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ABSTRACT

The SARIMA model is widely used to analyze time series data. In this paper, we will apply this method

with the help of R statistical software to forecast monthly rainfall in Quy Nhon city, Binh Dinh Province, Viet

Nam. Mean monthly rainfall from 2000 to 2018 were used for modelling and forecasting.
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1. INTRODUCTION

Quy Nhon is a coastal city in Binh Dinh Province
in central Vietnam. Here, weather is characterized
by tropical monsoon climate with two distinct
seasons, rainy season and dry season. Rainy
season lasts from September to December, while
dry season runs from January to August.

Changes in rainfall precipitation will be
one of the most critical factors determining the
overall impact of climate change. Therefore, its
model-ling and forecasting are needed for water
resources management, irrigation scheduling,
agricultural management and reservoir opera-
tion, tourism. Prediction of rainfall is tough due
to its non linear pattern and a large variation in
intensity. Till today, numerous techniques have
been used to forecast rainfall. Among them,
Autoregressive Integrated Moving Average
(ARIMA) modeling, introduced by Box and
Jenkins is an effective method.' The Box-Jenkins
Seasonal ARIMA (SARIMA) model has several
advantages over other models, parti-cularly over
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exponential smoothing and neural network,
due to its forecasting capability and richer
information on time related changes.>? ARIMA
model considers the serial correlation, which is
the most important characteristic of time series
data, and also provides a systematic option
to identify a better model. Another advantage
of ARIMA model is that the model uses less
parameter to describe a time series. Therefore,
we use the SARIMA model to predict rainfall in
Quy Nhon.

Besides mathematical, software tools today
also play an important role in forecasting. There
are many software tools for highly effective data
analysis such as SPSS, Eviews, Python, etc. In this
study, we use R statistical software to analyze the
rainfall data. The advantages of R programming
are open source programming language, providing
exemplary support for data organization, package
arrays, quality plotting and graphing, highly
compatible, platform independent reporting and
machine learning activity.
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The rainfall data in Quy Nhon are
obtained from General Statistics Office of Viet
Nam  (https://www.gso.gov.vn), and cover
monthly observations from 2000 to 2018. We
will proceed to build the appropriate forecasting
model and compare evaluation between actual
data and forecast data.

2. METHODOLOGY
2.1. The seasonal ARIMA model

Seasonal Autoregressive Integrated Moving
Average, SARIMA or Seasonal ARIMA, is an
extension of ARIMA that explicitly supports
univariate time series data with a seasonal comp
onent. SARIMA(p, d, ¢)(P, D, Q). model can be
most succinctly expressed using the backward
shift operator:

@p(BS)¢p(B)(1 — B5)P (1 - B)dJ’t
=c+ 0¢(B*)0,(B)e,

where @), ¢,, ®¢ and g are polynomials of
orders P, p, Q, and ¢, respectively. The para-
meter p and ¢ define the order of the AR and MA
processes with its non-seasonal lags, respectively,
and d defines the degree of differencing of the
series with its non-seasonal lags. Likewise, the
P and Q parameters represent the corresponding
order of the seasonal AR and MA processes of
the series with its seasonal lags, and D defines
the degree of differencing of the series with its
non-seasonal lags. In general, the model is non-
stationary, although if D = d = 0 and the roots
of the characteristic equation all exceed unity
in absolute value, the resulting model would be
stationary.

2.2. Auto-Correlation Function (ACF) and
Partial Auto-Correlation Function (PACF)

ACF is an (complete) auto-correlation function
which gives us values of auto-correlation of any
series with its lagged values. We plot these values
along with the confidence band and tada! We
have an ACF plot. In simple terms, it describes
how well the present value of the series is related
with its past values. A time series can have
components like trend, seasonality, cyclic and

residual. ACF considers all these com-ponents
while finding correlations hence it is a ‘complete
auto-correlation plot’.?

PACF is apartial auto-correlation function.
Basically instead of finding correlations of
present with lags like ACF, it finds correlation of
the residuals (which remains after removing the
effects which are already explained by the earlier
lag(s)) with the next lag value hence ‘partial’
and not ‘complete’ as we remove already found
variations before we find the next correlation. So
if there is any hidden information in the residual
which can be modeled by the next lag, we might
get a good correlation and we will keep that
next lag as a feature while modeling. Remember
while modeling we do not want to keep too many
features which are correlated as that can create
multicollinearity issues. Hence we need to retain
only the relevant features.’

