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TOMTAT

K thuat IPR (Internally Positive Representation) gitip chuyén bai toan xét ¢ 6n dinh ctia hé tuyén tinh
khong duong thanh xét do 6n dinh caa hé tuyén tinh dwong ma ma tran h¢ sb duoc xay dung tur viéce trich Xuét cac
ma trdn cta hé théng can xem xét. Trong bai bao nay, ching toi trinh bay sy phat trién ciia cach tiép can dua trén
IPR cho mot 16p cac hé ngdu nhién roi rac véi tré thoi gian. Nghién ctru cia chiing t6i ¢6 gang tim mot wdc lugng a
mil cho gia tri tuyét dbi ctia ky vong ctia vecto trang thai. Bé 1am dwoc diéu nay, du tién, ching toi xem xét tinh 6n
dinh mii cia mot hé ngiu nhién roi rac dwong c6 do tré thay d6i theo thoi gian. O ddy ca tinh duong va tinh 6n dinh
ham mii duge xem xét theo nghia ky vong. Tiép theo, bang cach sir dung k¥ thuat IPR, chiing t6i phat trién két qua
thu dwoc cho hé ngau nhién khong dwong. Cudi ciing, chiing t6i dwa ra mét s6 vi du minh hoa cho tinh hiéu qué cua
phuong phap vira phat trién.

Tirkhéa: Internally Positive Representation, wéc liong trang thdi trung binh mii, hé ngdu nhién roi rac, tré bién
thién theo thoi gian bi chan.
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ABSTRACT

The internally positive representation (IPR) technique helps to reformulate the stability problem of non-
positive linear systems into the stability problem of a class of positive linear systems, whose matrices are
constructed from the extraction of matrices of the considered system. In this paper, we present a development
of the IPR-based approach to a class of stochastic discrete-time systems with time-delays. Our study is
devoted to the problem of finding an a-exponential estimate of the absolute of the expectation of the state
vector. For this, firstly, we investigate the the exponential stability problem for a class of positive stochastic
discrete-time systems with time-varying delays. Here, both the positivity and the exponential stability are
considered in the sense of expectation. Next, by using the IPR technique, we develop the obtained result to
a class of non-positive stochastic systems. Finally, a numerical example is given to illustrate the effectiveness
of the developed approach.

Keywords: Internally positive representation (IPR), exponential mean state estimate, stochastic discrete-

time systems, bounded time-varying delay.

1. INTRODUCTION

The IPR-based approach for analyzing the sta-
bility of linear dynamical systems has been pro-
posed by the authors in.'3 It includes two main
steps: (1) Constructing a positive linear system,
whose matrices are designed from the extrac-
tion of matrices of the considered system, such
that the stability of a considered system is fol-
lowed from the stability of the constructed posi-
tive system; (2) Analyzing the stability of the
constructed positive linear system. In five re-
cent years, this approach has been developed
to some classes of linear systems with time-
delays, e.g., continuous-time linear systems with
time-varying delays,*® singular linear systems
with time-varying delays,%® difference equa-
tions with constant time-delays.? To the best of
our knowledge, so far, there has not been any re-
sult which reported on the IPR-based approach
to the stability problem of classes of stochastic
systems with time-delays. This unsolved prob-
lem, therefore, will be investigated in this paper.

Because of a vast applicability in many ar-
eas such as finance, economics, biology, physics,
communication,. . ., the topic on stability analy-
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sis of stochastic systems has been an attractive
research issue for past decades, see, e.g., 0 and
the references therein. Rather than the asymp-
totic stability where guarantees only the conver-
gence of the state vector, the exponential stabil-
ity with a given rate and a known factor can pro-
vide more quantitative estimates, which is often
required in practical applications. Most of ex-
isting results reported on two types of the expo-
nential stability for classes of stochastic systems,
including: (1) p-th moment exponential stability
with p > 2 (in the case p = 2, it is referred
as mean square exponential stability);15719 (2)
Almost-sure exponential stability.2023 In 2014,
Bolzern et al.,'® proposed and investigated the
1-th moment exponential stability (i.e., the ex-
ponential mean stability) for a class of Markov
jump systems. They have also shown that the
estimate of the expectation of the state vec-
tor obtained from the exponential mean sta-
bility is more accurate than the one obtained
from the exponential mean square stability. Re-
cently, the problem of exponential mean stability
has also been developed to some classes of pos-
itive Markov jump systems with/without time-
delays.?*26 However, it seems that, so far, there
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has not been any result reported on the expo-
nential mean stability problem for classes of non-
Markov jump stochastic systems.

