 75 — 1)
s=1 s£l=1
y?t_Ts_TZ) yp(t—TS—Tg)]

yp(t — 275 — TZ)}T

+M; Bu(t) + M;Byd(t) + M; By f(1)

q q
+ Z HisBu(t — 75) + Z H;sBad(t — 75)

s=1 s=1
q q .
+ Z stBff(t B TS) + Z(Z Vz?ij)
s=1 s=1 j=1
q p
ut — 27) + Z(Z ygij)de(t ~or)
s=1 j=1
q p !
z(zstJBff (t=2n),
s=1 j=1
i=2p+1,. - 1. (29)

From (26), we have

Zn, (t) = M, Ax(t)
q
+ Y (Mo As+ Hy A)x(t - 7,)

s=1

https://doi.org/10.52111/qnjs.2021.15507

+ q (Hp.sAs +Zun , z(t — 2r,)
s=1

+i(i v M; ) Asa(t = 37,)
s=1 j=1

+ d ans[ Zq: Az t—TS—Tg)}
s=1 sl—

+ i(i V%stj> { Z Ag(t — 275 — Te)}

1 s#l=1
+M,, Bu(t) + M, Bqd(t) + M, Bsf(t)

q q
+Y HoBul(t—7) + Y Hy o Bad(t - 7,)
s=1 s=1

a P
+ Z(Z V%ZSMj)Bu(t — 27;)
j=1
P

M ) Bad(t - 27,)

T i(z V%stj>Bff(t - 275). (30)

From conditions (19)-(20), equation (30)
becomes

an E fYnz Z]

j=p+1
My, Bad(t) + M, By (1)
q

+Y  Hy.Bu(t—1.)
s=1

q
+Y  Hy Byd(t - 7)

)+ M, Bu(t)

s=1 j=1
q .
+y (Z uglstJ)de(t —o7,)
s=1 j=1
q p ]
3 (Y v M) Byt - 2m)
s=1 j=1
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HMa= 3 a0 ) )
J=p+1
q ns
+ [Z anAs + ansA - Z ’YZ,ZHjSi|
s=1 J=p+1 -

a(t—7) yalt — 1) yp(t — 7)]"

p
+ ZansAs + (Z V%ZSMJ)A
s=1 j=1

Nz p

- Z . (Z ijsMk>

j=p+1 k=1 .

X [yl (t - 27—5)

(=]

i {i i H”zsAf} ot =7 = m)

s=1 s£l=1

Yot —71s— 1) ... Yp(t—75 — Tg)]T
a q P

+ [Z > (Z Vf;stj>A4 .

s=1 s£l=1 j=1

it =215 — 1) ... yp(t—27 — Tg)]T.

Finally, (23)-(25), (29) and (31) can now be ex-
pressed in the form (21)-(22). This completes
the proof of Theorem 2.1.

In the following, we will solve unknowns in
Theorem 2.1. For this, we first express (13)-(18)
into the following compact form:

anan = Ynz’ (31)

where

2
xnzz[xiz X2, o Xhr ]

T
+2
X

+q—1 p+q
yrret et ],

Xo. = | X1 X2,

Yo, = [ Ynlz

where, X%, , Xi (i =1,2,...,p+2) are as de-

fined below

o= [l ] (32)

ny )
’yg-ﬂ-l T ’Ypf—l
12 _ 1 P 1
02 = Bl -+ B Bl
4 /31 4
(p+1)2° Flp+l)g  Fp+lg |
o= (33)
21 _ a})+2 o . a£+2
Xn, = p+1 2p ’
L Tp+r2 0 Tp2
i ﬂl D
12 _ (p+2)1 " Pp+2)1
X'nz - 61 P ’
L P(pt2)g 0 Fp+2)g
= [ e (34)
X(pfl)l a%ﬂzl agpfl
ny )
i ’ngfl 72571
roal
(r-1)2 5(21)71)1 ﬁ(12p—1)1
anz = coe 6(2,;,1)(1 >
p
(2p-1)q
2 2 z
Xsz = [ n(z ) n(z p+l) X%Z )
(35)
1 P
. Blopn - Blopn
Xﬁg P) = . ﬁgp)q ,
ﬂ(2p)q
B! |
(2p+1)1
ﬂp
p(2p+1) _ (2p+1)1
Xn,, Bl )
. (2p+1)g "~
B(2p+1)q J
1 P i
e R
hneq e Pnea |
ay, a3,
ittt =1 b, ap |, (36)
oz%z_l aszfl
i Xp+2
AR BN pr2 | (37)
| Xn.(2pt2) - Xnens