2.3. Modelling procedure

When fitting an SARIMA model to a set of time
series data, the following procedure provides a
useful general approach.

< Step 1: Data preparation: Here, we
prepare the data for the training and testing
process of the model. This step includes splitting
the series into training (in-sample) and testing
(out-sample) partitions, creating new features
(when applicable), and applying a transformation
if needed (for example, log transformation,
scaling, and so on).

< Step 2: Train the model: Here, we
used the training partition to train a statistical
model. The main goal of this step is to utilize
the training set to train, tune, and estimate the
model coefficients that minimize the selected
error criteria. The fitted values and the model
estimation of the training partition observations
will be used later on to evaluate the overall
performance of the model.

< Step 3: Test the model: Here, we utilize
the trained model to forecast the corresponding
observations of the testing partition. The main
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idea here is to evaluate the performance of the
model with a new dataset (that the model did not
see during the training process).

< Step 4: Model evaluation: Last but not
least, after the model was trained and tested, it is
time to evaluate the overall performance of the
model on both the training and testing partitions.*

2.4. Tuning the SARIMA model

The tuning process of the SARIMA model
follows the same logic as one of the ARIMA
models. However, the complexity of the model
increases as there are now six parameters to
tune, that is, p, d, g, P, D and Q, as opposed
to three with the ARIMA model. Luckily, the
tuning of the P, D, and Q seasonal parameters
follows the same logic as the ones of p, d, g,
respectively, with the use of the ACF and PACF
plots. The main difference between the tuning of
these two groups of parameters (non-seasonal
and seasonal) is that the non seasonal parameters
are tuned with the non-seasonal lags, as we saw
previously with the ARIMA model. On the other
hand, the tuning of the seasonal parameters are
tuned with the seasonal lags (for example, for
monthly series with lags 12, 24, 36, and so on).*?

2.4.1. Tuning the non-seasonal parameters

Applying the same logic that we used with
the ARIMA model, tuning the non-seasonal
parameters of the SARIMA model is based on
the ACF and PACF plots:

< An AR(p) process should be used if the
non-seasonal lags of the ACF plot are tailing off,
while the corresponding lags of the PACF plots
are cutting off on the p lag.

< Similarly, an MA(q) process should be
used if the non-seasonal lags of the ACF plot are
cutting off on the q lag and the corre-sponding
lags of the PACEF plots are tailing off.

< When both the ACF and PACF non-
seasonal lags are tailing off, an ARMA model
should be used.

< Differencing the series with the non-
seasonal lags should be applied when the non-

seasonal lags of the ACF plot are decaying in a
linear manner.*

2.4.2. Tuning the seasonal parameters

Tuning the seasonal parameters of the SARIMA
model with ACF and PACF follows the same
guidelines as the ones we used for selecting the
ARIMA parameters:

< We will use a seasonal autoregressive
process with an order of P, or SAR(P), if the
seasonal lags of the ACF plot are tailing off and
the seasonal lags of the PACF plot are cutting off
by the P seasonal lag.

< Similarly, we will apply a seasonal
moving average process with an order of Q, or
SMA(Q), if the seasonal lags of the ACF plot are
cutting off by the O seasonal lag and the seasonal
lags of the PACF plot are tailing off.

< An ARMA model should be used
whenever the seasonal lags of both the ACF and
PACF plots are tailing off.

< Seasonal differencing should be applied
if the correlation of the seasonal lags are decaying
in a linear manner.®

2.5. A step-wise procedure for traversing the
model space

Suppose that we have seasonal data, we consider
ARIMA(p, d, q)(P, D, Q). models, where p and
g can take values from O to 3, and P and Q can
take values from 0 to 1. When ¢ = 0 there is a
total of 288 possible models, and when ¢* 0
there is a total of 192 possible models, giving
480 models altogether. If the values of p, d, g, P,
D and Q are allowed to range more widely, the
number of possible models increases rapidly. If
d and D are known, we can select the orders p,
g, P and Q via an information criterion such as
the AIC:

AIC := =2log(L) +2(p+q+ P+ Q + k),
where £ = 1 if C # 0 and 0 otherwise, and L is
the maximized likelihood of the model fitted to

the differenced data (1 — B*)? (1 - B)? y,. The
likelihood of the full model for y, is not actually
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defined and so the value of the AIC for different
levels of differencing are not comparable.’

Consequently, it is often not feasible to
simply fit every potential model and choose the
one with the lowest AIC. Instead, we need a way
of traversing the space of models efficiently
in order to arrive at the model with the lowest
AIC value. We propose a step-wise algorithm as
follows.