Within ten recent years, a considerable num-
ber of research attention has been paid to the
problem on stability analysis of classes of pos-
itive linear systems with time-varying delays.
There are two popular approaches, including: (1)
the approach based on the solution comparisons
between a positive system with time-varying de-
lays and the one with constant time-delays, 2737
and (2) the approach based on the direct com-
parison between the system solution and a con-
structed exponential function.®” 42 With regard-
ing to the topic on the stability analysis of pos-
itive stochastic systems, almost existing works
have reported only on classes of positive stochas-
tic systems of the Markov jump type. Because
coefficient matrices of a positive Markov jump
system belong to a predefined set of Metzler
or nonnegative matrices, under a positive ini-
tial condition, its state vector is always posi-
tive. 134347 Very recently, Liang and Jin,%? have
considered two other classes of positive stochas-
tic (non-Markov) systems, these are more gen-
eral notions of positivity for classes of stochas-
tic (non-Markov) systems: the positivity in the
sense of probability and the positivity in the
sense of expectation. The former notion means
that, for a predefined threshold, m, between
0 and 1, from any positive initial condition,
there exists a time point such that from this
time point, the probability that state vectors
of the system are non-negative is not less than
the threshold m. The latter notion is used for
stochastic systems in which the expectation of
state vectors is always non-negative for any pos-
itive initial condition. These two notions of pos-
itive stochastic systems have not yet been de-
veloped to any discrete-time or continuous-time
stochastic systems with time delays.

Motivated by these discussions, in this pa-
per, we will consider a class of linear stochas-
tic discrete-time systems with time-varying de-
lays which can be seen as a discrete-time ver-
sion of stochastic continuous-time systems with
time-varying delays and random uncertainties.
An IPR is firstly constructed to deal with the
a-exponential mean estimate for an arbitrary
(not necessarily positive) system. We then de-
velop results about the exponential mean sta-
bility for positive stochastic systems. Under the
effect of stochastic factors, the system is not pos-
itive in the normal sense as in deterministic sys-
tems. However, we will show that under some
conditions on coefficient matrices and stochas-
tic process, the system is still positive in the

sense of expectation (see Definition 4.1 below).
From this property, we will study the mono-
tonicity of the expectation of the state vector
of stochastic systems. As a result, for the first
time, a solution comparison principle for lin-
ear stochastic discrete-time systems with time-
varying delays will be introduced. By using this
solution comparison and a state transformation,
we will derive an a-exponential mean estimate
for state vector of positive stochastic systems. A
sufficient condition for the a-exponential mean
boundedness of positive stochastic systems (in
the sense of expectation) which is based on the
spectral property of the coefficient matrices is
then introduced. This new approach will give
us an estimation with time-varying coefficients.
For the sake of demonstrating the effectiveness
of the IPR approach, we also introduce another
result about the a-exponential mean bounded-
ness of linear stochastic systems which is based
on positive “upper bound” systems. Together
with theoretical results, a numerical example is
also conducted to show that the approach based
on the IPR will give us i) a less conservative
condition for the exponential mean stability of
the stochastic discrete-time system with time-
varying delays than the approach based on an
“upper bound” system, and ii) a more accurate
a-exponential mean estimates of state vector of
the system. Our contributions in this paper can
be summarized as below:

e For the first time, an IPR is applied for
a class of stochastic discrete-time systems
with time-varying delays to derive an a-
exponential mean estimate for state vec-
tors.

e The notion of the positivity in the sense of
expectation is introduced for a class of lin-
ear stochastic discrete-time systems with
time-varying delays. We then prove some
sufficient conditions for stochastic systems
to be positive in the sense of expecta-
tion. A solution comparison between pos-
itive stochastic systems with time-varying
delays is established. This comparison is
then combined with a state transforma-
tion to derive an a-exponential mean esti-
mate for positive stochastic discrete-time
systems with time-varying delays. This is
the key tool for the IPR method.

The paper is organized as below. The next sec-
tion introduces notations, definitions and some
preliminary results. The IPR approach is pre-
sented in Section 3 to derive an «a-exponential
mean estimate of non-positive linear stochas-
tic discrete-timeys stems. Section 4 is devoted
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to positivity and solution comparison principle
of linear stochastic systems. In addition, an a-
exponential mean estimate for positive stochas-
tic systems is also established in this section.
Section 5 introduces another approach to obtain
an a-exponential mean estimate for stochastic
systems which is based on “upper bound” sys-
tems. An illustrative example will be presented
in Section 6 to verify theoretical results. Sec-
tion 7 concludes the paper.

2. SYSTEM, NOTATIONS AND
DEFINITIONS

Notations: N, R™ and Rp, are respec-
tively the set of nonnegative integers, the n-
dimensional vector space and the nonnegative
orthant in R”; e = [1 1 --- 1]T € R™; for two
vectors = [x1 o - @),y =[yr Y2 - Ya]"
in R™, two n X n-matrices A = [a;;], B = [b;j],
x <y (x = y)means that x; < y; (x; < y;),Vi =
1,---,nand A < B (A < B) means that a;; <
bij (aij < bij),¥i,j =1,---,n; Ais a nonnega-
tive matrix if 0 < A; z = y (A = B) means that
y 2z (B = A); p(Ad) = max{|A| : A € 0(A)}
is the spectral radius of A; I, is the identity
matrix of size n. The maximum, minimum of a
finite set of vectors (of matrices) are understood
componentwise. Similarly, the absolute value of
a matrix A (or a vector x) is also understood
componentwise.