https://doi.org/10.52111/qnjs.2021.15507

Journal of Science - Quy Nhon University, 2021, 15(5), 55-74 | 63



SCIENCE

QUY NHON UNIVERSITY

- ) -
, Viop+1)1 Yiep+i)1
p+ _ 1
Xn.(2p+1) = o Pt
P
L (2p+1)g  J
. ) -
Viop+2)1 Yiop+a)
P
P2 . (2p+2)1
Xn.(2p+2) = 1
(2p+2)q
P
L Yip+2)qg |
p+2 _ 1 2 D
annz - [ Vnzl Vnzl Z/nzl
1 2 P
Vn.g Vn.g -+ Vnug } ,

1
X :[Xrlzzl XrlzZQ}v

Nz

1 - 11
anl = [ an Op(q+2)’(q+2)2¢(n,p)

0
p(g+2), AL (p_py |

Lo 11 129 124
Xio=| XL, X% X

ny2

Op(+2).(n=~2p)g2 (n—p) } ?
Xtz = Op(q42),(n2—2p+1)a(n—p):
12
X023 = Op(g+2),(n—2p+1) (= 1)(n—p)>

12
X522 = Op(g+2),(na—2p+1) (n—p)>

p—1 _ [ yp-1 yp-1
an - X X’n22 ?

nyl
—1_ 1o
Xnat = | Vp(g2), @2t (p_p)
11
Op(qﬂ),%(n,p) Xn. } :

-1 [ —1)1 —1)2
X2 = I Xff,z : Xfflg 2

(p—1)2

Xni2 * Op(g+2),(n-—20)g2(n—p) ] ’
(r—11 _

Xni2 = Op(g+2),(n.—2p+1)g(n—p)>
(p—1)22 _

Xni2 = Op(g+2),(n.—2p+1)(g—1) (n—p)>
(r=1)2q _

Koo " = Op(gr2).(n.—2p11)(np):

— p p
Xho=| xb, XD, |,
r
anl = [ O(nz—2p+1)pq,(q+2>2<q+1)(n—p)

0
(n2—2p+1)pq, L2UITD (1, _p)
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(38)

(39)

(40)

0
(n=—2p+1)pq, (T (—p) | 5

Xpp= [ e X
O(n=~2p+1)pg,(n=~2p)a%(n—p) } '
xprt= | XX (41)

p+1 0
Xno1 = { (n-—2p)p,T2UatD ()

0
(nz—2p)p, 2L (p) | 5

ng; _ [ X7(£+1)p X7(£+1)(p+1)2

(p+1)(p+1)

X * Otn—2p)p,(n-—2p)g2 (n—p) ] ’

p+2 p+2

an(2p+1)1 an(2p+1)2
p+2 p+2
xprt2 — n.(2p+2)1 nz(2p+2)2 (42)
Nz . . ?
2 T2
zznzl X’rl;znZQ

p+2 — 10
na(2p+1)1 [ pq,i(q”);q“’(n—p)

0
pq, 2T () |

p+2

Nnynyl

=10
|: pq,(q+2)2(q+1)(n—p) s

0
pq,iu’“);q“) (n—=p) |°

p+2 _ (p+2)p
X Gpr1)2 = [ ns(2pt1)2
(P+2)(p+1)g 3 (p+2)(p+2) ]
nz(2p+1)2 n.(2p+1)2 ’
p+2 _ (p+3)p (p+3)(p+1)
nz(2p+2)2 [ an(2p+2)2 an(2p+2)2 ’
(p+3)(p+1)q 3 (p+3)(p+2) ]
n(2p+2)2 n.(2p+2)2 ?
Xptr, = X, xpe

X"(P+1)q X”(P+2) :| ,

nyn2 Nyny2

where

X1 g Rrlat2)x EEE (ip)
i(p+1)e

Xoin "= Opg (na—2pt1)(g—t41)(n—p)

i=p+2,...,n, j=2p+1,...,n,,

£=2,3,...,q,
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X e R(nz—2p+1)pqx(nz—2p+1)q(n—17)7
Xﬁ(IH‘l)Z c