Step 1: We try four possible models to
start with.

% ARIMA(2, d, 2) if s = | and ARIMA(2,
d,2)(1,D, 1)ifs > 1;

% ARIMA(0, d, 0) if s = 1 and ARIMA(0,
d, 0)(0, D, 0) if s > 1;

% ARIMA(1, d, 0) if s = 1 and ARIMA(1,
d,0)(1, D, 0)ifs > 1;

% ARIMA(0, d, 1) if s = 1 and ARIMA(0,
d, 1)(0, D, 1) if s > 1.

If d + D < 1, these models are fitted with
C # 0. Otherwise, we set ¢ = 0. Of these four
models, we select the one with the smallest
AIC value. This is called the ‘current’ model
and is denoted by ARIMA-(p, d, q) if s = 1 or
ARIMA(p, d, q)(P, D, Q), ifs>1.

Step 2: We consider up to 13 variations on
the current model:

< where one of p, ¢, P and Q is allowed to
vary by +1 from the current model;

< where p and ¢ both vary by +1 from the
current model;

< where P and Q both vary by =1 from the
current model;

% where the constant ¢ is included if the
current model has ¢ = 0 or excluded if the current
model has C # 0.

Whenever a model with lower AIC is
found, it becomes the new ‘current’ model and
the procedure is repeated. This process finishes
when we cannot find a model close to the current
model with lower AIC.

There are several constraints on the fitted
models to avoid problems with convergence
or near unit roots. The constraints are outlined
below:

< The values of p and ¢ are not allowed
to exceed specified upper bounds (with default
values of 5 in each case).

< The values of P and Q are not allowed
to exceed specified upper bounds (with default
values of 2 in each case).

< We reject any model which is ‘close’ to
non-invertible or non-causal. Specifi-cally, we
compute the roots of ¢(B)D(B) and 6(B)O(B).
If either have a root that is smaller than 1.001 in
absolute value, the model is rejected.

< If there are any errors arising in the non-
linear optimization routine used for estimation,
the model is rejected. The rationale here is that
any model that is difficult to fit is probably not a
good model for the data.

The algorithm is guaranteed to return a
valid model because the model space is finite and
at least one of the starting models will be accepted
(the model with no AR or MA parameters). The
selected model is used to produce forecasts.>*

2.6. Forecast evaluation methods

Once you finalize the model tuning, it is
time to test the ability of the model to predict
observations that the model did not see before
(as opposed to the fitted values that the model
saw throughout the training process). The most
common method for evaluating the forecast's
success is to predict the actual values with the
use of an error metric to quantify the forecast's
overall accuracy. The selection of a specific error
metric depends on the forecast accuracy's goals.
This study only considers common error metric
is as follow:

Root Mean Squared Error (RMSE): This
is the root of the average squared distance of the
actual and forecasted values:

1 ~
RMSE = \/;2{;10@ A
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where Y, and Y, are the actual value of the original
series and predicted value from the proposed
hybrid model, respectively. The smallest value
of RMSE indicates the best model.*

3. RESULTS AND DISCUSSION

The data has been collected at the Quy Nhon
station from 2000 to 2018. We have a monthly
series with 228 observations (19 years) and
the goal is to forecast the next two years (24
months). The corresponding command packages
and libraries for model prediction are forecast,
readxl, tseries, TSstudio.’® Let us load the
rainfall series from file datats.xlsx.

Let us plot the series with the ts plot
function and review the main characteristics of
the series by the code below:

#plot time series data with
ts plot function

ts plot (datats, title=
"Monthly Rainfall in Quy
Nhon", Ytitle="Rainfall (mm)"
Xtitle="Year")

We attain the output as shown in Figure 1:

Monthly Raintall in QUY NHON

Rainfall(mm)
g 8 § 8 &

H

8

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year

Figure 1. Time series plot of observed mean monthly
rainfall from 2000 to 2018.