Let (Q,0,P) be a basic probability
space. The notation [E( denotes the com-
ponentwise expectation of a random vari-
able ¢ = [¢1 & ---G]T in R, ie E¢ =
[E¢i B¢y ---E¢,)". For a positive integer
h € N, let C([-h,0],R™) be the set of all
functions ¢ : {—h,—h 4+ 1,---,0} — R™. Let
Co([=h,0],R™) be the family of C([—h,0],R™)-
valued random variables on (2, o, P) such that

SE{_hEll?i(l,m,O} ‘E¢(S)‘ < 00, for any Qﬁ() c

eo([_ha 0]7 Rn)

The result in this paper can be easily devel-
oped for linear stochastic discrete-time systems
with multiple time-varying delays. Hence, for the
sake of simplicity, in this paper, we consider the
following linear stochastic discrete-time system
with a time-varying delay

x(t+ 1) =[Ag + £(¢) Bo)x(t) (1)
+ [A1 + &) B1lz(t — ha (), t €N,
z(s) =¢(s), s€ {—h,—h+1,---,0},

where z(t) € R™ is the state vector; &(t)
a scalar random process satisfying EE(t) =

is
b 3
vt € {=h,—h + 1,---,0}, for some £ € R

https://doi.org/10.52111/qn;js.2021.16308

and £(0),£(1),--- are assumed to be mutually
independent; Ay, A1, By and By are four ma-
trices in R™*™: an unknown time-varying delay
hi(t) € [0,h], where h > 0 is a known integer
and ¢ € Cy([—h,0],R™) is an unknown random
function satisfying

|E¢(S)| = 5(8)7 s € {_hv_h+ 17' o 70}7 (2)

where ¢ € C([—h, 0], 0.4) 1s a known function.
Let us denote by x(t, ¢) the unique solution, un-
der the initial value function ¢(-), of system (1).
The process £(t) whose the expectation equals
to 0 is considered very often in discrete-time
stochastic systems, e.g..174859 In this paper, we
will study the system (1) under a more general
stochastic process &(t).

Inspired by the notion of exponential mean
stability in,'® we introduce the following defi-
nition of a-exponentially mean boundedness for
the stochastic system (1).

Definition 2.1. Let a > 1 be a positive real
number. System (1) is said to be a-exponentially
mean bounded if there exist a vector-valued
function n(t, Ay, By, Ay, By, h, (5, g) S Rgﬁ_, te
N such that

|Ex(t,¢)| < n(t,-)a™t, teN. (3)

The function 7(-) is called the factor function.
In the case where system (1) is a-exponentially
mean bounded, for some o > 1, an estimation
in the form (3) is called an a-exponential mean
estimate of this system.

Before introducing main results of this paper
in next sections, we recall a well-known result re-
lated to properties of Schur matrices.

Lemma 2.2 (°!). Let M be a nonnegative
matrix in R™”*™. Then M is Schur matrix, i.e.
p(M) < 1, if and only if one of the following
conditions holds: i) there exits an vector z € R}
such that (M — I,)z < 0; ii) (I, — M)~! = 0.

3. AN IPR APPROACH FOR oa-
EXPONENTIAL MEAN BOUND-
EDNESS OF NON-POSITIVE
STOCHASTIC SYSTEMS

In this section, by using an IPR approach for
the system (1), we will establish an exponential
mean estimate for this system. For any x € R"
and M € R™™ let us introduce the following
min-positive representation,?

m(z) = {mf] , (4)

T

where 21 = max{z,0}, 2~ = max{—=z,0},
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and

M- M™T (5)
where M =max{M,0}, M~ = max{—M,0}.

(M) = [M+ M‘] |

Let us consider the following stochastic system

Z(t + 1) =I1 (Ao + &(t)Bo) &(t) (6)
+ I (Ay +&(8)B1) 2(t — ha(t)), t €N,
z(s) =n(¢(s)), se {—=h,—h+1,---,0}.

The next lemma gives us some properties of the
min-positive representation.

Lemma 3.1. Let x(¢, ¢) and

#(t,¢) = [&'(t, 7(9)) (¢, 7(9))] € R*

be respectively the solution of (1) and (6). For
all t € N, we then have

(a) :L'(t, ¢) = fE(t, ¢>+ - ZE(t, ¢)_
and |z(t,¢)| = z(t,d)" + z(t,¢);

(b) M =M*— M- and |[M|=M*+ M~;
(c) @(t,¢) = &' (t, m(¢)) — *(t, 7()).

Proof. The first two properties can be ver-
ified easily. The proof of (c¢) can be found in,°
Theorem 6. 0
For each t € N, Lemma 3.1-(c) implies that

[Ex(t,¢)] = [Ei'(t,m(¢)) — E&2(t, m(4))(7)
< B2 (t,7(9))| + [E2*(t, m(8))].

We will prove, in the next section (see
Lemma 4.2-7)), that the system (6) is positive in
the sense of expectation. In particular, we have

[Ei(t, w(¢))| = Ei(t, n(4)) = 0, Vt € N,

Moreover, we will prove (see Theorem 4.4 below)
that for any o > 1 which satisfies

p (aH (Ao + éBo) + oI (A1 + éBl)) <1,
we have
Ei(t, m(¢)) < 2(t, d)a"t, t € N, (8)

where ¢ € C([=h,0],R™) will be defined later

and £(t, ¢) is the solution of the following sys-
tem

2(t + 1) =all (A + £(t) Bo) 4(t) (9)
+ oI (Ay + £(t)By) 2(t — ha(t)),
teN,

'2(8) :QAS(S), s € {_h7_h+ L. 70}

In addition, Z(¢,-) is a non-increasing func-
tion. This means that the system (6) is a-
exponentially mean bounded.