R(n=—2p+1)pgx (nz—2p+1)(¢—¢+1)(n—p) 7

(=23,...,q,
X (1) (p+1)e

Nz

c R(nz—2p)px(nz—21H-1)(q—4+1)(n—p)7

(=2,3,...,q,
X P+Hp ¢ R(nz=2p)px(nz=2p+1)q(n—p)

Nz ’

ip pgx (n.—2p+1)q(n—p
XP,€R ( Ja(n—p)

1=p+2,....n, j=2p+1,...,n,,

Xi(pZQ) c RPax(n==2p)¢*(n—p)
nzj !

i=p+2,...m j=2p+1,...,m,

are defined as below

X’V]-Li = [ X}Lh X}LiQ } ) (43)
where
i 2 Oopgtn-p) O2p(g-1)(n-p)
Ny A 0Ol @% ’

X“2 = O2p,(g-2) (n—p) O2p,n—p
Nz (I)% (I)é—l
xwo= [xmoxm ] @
where
_ . o2 ;
q,q(n—p) o
X£f1 = haan—p) Opgatn—p) |,
L Opggn—p) Opgg(n—p)
Q8 L Qe ]
0? . Qa2
1 2—2p—1
X, = Q S Qe
| Opggn—p) - ot ]
+1 +1 +1
R P P N )
where

+1
X =

¢, o,

1
Opq,(q—“l)(n—p) Py
Opq,(q—ﬂ-l)(n—m Opqv(q—4+1)(n—p) )

L Opq,(q—€+1)(n—p) Opqy(q—“l)(n—p) J

+1
X =
B 2—2p+1 7
7 @?flf;
2 Nz —2p
7y (1)5712 .
1 Nzy—ap—
(bf—l (bf—l Y )
1
L Opg,(g—£41)(n—p) P
X7(112+1)p - Xﬁ’il)p Xﬂz:;rl)p . (46)
where
Op,q(n—p) E!
xetp _ Opatn—p) Opg(n-p)
nyl - . . )
| Opg(n—p) Opa(n—p)
i EZ En272p
( ) =1 =n,—2p—1
+1 = =
XniQ . = : !
i Op,q(n—p) =!
+1)(p+1 +1)(p+1 +1)(p+1
Xﬁi Jp+1) Xr(til (p+1) Xv(z€2 )(p+1) 7
(47)
where
+1)(p+1
szil )p+1) _
Op,(q—£+1)(n—p) Ty

0p7(q—€+1)(n—p) 0p7(q—€+1)(n—p)

9

Op,(g—t+1)(n—p)  Op,(g—£+1)(n—p)

+1)(p+1
X7(£2 )(p ):
=2
v? \112112 Pl
1 Ny—zp—
\IIE_1 ‘11571 P
1
0P7(Q—Z+1)(”—P) ¥
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p  _ +2 +2
X7(£+ )P — {szil p XgiZ )P ; (48)
where
r oy (p+2)p
an(2p+1)2
X(P+3)P
XT(LPH)p _ nz(2p+2)2
np
L NyNy2
0pq7q(n—p) \%
0 0
+2 pq,q(n—p)  Vpg,q(n—p)
Xr(il "= . . J
L Opg.atn—p)  Opg.atn—p)
Opg,g(n—p) Opg,g(n—p)
\Y ... 0 _
+2 pg,4(n—p)
Xr(zi2 "= . . . J
L Opqﬂ(n—p) \%
XT(LP;+2)(1)+2) XflziJIrQ)(er?) X?(11242-2)(p+2) 7
(49)
[ v (+2)(p+2) ]
nz(2p+1)2
(p+3)(p+2)
X (P+2)(p+2) nz(2p+2)2 7
n(p+2)
L NyN,2 ]
11 Opg,g2(n—p)
0,, .2 II
+2)(p+2 1q,q%(n—p)
XT(LZZl )p+2)  _ : : 7
L Opg.q2(n-p)  Opg,q2(n—p)
Opg,q2(n—p)
0,, .2
+2)(p+2 Pg:q*(n—p)
XT(LI;Q )p+2)  _ .
II

q(g—1)

In (32), er e RIX(g+1+55=)(n—p) (i =
1,2,...,p — 1), Y2 e Rx(=pPq ypHl ¢
RIX(-p)*(a-1)  yPr2 ¢ RIX(n-p)*(e-2)
Yt e Rixen? Pt — o) o

are defined as follows

n:—2p)(n—p)