From Figure 1, the datats series has a
strong seasonal pattern, therefore the SARIMA
model is the most appropriate one for our data.
In addition, the series is trending up, so we can

already conclude that the series is not stationary
and some differencing of the series is required.
We would use the first 216 observations for
training and test the performance using the last
12 observations. Creating partitions in R can be
done manually with the #s_split function from
the stats package. For instance, let is split the
mydata series into partitions, leaving the last 12
observations of the series as the testing partition
and the rest as training:

ON rainfall<-ts split (datats,
sample.out = 12)

train <- ON rainfallS$train
test <- QN rainfallStest

In statistics, an augmented Dickey—
Fuller (ADF) test the null hypothesis that a
unit root is present in a time series sample. The
alternative hypothesis is different depending on
which version of the test is used, but is usually
stationarity or trend stationarity. We obtain the
following output:

adf.test (train, alternative =
"stationary")

##Dickey-Fuller = -8.0188,
Lag order = 5, p-value = 0.01
##alternative hypothesis:
stationary

Before we start the training process of the
SARIMA model, we will conduct diagnostics in
regards to the series correlation with the ACF
and PACF functions. Since we are interested in
viewing the relationship of the series with its
seasonal lags, we will increase the number of
lags to calculate.

par (mfrow=c(1l,2))

acf (ts(train),main="ACF For
Rainfall", col="blue",lwd = 4)
pacf (ts(train) ,main="PACF For
Rainfall",col="coral", 1lwd = 4)
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Figure 2. ACF and PACF plot of rainfall for Quy

Nhon station.

The preceding ACF plot indicates that
the series has a strong correlation with both the
seasonal and non-seasonal lags. Furthermore,
the linear decay of the seasonal lags indicates
that the series is not stationary and that seasonal
differencing is required. We will start with a
seasonal differencing of the series and plot
the output to identify whether the series is in a
stationary state. The R commans and output are
as follows:

ndiffs (train) #to determine d
(the number of seasonal
differences to use)

##0

nsdiffs(train) #to determine D
(the number of ordinary
differences to use)

##1

ON rainfall 12 <- diff (train,
lag = 12, differences = 1)

ts plot (ON rainfall 12, title =
"Quy Nhon Monthly Rainfall -
First Seasonal
Difference",Ytitle = Rainfall
(First Difference)",Xtitle =
"Year")

By the #s_plot function, we get the output
as Figure 3:

Figure 3. Plot of seasonal differencing of the series.

After taking the first order differencing,
along with the first order seasonal differencing,
the series seems to stabilize around the zero x
axis line (or fairly close to being stable). After
transforming the series into a stationary state, we
can review the ACF and PACF functions again
to identify the required process:

par (mfrow=c(1l,2))

acf (ts(QN rainfall 12), main=
"ACF For First Seasonal
Difference", col="blue", lwd = 4)
pacf (ts (ON rainfall 12), main=
"ACF For First Seasonal

Difference", col="coral", lwd = 4)

It should note that this step is very important.
We need to the observe from the ACF and
PACEF plots in order to choose simple models.
The output of the commans above is
shown in Figure 4:

ACF For Rainfall PACEF For Rainfall

o
AR

3 02 -01

ACF
Partial ACF

00
I
0.

I

0.5

I
06 -05 0.
1 I

Lag Lag

Figure 4. ACF and PACF plot of rainfall for Quy
Nhon station.
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The main observation from the
preceding ACF and PACF plots is that both the
nonseasonal and seasonal lags (in both plots)
are tailing off. Hence, we can conclude that
after we difference the series and transform
them into a stationary state, we should apply an
ARMA process for both the seasonal and non-
seasonal components of the SARIMA model.
Our aim now is to find an appropriate ARIMA
model based on the ACF and PACF plot. The
significant spike at lag 1 in the ACF suggests a
non-seasonal MA(1) component, and the sign-
sifycant spike at lag 12 in the ACF suggests a
seasonal MA(1) component. Consequently, we
begin with an SARIMA(1,0,0)(1,1,0),, model,
indicating seasonal difference, and non-seasonal
and seasonal MA(1) components. Based on the
PACEF plot, we can choose another simple model
SARIMA(0,0,0)(0,1,0),,. Of these two models,
the best is the SARIMA model (i.e., it has the
smallest AIC value).

mdl<- Arima (train,
order=c(1,0,0),
seasonal=c(1,1,0))
summary (mdl)
#H#AIC: 2683.2
md2<- Arima (train,
order=c(0,0,0),
seasonal=c(0,1,0))
summary (md2)
##AIC: 2762.83

Consequently, this initial analysis
suggests that a possible model for these data is
an SARIMA(1,0,0)(1,1,0),,. We fit this model,
along with some variations on it, compute the
AIC values and test set evaluation shown as in

Table 1.

Table 1. AIC and RMSE values for various SARIMA
models applied to the monthly rainfall data.