By combining the previous facts, we obtain
the following theorem which gives us a sufficient
condition for the a-exponential mean bounded-
ness of system (1).

Theorem 3.2. Let a > 1 be such that
0 (aH (AO + 530) + (A1 + éBl)) < 1.(10)

Then, system (1) is a-exponentially mean
bounded and the a-exponential mean estimate
is given by

[Ex(t, ¢)]

where z(t,¢) = EzNt,4) + E2%(t,$) and
3(t, ) = [21(¢, d) 22(t,$)] € R2" is the solution
of (9). In addition, the factor function z(-, @) is
non-increasing.

< Z(t,d)a (11)

In the next section, we will establish an a-
exponential mean estimate for positive stochas-
tic discrete-time systems in the sense of expec-
tation from which the result in Theorem 3.2 is
followed.

4. AN o-EXPONENTIAL MEAN
ESTIMATE FOR POSITIVE
STOCHASTIC DISCRETE-TIME
SYSTEMS AND ITS APPLICA-
TIONS

Different from positive Markov jump linear
systems, under the influence of stochastic uncer-
tainty £(t), the system (1) might not be positive
even if the initial value function belongs to the
nonnegative orthant. From this fact and the no-
tion of positive systems, see, e.g.,?>53 we intro-
duce the following definition of positive stochas-
tic systems in the sense of expectation.

Definition 4.1. System (1) is said to be positive
in the sense of expectation if for any random ini-
tial value function ¢ € C,([—h, 0], R™) such that
E¢(-) = 0, we then have Ex(t, ¢) = 0.

From now on, for simplicity, sometimes we
say that a stochastic system is positive to mean
that this system is positive in the sense of expec-
tation. We will prove that under some assump-
tions related to the coefficient matrices, the ran-
dom process and the initial value function, sys-
tem (1) is positive. From the positivity of this
system, we will apply solution comparison-based
methods to establish relations between positive

https://doi.org/10.52111/qnjs.2022.16308
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systems, see, e.g..34?* More specifically, this ap-
proach will make a comparison between state
vectors of the stochastic discrete-time system

with time-varying delay (1) with state vectors of

the following “similar” constant time delay sys-
tem

y(t + 1) =[Ao + &(t) Boly(t) (12)
+ [A1 + &) Bi]y(t — h), t €N,
y(s) =¢(s), s€ {—=h,—h+1,---,0},

where 1) € C,([—h,0],R™) is a random function
with known expectation. In addition, the system
(1) is also compared with the following “upper”
system

Z(t + 1) =[Ao + &(t) Bolz(t) (13)
+ [A1 + € Bi]a(t — (), t €N,

Z(s) =¢(s), s€ {—h,—h+1,---,0},

where Ag, A1, By and Bl are matrices in R™*"
such that 0 =< Ag + 530 < Ay + fBo and
0= A1+£Bl < A4 +§Bl The positivity and the
monotonic property of these systems will be ap-
plied to derive an a-exponential mean estimate
for the positive stochastic system (1).

4.1. Positivity and solution comparisons

In this section, we will prove the positivity
of systems (1), (12) and (13). From this prop-
erty, we then derive some solution comparisons
between these systems. The main results of this
section are presented in the next lemma.

Lemma 4.2. Let us assume that the matrices
Ao, A1, By, By and the random process £(t) sat-
isfy Ag + E&(t)By = 0 and Ay + E£(¢)B; = 0
for all £ € N. Then, the following assertions hold
true.

i) Assume that E¢(-) »= 0 and Ey(-) = 0
Then, systems (1), (12) and (13) are posi-
tive in the sense of expectation.

i7) For all ¢1,¢2 € C,([—h,0],R™) such that
0 =X E¢p1(s) 2 Ega(s) Vs € {—h,—h +
,0}, then

Eil’(t, ¢1) = El‘(t, ¢2) vVt € N. (14)

iii) For all ¢ € Co([—h,0],
E¢(-) = 0, we have

Exz(t,¢) < Ex(t,¢) Vt € N. (15)

R™) such that

iv) For every random function ¢ €
Cy ([~ h, 0], R™) such that E§(t+1) < E5()
for all ¢t € {-h,—h + 1,---,—1} and
(A1 + EB1)ES(—h) + (Ao + §Bo)ES(0) =
E6(0), we then have

https://doi.org/10.52111/qn;js.2021.16308

iv)-1) Ey(t+1,0) < Ey(t,0), Vt € N,
w)-2) Ex(t,0) = Ey(t, ), Vt € N,

where z(t,d) and y(t,0) are respectively
solutions of systems (1) and (12) under the
initial conditions ¢(s ) = (s) = d(s) for
all se {—h,—h+1,---,0}.

