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TOM TAT

D6 chinh xac ciia lugng tit 13 mot van dé quan trong trong 1y thuyét thong tin lugng ti va 1y thuyét hén
don luong ti. Pai lugng nay do khoang cach gifta céc ma tran mat do hay con dugc hiéu la cac trang thai cia
lugng ti&. Mac dit dai lwong nay khong phai 13 mot metric tuy nhién né ¢ nhiéu tinh chat hitu dung gitp xéc
dinh mot metric trong khong gian cac ma tran mat do. Trong bai béo nay ching toi dwa ra va chtiing minh mot
bat ding thiic ¢6 tham s6 vé do chinh xéc ctia lugng tit. Hé qua 1 véi hai trang thai luong tit A va B sao cho
8 < ||A - B||1 < 16, bat dang thitc ma ching toi dua ra la mot truong hop lam chat hon cho bat dang thic

Fuchs-van de Graaf.

Tw khéa: Thong tin lugng tii, ham khodng cdch, trung binh nhan, d¢ chinh xdc.

"Tac gia lién hé chinh..
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ABSTRACT

Quantum fidelity is an important quantity in quantum information theory and quantum chaos theory. It

is a distance measure between density matrices which are considered as quantum states. Although it is not a

metric, it has many useful properties that can be used to define a metric on the space of density matrices. In

this article, we prove a parameterized inequality for quantum fidelity. As a consequence, for quantum states A and

B such that % < ||A = BJ|1 < 16, our result is a refinement of the well-known Fuchs-van de Graaf ’s inequality.

Keywords: Quantum information, Function distances, Geometric mean, fidelity.

1. INTRODUCTION

Let H be the n—dimensional Hilbert space C™.
The inner product between two vectors x and
y is written as <x7y> or as x*y. We denote by
L(H) the space of all linear operators on H, and
by M, (C) (or simply M,,) the algebra of n x n
matrices over C. Denote by I the identity matrix
of M,,.

Every element A of £(H) can be identified
with its matrix with respect to the standard ba-
sis {e;} of C". We use the symbol A for this ma-

trix as well. We say A is positive semidefinite® if
<IE,A1‘> >0, for all z € H,

and positive definite if, in addition,
<:U,Ax> > 0, for all « # 0.

It is clear that a positive semidefinite matrix
is a positive definite matrix if only if it is invert-
ible. For convenience, we use the term positive
matrix for a positive semidefinite, or a positive
definite, matrix. Sometimes, if we want to em-
phasize that the matrix is positive definite, we
say that it is strictly positive. We use the nota-
tion A > 0 to mean that A is positive, and A > 0
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to mean it is strictly positive. We denote by AT
the transpose of matrix A and the adjoint matriz
A* as the complex conjugate of the transpose A .
If A = A* then we call A is Hermitian, we also
denote H,, as the real subspace of M, consist-
ing of Hermitian matrices. For each A € M,,, we
have A*A > 0. Therefore, we can define the ma-
trix |A| = (A*A)"/? which is called the absolute
value of A. This matrix can be also defined us-
ing functional calculus. We have a result!, A is
positive if only if A = B? for some positive ma-
trix B. Such B is unique. We write B = AY/2 or
B = +/A and call it the (positive) square root of
A. Evidently, A is strictly positive if only if B is
strictly positive.

The eigenvalues o;(A) of |A| are called sin-
gular values of A. If A € M, then the usual
notation is

where

01(A) > 09(A) > ... > 0,(A).

Let denote by D,, the cone of positive definite
matrices in M,,. The space of density matrices is
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defined as
D ={AeD,:TrA=1}.

Definition 1.1. Let A,B € D, be positive
semidefinite matrices. The fidelity®” between
two elements A and B is defined as

F(4,B) = [|VAVBI|, (1.1)

where ||.|[1 is Schatten 1-norm (trace norm),
[|Ally = Tr|A] = Trv AA*.

Alternatively, the trace norm of an operator
(or a matrix) A can be expressed as the sum of
n

its singular values, ||A|[1 = >_ 0:(A).

=1
In quantum theory, quantum fidelity is de-
fined for density matrices, and it can be general-
ized to the set of positive semidefinite matrices.
By (1.1), we have
125 41/2) /2
F(A,B):Tr(A 2B A /) .
Many researchers have paid attentions on dif-
ferent distance functions on D,, in the past few
years. One of the important distance functions is

the Bures distance!?

dy(A, B) = (Tr(A +B) - 2Tr((A1/QBA1/2)1/2)>1/ ’

dy(A, B) = (Tr(A+ B) — 2F (A, B))"/2.

When A,B € D}

. quantum fidelity have

3,5,7

several important properties®?’, which can be

proved in the sense of unital C*-algebras

(1) Bounds: 0 < F(A,B) < 1. Furthermore
F(A,B) =1iff A= B, while F(4,B) =0
iff supp(A) L supp(B).

(2) Symmetry: F'(A,B) = F(B, A).

(3) Unitary  Invariance:  F(A, B) =
F({UAU*,UBU*), for any unitary matrix
U.

(4) Concavity: F(A;tB + (1 — t)C) >
tF(A,B)+(1-t)F(A,QC), fort € [0,1] and
A,B,C €D,

(5) Multiplicativity: F(A ® B,C ® D) =
F(A,C)-F(B,D), for A,B,C,and D € D’..