Models AIC RMSE
SARIMA(1,0,0)(1,1,0) , | 2683.20 164.4443
SARIMA(0,0,0)(1,1,0) , | 2682.27 164.8799
SARIMA(2,0,0)(1,1,0),, | 2684.69 164.2065

SARIMA(1,0,1)(1,1,0),, | 2681.33 | 162.7866
SARIMA(1,0,0)(0,1,0), | 2763.84 | 203.7255
SARIMA(1,0,0)(2,1,0), | 2658.01 | 152.5503
SARIMA(1,0,0)(1,1,1),, | 2650.34 | 146.6646
SARIMA(2,0,1)(1,1,0), | 268332 | 162.7785
SARIMA(1,0,0)(2,1,1),, | 2649.60 | 1456458

Of these models, the best is the
SARIMA-(1,0,0)(2,1,1),, model (which has
the lowest RMSE value on the training set,
and the best AIC value amongst models with
only seasonal differencing). Before we finalize
the forecast, let's evaluate the selected model's
performance on the testing set. We will retrain
the model using the settings of the selected
model:

ONrainfall best md <-

Arima (train, order = c(1,0,0),
seasonal =list (order=
c(2,1,1)))

We then get the output as described in
Table 2:

Table 2. Summary of SARIMA(1,0,0)(2,1,1), .

SARIMA(1,0,0)(2,1,1),,

SARIMA arl sar2 sar2 smal

Coefficients 0.067 -0.052 0.1 -0.881

s.e. 0.068 0.092 0.087 0.093
AIC =2650.34

Let us use the QNrainfall best md
trained model to forecast the corresponding
observations of the testing set:

QNrainfall test fc <- forecast(QNrainfall
best md, h =12)

We will assess the model's performance
by put

Actual Value — Forecast Value

Actual Value

and these values are calculated as in Table 3:
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Table 3. Assess performances of SARIMA(1,0,0) -
(2,1,1),, model.

Month Forecast Actual "
Value Value

January 81.81485 128.6 0.36
February 32.32366 2.8 -10.54
March 34.07819 1.6 -20.29
April 46.95980 20.0 -1.34
May 82.40952 9.4 -7.76
June 44.63459 103.7 0.56
July 57.38414 14.0 -3.09
August 122.92861 511 -1.40
September | 209.18078 235.5 0.11
October 420.49951 476.7 0.11
November | 574.92124 462.0 -0.24
December | 3271.89014 337.9 0.04

From Table 3, we see the predicted
model has two values big deviations in February
and March. This is unavoidable because climate
change is very complex. However, the forecast
value and actual value of the rainy season from
September to December for very low error.
Moreover, these predicted values are very
suitable for the climate characteristics of Quy
Nhon city.

Now, we will use the test forecast
function to get a more intuitive view of the
model is performance on the training and testing
partitions:

test forecast (datats, forecast.
obj = ONrainfall test fc,test
= test)

We then have the output as shown in
Figure 5:

datats - Actual vs Forecasted and Fitted

o
ARIMA(1,0,0)(2,1,1)(12)

Figure 5. Plot of datats — actual & forecasted an fited.

Now that we have satisfied the preceding
conditions, we can move on to the last step of
the forecasting process and generate the final
forecast with the selected model. We will start
by retraining the selected model on all the series:

final md <- Arima (datats,
order = c¢(1,0,0), seasonal =
list (order=c(2,1,1)))

Before we forecast the next 24 months, let
is verify that the residuals of the model satisfy
the model condition. We execute the code as
follows:

checkresiduals (final md)

The output is as Figure 6:

Residuals from ARIMA(1,0,0)(2,1,1)[12]

1000~

2000 2005 2010 2015

0.10-
0.05-
s}
Q 000
0.05-
0.0~

o T ml—mmnm m 7 |
12 2000
Lag st

counl

Figure 6. Residuals fromthe SARIMA(1,0,0)-(2,1,1),,
model applied to monthly rainfall data.

The output of the Ljung-Box test suggested
that the residuals of the model are white noise:

## Ljung-Box test

## data: Residuals from
ARIMA (1,0,0) (2,1,1)[12]
## Q* = 9.7273,

daf = 20,

p-value= 0.9729

## Model df:4.

## Total lags used: 24

By looking at the preceding residuals plot,
you can see that the residuals are white noise and
normally distributed. Furthermore, the Ljung-
Box test confirms that there is no autocorrelation
left on the residuals with a p-value of 0.9729,
we cannot reject the null hypothesis that the
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residuals are white noise. Thus, we now have a
seasonal ARIMA model that passes the required
checks and is ready for forecasting.