Nz

Y, = |:Y7§21 erzQ}a (50)
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ypra-2 _ 52

2 vl
Yi _ Xz 1/;1
nyl Y]
il
1
Yi Zi,l?
ny2 Zl
1,23

y (p+1)(n—p) — { Z;IZP

Nz

v = v

n—p
Zp,lq } )

y (2 (n=p) } 7

Nz
(53)
Yrgf-*-?)l - { Zyoz Zpos o Loy ] ,
Ve = [ gz ],

Y$+q—1 - { y(pra-1)1

Nz

y =11 _ 71

nz p,(q—1)q’

p:(q_l)q’

y(pte=1)(n—p) _ 7n—p

Nz pv(qil)
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From (31), a solution for y,, exists if and
only if

rank [ );"“ ] = rank[ X, } . (55)

Nz

Next, we express (19)-(20) into the following
form

gnZan = Tnz’ (56)
where
(n, = [a}u Qb yﬁjl vﬁj},
(57)
an = |:an1 ZnZQ an3 an4i|7
(58)
. Py -
X
Z (2p+1,n—p)
Zna = | Zh.2p+2,n-p) |,
Z}Lz(nz—l,n—p)
Zyllz(nZ)n_p)
- ?i -
X,
Z:(2p+1,n—p)
Zno = | Zy (2p+2,n-p) |,
Z%z(nz—l,n—p)
an(n2’7n_p)
- ?; :
X,
Zn23 = Zgz(2p+27n_p) ;
Z%z(nz—l,n—p)
an(n27n_p)

ZEN(2p + 1, — p)

Zna = | Zi@p+2n-p) |,
Z?le(nz - ].,TL - p)
Zgjl(nm n-—= p)
T, = |T. 12 T3 ... T (59)

In (58)-(59), T,. and Z; (k,n — 1) (s =
2,3,...,q+ 1), (k=2p+1,2p+2,...,n,) are
defined as follows

p
1 _ yn.—2p+2 J ny—2p+1
T = X! [ g,

j=1

J n—2p J 3
+a2p+1Xj +...+ aanXj

+azlz_1X]2> , (60)

D
_ e —2p+1 _] Nz —2D
(MDY (a%yj(sl) +
j=1

| pna-2p-1 vl
+Oé;p+1}/]'7(1571§) + ...+ Odlz—l}/‘vj(sfl)

j ny—2 j 1
+6{2p+1)(871)xj P+ 622(51)Xj>,

(61)

p
2L k) = - o

j=1

j k—2p—1 j 1
+a2p+1Xj +...+ak_1Xj ,

(62)
Tk—2 & i xk—2p—1
Z:;z (k,n—p) = Y;J(s_]f) - z; (aépy}(s—ll))
]:
| ok—2p—2 5
+a§p+1Yj(s_§’) +.. 4 a{cle;(s_l)
i k—2p—1
Hopinye-nyX; et
j 1
6€k1)(sl)Xj> : (63)

Since Z,, and T, are two known constant
matrices, it follows form (56) that, a solution for
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(n. always exists if and only if

rank [ inz ] =rank [ Zn., } . (64)

Nz

Algorithm 1

Step 1: Check if condition (55) is satisfied or not.
If so, obtain x,, =Y, X,I .

Step 2: Substitute is and ai into (58)-(59) and
obtain Z,, and T,,. Check if condition (64) is
satisfied or not. If so, obtain ¢,, = T,,, Z, .

Step 4: From (7)-(11), obtain the state transfor-

mation (12) and (21)-(22).
3. THE DESIGN OF FAULT ESTIMATOR

Consider the following observer-based fault de-
tection filter

AZ(t) + Bu(t

A(t) Z Blu(t —7y)

+
[]=
G3
» Do
N
=
I
DO
&
4
—
=

w
Il
—

+
M@
S
@
=
|
o
_'_
if~]=
’1
53

w
Il
—

+
[]<
—
» W
<
—
~
|
w
N
~

w»
I
—

+
NE
M=

-
5

\]

I

S

w
I
—
V)
LS
~
Il
-

+

M=

NE
&

+
h
—
Ned
—~
~
S~—
[
N
— w
<+ ~
= <
o~
\Y
o
N
—
(@)
Ut
S~—

w
Il
—

s
X

[
2>
—
~
S~—
—
[=2)
(=)
SN—

y(t) =
flt)y =

where Z(t)