Proof. 7) We just need to prove the pos-
itivity in the sense of expectation of the sys-
tem (1). The positivity of two systems (12) and
(13) follows as a particular case of (1). From
the initial condition that E¢(t) = 0, for all ¢ €

{=h,—h+1,---,0} and noting that E£(0) = €,
Ag +EBy = 0 and A + By = 0, we then have
Ez(1, )
= E{[Ao + £(0)Bo]=(0)
+ [A1 + £(0) Bz (—h1(0))}

= (Ao + €Bo)Ee(0) + (A + £B1)Ed(—h1(0))
0.

Y

Suppose that Ex(t,¢) = 0 for all t € {—h,—h +
1,--- ,to} for some tg € Ny. We now prove that
Ex(to 4+ 1,¢) = 0. Indeed, from the assumption
that ]Eg(to) = é, Ao + éBO = 0, Ay + éBl = 0,
and noting that 0 < hy(tg) < h, we then get
from the induction hypothesis that

Ex(to + 1, ¢) =E{[Ao + £(t0) Bolz(to)
+ [A1 + &(to) Bi]z(to — ha(to))}
=(Ao + Bo)Ex(to)
+ (A1 + £B1)Ea(to — ha(to))
>=0.

By induction argument, we obtain the conclu-
sion.
i1) Let us denote

6(t7¢) = Ji(t, ¢2) - l‘(t, ¢1)7

where

() = do(t) — d1(t),Vt € {—h,—h +1,--- ,0}.

It can be verified that e(t, ) is the solution of
the following linear stochastic discrete-time
system

e(t +1) =[Ao + &(t) Bole(t)
+ [A1 +&(8) Bule(t — ha(t)), t €N,
e(s) =o(s), s € {—h,—h+1,---,0},
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By using assertion ¢) with noting that
E(t) = E¢a(t)~Eex (t) = 0
vte {—-h,—h+1,---,0},

the above system is positive in the sense of ex-
pectation. This means that

]Ee(ta ()ZAS) = Em(ta ¢2) - E:L‘(t, ¢1) =0
from which the conclusion i) follows.
ii1) Let t € N. By using the positivity of systems
(1), (13), and the assumption that
0= Ag+E€By < Ag +£By,
0= Ay +E€By < Ay +€By,

taking the expectation on both sides of (1)
with noting that E&(t) = &, Exz(t) = 0 and
Exz(t — hi(t)) = 0, one gets

Ez(t + 1,¢) =E{[Aq + £(t) Bo]z(t)

+ [A1 + £(8) Ba]a(t — ha (1))}
—=(Ag + EBo)Ea(t)

+ (A + EB1)Ex(t — hi(t))
<(Ag + £Boy)Ex(t)

+ (Ay 4 €B))Ea(t — hy(t))
=(Ag + £Bo)EZ(t)

+ (A1 4 EB)EZ(t — hy(t))
=E{[Ao + £(t) Bo)z(t)

+ [A1 + () Bzt — ()}
=Ez(t + 1, ¢),

from which completes the proof of iiz).

iv) Firstly, we will prove 4v)-1) by induction. For
t = 0, from assumption on the initial value func-
tion 6 and E£(0) = &, we then have from system
(12) that

Ey(1,6) =E{[Ao + £(0)Bo]y(0)
+ [A1 + £(0) Bi]y(—h)}
=(Ap + £By)Ey(0)
+ (A1 + EB))Ey(—h)
=(Ag + £Bo)E5(0)
+ (Ay 4 €By1)ES(—h)
<E6(0) = Ey(0, ).

Suppose that Ey(t + 1,0) = Ey(¢,d) for all
te{—h,—h+1,--- ,to} for some tg € N.

We will prove that Ey(to +2,0) = Ey(tg + 1, 9).
Indeed, from system (12) and the assumption

that EE(to + 1) = E&(ty) = ¢, one gets

Ey(to +2,0) =E{[Ao + Bo&(to + 1)]y(to + 1)
+ [A1 + Bi&(to + D]y((to + 1) — 1)}
=(Ao + £Bo)Ey(to + 1)
+ (A1 +€B1)Ey((to + 1) — h)
=< (Ao + £Bo)Ey(to)
+ (A1 + EB1)Ey(to — h)
=E{[Ao + &£(t0) Boly(to)
+ [A1 + &(to) B1]y(to — h)}
=Ey(to + 1,9).

By induction argument, the proof of iv)-1) is
then completed.

Finally, we use again induction reasoning to
prove that iv)-2) is true. For the case t = 1,
by using the initial condition and the fact that
E£(0) = € and 0 < hy(0) < h, we then have

Ez(1,8) =E{[4o + £(0) Bo]x(0)

+ [A1 +£(0) Bi]z(—h1(0)) }
=(Ap 4 £By)Ex(0)

+ (A1 4 €By)Ea(—hy(0))
=(Ag 4 £By)ES(0)

+ (A + EB1)ES(—h1(0))
<(Ag + £By)ES(0)

+ (A + EB))ES(—h)
=(Ag + £Bo)Ey(0)

+ (A1 + €B1)Ey(—h)
=E{[Ao + £(0)Boly(0)

+ [A1 + £(0)Bi]y(—h)}
=Ey(1,9).