The main goal of the forecasting process
is to minimize the level of uncertainty around the
future values of the series. Although we cannot
completely eliminate this uncertainty, we can
quantify it and provide some range around the
point estimate of the forecast. The confidence
interval is a statistical approximation method
that's used to express the range of possible values
that contain the true value with some degree of
confidence (or probability). We now use the

forecast function to obtain the predicted values
for the next 24 months of the data series.

ONrainfall fc <-
forecast (final md, h = 24)
ONrainfall fc

Forecast package is written by Rob J
Hyndman and is available from CRAN here.
The R package forecast provides methods and
tools for displaying and analysing univariate
time series forecasts including exponential
smoothing via state space models and automatic
ARIMA modelling.

We obtain the result as described in Table 4:

Table 4. Forecasts of the mothly rainfall data using the SARIMA(1,0,0)(2,1,1),, model with 80% and 95%

confidence intervals.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 2019 91.76578 -96.60397 280.1355 -196.32090 379.8525
Feb 2019 42.27684 -146.48860 231.0423 -246.41498 330.9687
Mar 2019 33.84519 -154.92190 222.6123 -254.84917 322.5396
Apr 2019 43.94335 -144.82376 232.7105 -244.75103 332.6377
May 2019 83.59559 -105.17151 272.3627 -205.09878 372.2900
Jun 2019 46.60968 -142.15743 235.3768 -242.08470 335.3041
Jul 2019 61.58513 -127.18198 250.3522 -227.10925 350.2795
Aug 2019 116.15631 -72.61080 304.9234 -172.53807 404.8507
Sep 2019 198.88576 10.11865 387.6529 -89.80862 487.5801
Oct 2019 434.81604 246.04893 623.5831 146.12166 723.5104
Nov 2019 592.95521 404.18811 781.7223 304.26084 881.6496
Dec 2019 260.07814 71.31136 448.8449 -28.61573 548.7720
Jan 2020 89.25500 -99.61077 278.1208 -199.59027 378.1003
Feb 2020 27.27827 -161.58825 216.1448 -261.56814 316.1247
Mar 2020 31.56637 -157.30015 220.4329 -257.28005 320.4128
Apr 2020 40.21528 -148.65124 229.0818 -248.63113 329.0617
May 2020 75.65715 -113.20936 264.5237 -213.18926 364.5036
Jun 2020 58.20946 -130.65706 247.0760 -230.63695 347.0559
Jul 2020 53.28597 -135.58055 242.1525 -235.56044 342.1324
Aug 2020 102.82699 -86.03953 291.6935 -186.01943 391.6734
Sep 2020 214.99832 26.13180 403.8648 -73.84809 503.8447
Oct 2020 445.11325 256.24673 633.9798 156.26684 733.9597
Nov 2020 534.54059 345.67407 723.4071 245.69418 823.3870
Dec 2020 265.01471 76.14849 453.8809 -23.83125 553.8607

We can plot historical data with forecasts and confidence intervals by the plot forecast function:

plot forecast (QNrainfall fc,title = "Quy Nhon Rainfall Forecast",

Ytitle = "Rainfall (mm)",Xtitle =
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"Year")
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We then obtain the output as Figure 7:
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Figure 7. Forecasts of the mothly rainfall data using the ARIMA(1,0,0)(2,1,1),, model with 80% and 95%

confidence intervals.

Note that the lower bounds are somewhat
funny for rainfall. Is the earth going to sprinkle
water back into the clouds? We explain this as
follows: the simulation of the forecasts genera-
ting a family of forecasts for each period can
simply be truncated at 0.0, which is meant to
decouple the variance of the errors from the
expected value of the model when one can safely
ignore values lower than 0.0.

4. CONCLUSIONS

In this study, we used the SARIMA model for
forecasting monthly rainfall data of Quy Nhon
city. Based on seasonally differenced correlogram
characteristics, different SARIMA models were
evaluated; their parameters were optimized, and
diagnostic check up of forecasts was made by
using white noise and heter-oscedasticity tests.
The best SARIMA model (corresponding to our
data) was chosen based on smallest value of AIC
and RMSE. A validation check was performed
on residual series. Residuals was found white
noise for SARIMA-(1,0,0)(2,1,1),, model. The
predicted values from the model were compared
with the actual values to determine prediction
precision. We found that selected model predicted
monthly rainfall with a reasonable accuracy.
Therefore, year-long rainfall can be forecasted
using these models. Moreover, this model can be

applied in the study of the time series in similar
fields at Quy Nhon or other cities.
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