<
—
<
—~
~~
~
|
<>
—
~~
~—
Nt
—
(@)}
-~
—

€ R", §(t) € RP, f(t) € R" are the
state, output and fault estimation vectors, re-
spectively; L and V are observer gain matrices
to be determined. Define

We have the following estimation error system

&(t) = (A — LO)e(t) + Bad(t)

https://doi.org/10.52111/qnjs.2021.15507

q q
+Y Bdt—7)+ Y Bidt-2r)
s=1 s=1

q
+Bef(t)+ ) B f(t—1.)

s=1
+Zzs’f f(t—2r)
—LDdd< ) = LD f(t), (68)
r(t) = VCe(t) + V Dgyd(t)
+(VDy = 1)f(t). (69)

Let us now denote

i=A-1LC, C=VC,
Ba=|Bs Bl ... By B, .. B |
By =[5 B, B B .. Bj%q},
Ir=|10 .. 0],
Di=|Ds 0 ... 0],
Dy=|D; 0 ... 0],
Dy =VD4 Dy =VD; — 1,
dW)=[ dit) dt-m) ... dit—r)
T
d(t — 2m) d(t — 27,) }
Foy = £ fe-n) ... flt—7)
T
fle—2m) .. f(t-2m) |

Then we can rewrite system (68)-(69) as

é(t) Ae(t) + Byd(t) + By f(t), (70)
r(t) = Ce(t)+ Dad(t) + Dy f(t). (71)

In the following development, we will design
an H,, fault estimatior, i.e. to find matrices L
and V such that the error system (70)-(71) with
d(t) = 0 and f(t) = 0 is asymptotically stable
and, for given v > 0, A > 0 the following perfor-
mance is satisfied

G, Al™ <, (72)
1Gralle < A, (73)
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where G, 7(s) = C(sI — A)7'By + Pf
s

and G, 3(s) = C(sI — A7'By + Dg
Since [|d(t)|l, = V2¢+1||d(t)||L, and
1F O, = V2q+1[f(t)||z,- Note that,
1G AL = Gyl &" and

1Grdlleo = g Grall:

The following lemmas are essential for the
proof of our results.
Lemma 3.1. Consider a transfer function ma-
triz G(s) = C(sI — A)™*B + D. Letting a sym-
metric I1 be given, the following statements are
equivalent:

(a) The finite frequency inequality

G(iw)
1

G(iw)
1

11 <0, V|w| < @. (74)

(b) There exists Hermitian matrices @ > 0,
P of appropriate dimmension such that
T

A B -Q P A B
I 0 P w?Q I 0
cpl" [c b
1y g 0I<0.(75)

Lemma 3.2. Consider a transfer function ma-
trir G(s) = C(sI — A)™'B + D. Letting a sym-
metric 11 be given, the following statements are
equivalent:

(a) The infinite frequency inequality

Gliw) |
AR

(b) There exists a Hermitian matriz P > 0
of appropriate dimmension such that

G(iw)

;| <0 VweR. (76)

T
A B o P|l[4 B
I 0 PollI o
cpl [cop
2o I o 1| <0 @

Lemma 3.3. Given a symmetric matriz ® and
two matrices I' and A, there exists a decision
matriz X, that satisfies

d+TXA+(TXMN <0 (78)

if and only if the following conditions are satis-

fied
T
rtort’ <o, tTer™ <o, (719)

Theorem 3.1. For given matric R =
[O 1 O}, scarlars v > 0, A > 0, w > 0,
the error system (70)-(71) is aymptotically sta-
ble and performances (72)-(73) hold if there ex-
ist Hermitian matrices QQ > 0, P, real matrices
W >0, X and V' with appropriate dimmensions
such that the following LMIs hold

Q@] <0 (80)
[Qz Q4}<0 (81)
where
Q P-W
o= "

Q=w’Q+ATW + WA

—CTx"T - xcr
[ 0 0
WBy— XDy  CTVT
Q2 - 2[ ETVT TT }
- VoA

| * -1

[ ATW + WA -CTXT — XC
Qs = * ;