Suppose that Ez(t,0) =< Ey(t,0) for all ¢ €
{=h,—h 4+ 1,--- to} for some t; € N. We will
prove that Ey(to + 1,6) < Ez(tg+ 1,6). Indeed,
by using induction hypothesis, E£(tp) = 0 and
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iv)-1), systems (1) and (12) give us

Ex(to + 1,0) =E{[Ao + &(to) Bo]x(to)
+ [A1 + &(to) Bz (to — ha(to))}
=(Ao + £Bo)Ea(to)
+ (A1 + €B1)Ea(to — ha(to))
=(4o + £Bo)Ey(to)
+ (A1 +£B1)Ey(to — ha(to))
=(Ao + £Bo)Ey(to)
+ (A1 + £B1)Ey(to — h)
=E{[Ao + &(t0) Boly(to)
+ [A1 + &(to) Bily(to — h)}
—Ey(to + 1,6).

From induction argument, we have thus proved
the conclusion iv)-2). O

4.2. An «-exponential mean estimates
for positive stochastic systems

Let us assume throughout this section that
the coefficient matrices Ay, A1, By, B1 and the
random process £(t) of system (1) satisfy condi-
tions in Lemma 4.2 for which this system is pos-
itive. In this section, we will provide a sufficient
condition for the a-exponential mean bounded-
ness of the positive system (1). By using results
developed in Section 4.1, we will derive an a-
exponential mean estimate for state vectors of
system (1) with time-varying factor function.
Our approach is based on an exponential state
transformation and solution comparisons.

Step 1: An exponential state transformation
Let @ > 1 and let us consider the following a-
exponential state transformation

p(t) = a'x(t). (16)
We introduce the following notations

©(s) = a®p(s) and B(s) := a*¢(s),
se{=h,—h+1,---,0}.

System (1) then becomes the following system

p(t +1) =afAg + £(t) Bolp(t) (17)
+ MDA 4 () Balp(t — ha (1)),
p(s) =p(s), s€{—=h,—h+1,--- 0},

and from (2), one has

0 =< Ep(s) = %(s) (18)
Vs € {=h,—h+1,---,0}.

https://doi.org/10.52111/qn;js.2021.16308

Step 2: Solution comparisons

We consider the following “upper” system of (17)

p(t + 1) =afAg + (1) Bolp(t) (19)
+ " AL + () By]p(t — ha(t)),
]3(8) :90(5)7 EAS {_h‘7 —h + 17 e 70}
It follows from 0 < hy(t) < hVt € N, a > 1 and
Al + fBl S R(TJL,-I- that

0= o™t (4 +€B)) < a1 (A + €By) Vt € N.

From this, Lemma 4.2 — i4), 4i3) and (18), we
then obtain

Ep(t, ») 2 Ep(t, ) 2 Ep(t, @), vt € N. (20)

Finally, we consider the following “similar” sys-
tem of (19)

2(t+ 1) =a[Ag + £(t) B2 (2) (21)
+ A + €(t)By]z(t — h), t €N,

Z(S) :77(8)’ s € {_h7 —h + 17 e 70},
where the function 7n(-) € Cy([—h,0],R™) will
be defined such that the expectation of the solu-
tion z(t,n) is a non-increasing function and is an
upper bound of the expectation of the solution

P(t, ). The next lemma will give us a condition
for the existence of such initial value function.

Lemma 4.3. Assume that
0 (a (Ao + éBO) + ol (A1 n 531)) <1

Then, there exists an initial value function
n(-) € Co([—h,0],R™) such that Ez(-,n) is a

non-increasing function and
Ep(t, @) 2 Ez(t,n), vt € N. (22)

Proof. Let us consider the following linear
programming problem

_In In 0 0 0
o -1, I, 0 0
0 0 L - 0 0|,<o,
: : S L, 0
0 0 o --- -1, I,
(23)
v—u=0,
(24)
{ah“(Al F€B1)0---0 aAg + £By) — In} u=0,
(25)

where v =[BT (=h) P (=h+1) --- 51 (0)]" €
RO+ and o = [ujh “Ih-s-l uOT]ER(hH)”

are unknown.
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By using the same argument as in,3¢ Step 2 we
conclude the proof of this lemma. (]
Noting that since both h, n(-) and E&(-) are
known, we can use system (21) to calculate the
expectation of the state vector z(t,n) for all
t € N. By combining (16), (20) and (22), we ob-
tain an a-exponential mean estimate with a de-
creasing factor function for the solution z(t, ¢)
of system (1) which is stated in the following
theorem.

Theorem 4.4. Let o« > 1 be such that
p(a(Ag +EBo) + o (A1 +£By)) < 1. (26)

Then, there exists an initial value function
n(-) € €([—h,0],R™) such that the system (1)
is a-exponentially mean bounded and its a-
exponential mean estimate is given by

Ex(t,¢) = Ez(t,n)a”", vt €N, (27)

where z(t,n) is the solution of the system (21).
In addition, Ez(-,n) is a non-increasing function.