%

' WB,- XD, CTvT
Q4= DivT N

i * -1

Proof. We first prove that performance (72) is
satisfied if LMI (80) holds. Applying Lemma 3.1
I 0

d letting 1T =
and letting 0 2T

, then inequality

(72) becomces

G, 7(iw)* G, j(iw) = 7*I <0, V|w| < .
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That means performance (72) is satisfied if and
only if there exists n, X n, Hermitian matrices
Q@ > 0, P such that

~ ~ T ~ ~
A By -Q P A By
I 0 P w?Q I 0
C Dy C Dy
0. (82
0 I 0o 1 |° (82)
, AT T 0
By denoting Y = AT 0 I] and
—-Q P 0
d = P @*Q+CTC "Dy ,
0 DiC  DiDj—~I
(82) can be written as
vovyT <o. (83)

On the other hand, by denoting M =

0 0 I
be seen that Y = M' and N is the null space
of R. Hence, from Lemma 3.3 we see that (83)
and inequality

T
- - T I 00
-1 A Bf} andN:[ ] , it can

NTON <0 (84)

hold, if and only if there exists an n, X n, real
matrix W > 0 such that

d+MWR+ (MWR)T <. (85)

We can express (85) in the following form

[ P P } <0 (86)

where

e P-W
P = « WQ+ATW+WA+CTC |,

* *

[ 0
P, = | WB;+C"Dy

i E?Df—WQI

By letting X = WL and using Schur®, it
follows that (86) is equivalent to (80).

https://doi.org/10.52111/qnjs.2021.15507

Next, we will derive sufficient conditions
ensuring the asymptotic stability of the error
system (70) - (71) and the performance (73).
By applying Lemma 3.2 and letting II =

I
0 _;)2] , inequality (73) becomces
G, i(iw)* G, g(iw) — N*T < 0, Yw € R.

That means performance ||G,j||lc < A is sat-
isfied if and only if there exists a n, x n, real
symmetric matrix W > 0 such that

~ ~ T ~ ~
A By 0o W A By
I 0 W 0 I 0
¢, 1" [é b
d d
+ 0 7 0 I <0, (87)

which is equivalent to
ATW +WA WBy CT
% -\ DI | <0. (88)
* * -1

Let X = WL, it follows that (88) is equivalent

o (81). If (81) holds, then ATW + WA < 0,
which implies that system (70)-(71) asymptoti-
cally stable. Note that, we can solve the follow-
ing optimization problem in order to get optimal
fault estimation:

min-~y, s.t.(80), (81). (89)

Remark 1. The results of this paper can be
extended to the case where the time delays T
(s =1,2,...,q) are time varying, that is, 7s(t),
7o < 15(t) < 7 for all t > 0, where 17 > 0,
77 > 0. Indeed, we can approzimate terms
xs(t—75(t)) by xs(t—T77F), where 7 = # By
this way, systems with time-varying delays can
be reduced to systems with time-invariant delays
of the form (4)-(6), where 75(t) are replaced by
T foralls=1,2,...,q.

Remark 2. Let us consider the case where the
output vector of system (4)-(6) is delayed, that
is, y(t) = Ca(t) + Cgx(t — 1) + Dyd(t) + Dy f(t).
For this case, we introduce an integral output

vector z(t) = gt"y(ﬁ)dﬁ such that 2(t) = y(t) =
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Ca(t) + Cax(t — 7) 4+ Dyd(t) + Dy f(t). By de-

noting ((t) = { ;8

, we obtain an augmented

system of the form (})-(6), where state variable
is (t) and the output is not delayed. By this
way, we can extend the results of this paper to
systems with delayed outputs.

4. A NUMERICAL EXAMPLE

Let us consider the motivated fourth-order ex-
ample in Section 1. According to Step 1 of the
Algorithm 1, we obtain matrices X5 and Y5 from

X
5] — 34 =
Ys

rank { Xs ], condition (55) is satisfied and we
get

equations (38)-(54). Since rank

v =[x 8 ]
=[x o 8 8 d |
W= ol a3 af of |

— [ 21 08333 -1 —08333 ],

Xé2 = I 5%2 5??2 ﬁ%&; 5?%3 ]

— [ -3 13333 -3 -33333 ],
X§5 = I 5&1 ﬁfl ﬂzb 522 |

- -8 -3 4 3},
X§6 | Bél Bgl 5%2 55%2 |

= _—1.636 5.2082  0.5657 —0.8032},

¢ o= [of o= 10561 —2685 |,

[ 1 9 1 o]
Vsi Vs1 Vs2 V52}—0174~

Next, in Step 2, by substituting A},

Bi1, Bias By Bsro Ba1, Bra B3y, af and of
into (58)-(59) and obtain matrices Z5 and

Z

Ts. Since rank =2 = rank[ Zs },
T

condition (64) is satisfied. Hence, we ob-

tain (5 = {a% ag 72 7?; yg} =

—1.2007 —0.6244 -1.2007 —0.6244 0.0823 |.