Remark 4.5. In Lemma 4.3, instead of consid-
ering the linear programming (23)—(25), let us
consider the following one

min  f(u) :=c' (u—0v) s.t.(23),(24),(25),

uERMH7

(LP)
where ¢ := [1 1 --- 1]T € RO+D Let u* be
an optimal solution of (LP). By setting

77(5) = u; Vs € {7h?7h+ 1; e ,0}, (28)

the function 7(-) not only satisfies conditions of
Lemma 4.3 but also makes Y 0_ , [|E(n(s) —
@(s))|]1 smallest. The latter condition means
that in general (in the sense of expectation) the
function 7(-) is not too far from @(-). This will
provide an a-exponential mean estimate of the
state vector x(t, @) as accurate as possible.

Remark 4.6. By applying the result in Theo-
rem 4.4 to system (6) and noting that

II (Ao +€Bo) = 0,11 (A1 +éB1) =0
and En(¢(s)) = 0,

we then obtain the a-exponentially mean esti-
mate for the non-positive system (1) (given by
Theorem 3.2).

5. AN o-EXPONENTIAL MEAN
ESTIMATE VIA AN “UPPER
BOUND” SYSTEM

For the sake of demonstrating the effective-
ness of the IPR approach when applying to the

non-positive stochastic discrete-time system (1),
we introduce another a-exponential mean es-
timate for this system via an “upper bound”
system, see, e.g..'"3% In this approach, we will
bound from above the system (1) by the follow-
ing positive stochastic discrete-time system (1)

u(t +1) =[[Ao| + [£(t)]| BolJu(t) (29)
+ [[Au] + [E@ Br[Ju(t — ha (1)), t €N,
u(s) =l¢(s)|, s€ {-h,—h+1,---,0}.

Let us denote by u(t,|¢|) the solution of this
system. By virtue of Lemma 4.2 — 7), this sys-
tem is positive in the sense of expectation, i.e.
Eu(t,|¢|) = 0, for all ¢ € N. The following re-
sult gives us an a-exponential mean estimate of
system (1) based on this “upper bound” system.

Theorem 5.1. Let us assume that the stochas-
tic process &£(t) satisfies E|£(t)| < & for all t € E,
for some £ > 0. Assume that there exists o > 1
such that

pla(| Aol + €| Bol) + a1 (|A1| + €] Br])) < 1.(30)

Then, there exists a vector-valued function
A(t) € Ry ., t € N such that

Ex(t, ¢) = AM(t)a™", Vt €N, (31)
In addition, A(-) is a non-increasing function.

Proof. To complete the proof of Theo-
rem 5.1, we just need to prove that system (29)
is an upper bound of system (1) in the sense of
expectation, i.e.,

[Ex(t, )] = Eu(t,[¢]), Vi € N. (32)

The above inequality will be proved by induc-
tion. For all s € {—h,—h +1,---,0}, by apply-
ing the Jensen’s inequality, see, e.g.,®® for the
convex function f(x) = |z| and using the initial
conditions for systems (1) and (29), one gets

[Ez(s, )| = [Ed(s)| < E|gp(s)| = Eu(s, [4]).

Suppose that (32) is valid for all ¢t € {—h, —h +
1,--- ,to}, for some ty € N. Let us prove that
this inequality also holds at ¢ =ty + 1. Indeed,
from the definition of systems (1) and (29) and
remembering that 0 < hy(tyg) < h, we then have
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|Ex(to, ¢)| = [E{[Ao + &(to) Bolx(to)
+ [A1 + &(to) Bi]x(to — ha(to))}|
= {[Ao + E&(to) Bo]Ex(to)
+ [A1 + E&(to) B1]Ex(to — ha(to)) }|
= [[Ao| + [EE(to) || Bol][Ex(to)|

+ [|AL] + [EE(to) || Br][Ex(to — ha(to)) |

= [l Ao| + E[¢(t0)|| Bol]Eu(to)

+ [|A1] + E[€(2o)|| B1[[Eu(to — h1(to))
= E{[|Ao| + [£(to)[| Bol]u(to)

+ [ A1| + [£(to)[| B1[Ju(to — ha(to))}
= Eu(to + 1,4]),

where the second inequality is obtained from the
induction hypothesis and the Jensen’s inequal-
ity. This concludes the proof. O

Remark 5.2. 1. The result in Theorem 5.1
seems to be more natural than the one
in Theorem 3.2. However, we should note
that system (29) is an overestimate of sys-
tem (1). As a consequence, the range of
«a to get an a-exponential mean estimate
(condition (30)) will be narrowed. In ad-
dition, the a-exponential mean estimate
given in this theorem is also looser than
the one obtained by Theorem 3.2. These
advantages of the IPR approach will be
demonstrated in Section 6

2. By using a direct evaluation on the expec-
tation of the square norm of the state vec-
tor, Xu and Ge,!” proved the mean square
exponential stability of system (1) under
the usual condition on the stochastic pro-
cess (), i.e., E&(t) = 0 and EE(2)? = 1.
From this result and the Jensen’s inequal-
ity, we can derive an a-exponential mean
estimate for the system (1). It worth not-
ing that we can apply a direct evaluation
on the expectation of state vector (not
the square norm of state vector) to obtain
a more accurate a-exponential mean esti-
mate for this system. However, these two
estimates will be not as accurate as the
ones obtained in Theorems 3.2 and 5.1.