Then according to Step 3, we obtain

21(t) = x1(t),
2(t) = xa(t),
() = —0.166Tas(t) + 221 (t — 1)
+ 0.3333z2(t — 1) — x3(t — 71)
— 2x4(t — 1) —x1(t — 12) — 0.666725(t — 79),
alt) = 2.0561z1(t) + 3.68352s(t) + 6a1(t — )
+ @t —m) — 3w3(t — 1) — 3xa(t — 1)
— z1(t — 1) — 0.6667z2(t — 72),
() = 2.8281a1(f) + 2.2518(1)
+ 8.213z1(t — ) + 1.3688z2(t — 1)
4106523t — 1) — 3.1626z4(t — 71)
— 4.1065z1 (t — m2) — 2.737Txo(t — 72).

And then, a transformed system of the form
(21)-(22) is obtained, where

1000 0],8%:6%:831:

01000
Bi, =B} =B, =051, 19 =T§ =TH =T3; =
0572 and

00 1 0 0
00 0 1 0
A= 100 -1 -08333 0 |,
00 0 0 1
|0 0 —1.2007 —0.6244 0.0823 |
C TN
2 0
B = | —03333 |, Bi=| —83333 |,
9.4230 ~13
| 7.3317 | —14.019 |
0 ] 0.1
0 0.2
By = | —2.3333 | ,By=| —0.0333 |,
-7 0.9423
| —9.5818 | 0.7332
C S
0 0
By = | —0.8333 |, By, =| —02333 |,
-1.3 —0.7
| —1.4019 | | —0.9582 |
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By

1
By,

Iy

I

Iy

11
F12

https://doi.org/10.52111/qnjs.2021.15507

| 0.9109 |

1.1 [
1.2
-02 |, B =] -15
6.6818
| 5.8131 |
0
0
-19 |,
5.7
~7.8023 |
-1 —0.8333 |
—1.0561 —2.6835
1.5467  2.7362
—~1.2007 —0.6244
04748  1.3382 |
-3 —1.3333 ]
-8 -3
17.6667 11.8333 |,
—~1.636  5.2082
15.322  10.7619 |
-3 —3.3333 ]
4 3
—-3.3333  —2.1667
0.5657  —0.8032
-10.4279 —9.5159 |
0 0
0 0
1.3333  —2.6667 |,
4 -8
5.4753 —10.9506 |
0 0
0 0
3.3333  3.3333 |,
10 10
13.6883 13.6883 |
0 0
0 0
—5.6667 —5.6667
—17 —17
-23.2701 —23.2701 |

11 _
FQI -

0 0

0 0
2.3333 2.3333

7 7

| 9.5818 9.5818 |

On the other hand, we have the following

matrices

I;=

Dy =

1000 0],
0.1 0 0
0.2 0 0

—0.0333 —0.8333 —0.2333
09423  —13  —0.7

| 0.7332  —1.4019 —0.9582
1.1 0 0 0
1.2 0 0 0
02 -15 -19 0

6.6818 —03 —57 0

| 58131 0.9109 —7.8023 0

[01 000 0]

02 000 0]

(03 000 0

04 000 0

O O O O O

O O O O O O O O O O

Set A = 0.5. Solving the optimization prob-

lem (89), we obtain Yy, = 0.7 and

5. CON

[ 15.1993
~5.8977
L= 53.7296
—47.5788
| —35.4247

vV=|o95164 —4

CLUSION

—37.7022

—4.1548 ]
21.5871

118.5215
102.6286 |

7344 | .

A novel method has been proposed for comput-

ing state transformations of time-delay systems

in this paper. The H, fault estimation problem

for time-delay systems has been re-formulated

as the corresponding problem for linear time in-

variant systems. A numerical example has been

given to demonstrate the obtained results. In the
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future, we will extend the results of this paper to
address the problem of H, fault estimation for
interconnected systems with time-varying delays
and unknown inputs.
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