6. ILLUSTRATIVE EXAMPLE

This section is devoted to verify the effec-
tiveness of the IPR approach for deriving the
a-exponential mean estimate of the stochastic
discrete-time system with time-varying delay
(1). Let us consider system (1) with the follow-
ing coefficient matrices

https://doi.org/10.52111/qn;js.2021.16308

[0.51  0.10 —0.12
Ag= [0.04 —0.12 0.04

012 0.05 —0.06

[ 0.12  0.01 —0.08]
A= |-0.03 —0.15 0.02

| 0.04 —0.01 0.10 |

[—0.21 —0.03 0.11 ]
Bo= |—0.05 0.02 0.01

| 0.02 001 —0.02]

[0.01 —0.02 0.02 ]
By =005 —003 —0.07

|—0.05  0.01 —0.01]

The stochastic process £(¢) will be chosen
such that EE(t) = 0.2 and E[£(t)] < 0.8,
for all t € N. We assume that the expecta-
tion of the initial value function is bounded by
é(— 2) = [3.3, 3.8, 1.7, 6(—1) = [2.4, 2.8, 0.7]
and ¢(0) = [-3.0, —3.3, 1.7]. The bound of the
time-varying delays h is set by 2.

By using one dimensional search, we can find
the largest value of the decay rate « such that
Theorems 4.4 and 5.1 can be applied. The re-
sults are given in Table 1. From this table, we
can see that the sufficient condition derived by
the IPR method the (condition (10)) gives us
a larger range of decay rate o than the condi-
tion obtained in Theorem 5.1 (condition (30)).
This means that the a-exponential mean esti-
mate of state vectors obtained by Theorem 4.4
has a broader applicability.

Table 1. Ranges of decay rate «

Methods Range of «
Theorem 3.2 (condition (10)) [1, 1.294]
Theorem 5.1 (condition (30)) [1, 1.046]

—&—Eu(t,¢)
[Ba1(t,0)
—6—7(t,$)1.04~" (Theorem 1)
| =#=Ai(t)1.04" (Theorem 3)

-2 0 2 4 6 8 10 12 14

Figure 1. Trajectories of x1(t,¢), the mean
value Ex1(¢,¢) and its a-exponential mean
estimates
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- ()
—a—Ex,(t, ¢)

[Exy(t, 6)|
—6—3(t,$)1.04~" (Theorem 1)
| =#—=X(#)1.04~" (Theorem 3)

. . .
-2 0 2 4 6 8 10 12 14

Figure 2. Trajectories of zs(t,¢), the mean

value Exg (t,¢) and its a-exponential mean
estimates

= x3(t, )
—&— Ea;(t,¢)
[Eral, )]
—0—7(t,$)1.047" (Theorem 1)
—#— \3(t)1.047" (Theorem 3)

Figure 3. Trajectories of x3(t,¢), the mean
value Exs(t,¢) and its a-exponential mean
estimates

To illustrate the behavior of system (1) and
a-exponential mean estimates of this system, for
each t € N and s € {—2,—1,0}, we generate
100 random variables £(t) and ((s) such that
E&(t) = 0.2, [E€(t)] < 0.8 and E((s) = 0 to cre-
ate 100 stochastic systems under the form (1).
The initial condition is chosen by ¢(s) = ¢(s) +
((s) for s = =2, —1,0. Let us choose the decay
rate @ = 1.04 for which both results in Theo-
rem 3.2 and 5.1 can be applied. Figures 1-3 show
us the behavior of 100 realizations of the sys-
tem (1) together with its mean values Ez(¢, ¢)
and its a-exponential mean estimates EZ(¢,7).
As we can see, the expectation of state vectors
(the line —&—) is not positive. The behavior of
the line means that these systems are a-
exponentially mean bounded. Moreover, these
figures also show us that the a-exponential mean
estimate obtained by the IPR approach (the line

—e— ) is more accurate than the one given by the

“upper bound” approach (the line —#— ). This
verifies the effectiveness of the IPR approach on
the stochastic discrete-time system with time-
varying delays (1).

7. CONCLUSION AND PERSPEC-
TIVES

In this paper, we consider a class of lin-
ear stochastic discrete-time systems with time-
varying delays which can be seen as the usual lin-
ear discrete-time system with time-varying de-
lays and with random uncertainty. Under the as-
sumption that the random process does not lose
the positivity of coefficient matrices, we prove
that the system is still positive in the sense of
expectation. In addition, a new solution compar-
ison for stochastic systems is derived and then
is applied to obtain an a-exponential mean esti-
mate of positive stochastic systems. This result
is used together with the IPR approach to obtain
an a-exponential mean estimate for non-positive
stochastic discrete-time systems. Some numeri-
cal examples are performed to demonstrate the
effectiveness of the IPR approach on stochastic
systems. The approach in this paper can be also
applied to some other problems, e.g., interval ob-
server, 309657 ¢ _gain analysis, °®%? etc. Finally,
we list here some other open problems which can
be studied for stochastic systems: the positivity
in the sense of probability for stochastic systems,
the exponential estimate in the sense of proba-
bility for stochastic systems, etc.
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