(6) Joint concavity: F(tA+ (1 —t)B,tc+ (1 —
t)D) > tF(A,C) + (1 = t)F(B,D), for
t€[0,1] and A, B,C, and D € D;.

In'2, the authors considered the function
f(X) = Tr(AX + BX!) on D,. Using the
Frechet derivative of the function f(X) they
showed that the geometric mean Xy = A~'fB =
AY2(AVZBAY2)2 A=1/2 s the only critical
point of f(X). Hence, f(X) attains minimum at
Xo:

min f(X) = f(Xo) =
X>0 . )
Tr((A(A 4B) + B(A{B ))
2Tr(AY2BAY?)Y?2 = 2F (A, B).
They also use the block matrix techniques to

show the following: For positive definite matrices
A and B,

(1) F(A,B) = min VTr(AX)Tr(BX1).

9

(2) F(A,B) = I}I{la%iﬂTrX\ cA> XB1X*)
>

One of the most important inequalities

of quantum fidelity is Fuchs de Graaf’s

inequality%!!.

Theorem 1.1. (Fuchs-van de Graaf’s inequal-
ity) For two density matrices A and B € D}, we

have
1 1
1= 2l = Bl < F(4,B) < /1~ ll4 - BI2
(1.2)
Equivalently,
2~ 2P(A, B) < ||A - Bl|y < 2,/T— F(4, B
(1.3)
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The above inequality provides an upper
bound and lower bound of quantum fidelity. It
is also a tight relationship between different dis-
tances between A and B

The proof of the right inequality of (1.3) is
based on Uhlmann’s theorem* while the proof of
the left inequality of (1.3) based on the following
resultS.

Lemma 1.1. Let A, B € D,, be positive semidef-
inite matrices. It holds that

|A= Bl > [[VA - VB,

where ||.||2 is the Sheatten 2-norm,

4 = (Y o) "
=1

It is worth mentioning that it is difficult
to improve the Fuchs-van de Graaf inequality.
In'!, the authors established a lower bound for
F(A, B) as follows.

Let Ao = Amax(B Y/2AB1/2),
Amax(X) is used to denote the maximum eigen-

where

value of the matrix X. Then

=

0
|A— Bl

F(A,B)>1—
W21 e+

N =

2. MAIN RESULTS

In this section we establish an estimate for the
trace-norm of the difference for two density ma-
trices A and B and the fidelity of A and the
convex combination tA+ (1 —t)B,t € [0,1] of A
and B.

Before presenting the main result, let’s recall

the following well-known inequality®?:10

dy(4, B) < d}*(A, B),

where A, B € D,. This inequality was first
proved in C*-algebra setting by Araki in'?. How-
ever, we can prove this inequality by another way
as follows.

By Lemma (1.1), we have

1A= Bl > [[VA- VB3
= Tr(vVA-+vB)?
= Tr(A+B-2VAVB)
> TrA+TrB—-2F(A,B)
= dj(4,B),
where the last inequality follows from the fact
that

F(A, B) = Tr(AYV2BAY?)2 > Tr(AY2BY?),

which is the consequence of the famous Araki-
Lieb-Thirring inequality'®.

Theorem 2.1. Let A,B € D. and t € [0,1].
Then

VFA AaT (1= 0B > 1 (1-VA)|A-BI}"

Proof. Firstly, let us recall the Jensen inequality
for trace. Let f be a continuous and concave func-
tion on an interval J and m be a natural number.
Then for self-adjoint matrices X1, -, X,, with
spectra in .J,

Tr<f<§: A:x:A)) = 7o f: A F(X)A;),
i=1 i=1

where Ay, -+, Ay, satisfy Y AFA; = 1.
i=1
We have

F(A,tA+ (1—1)B)

= Tr[AV2(tA+ (1 —t)B)AY?]/?
= Tr[tA* + (1-t)A2BAV?)?
> Tr[tA+ (1—t)(AY2BAY?)1/2]
= t+(1-t)F(A,B),

where the inequality is valid according to the

1/2

concavity of the function  — x'/* and Jensen’s

trace inequality.
From dy(A, B) < d;/*(A,B) = [|A - BI|}/*,

we have

1
-0 -VDllA- Bl

< 110~ VDA, B)
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1— 1(1 - \/i)\/(z — 2Tr(AY/2BAY/2)1/2)

4
1-(1-vt)y/(1-F(4,B)).

Thus, it is necessary to prove

(ENON

Since 0 <t < 1,and 0 < F(A, B) < 1, squar-
ing both sides of this inequality, we have

t+F—tF>1-2(1-Vt)V1-F
+(1-Vt)*(1-F)
& (t-1D)1-F)+201-Vt)V1-F
~(1=Vi)’(1-F) >0
(1-v1)4
+2(1 - Vt)VI-F >0
& 20-VHVI-F—(1-F)]>0.

Vt+ (1 —t)F(A,B) > 1-

& (1-F)t-1)-

In the above transformations, F'is used to de-
note for F'(A, B). The last inequality is evident
because 0 < v/t < 1, and 0 < 1 — F(A,B) <
1. O

Remark 2.1. For t = 0, with ||A — BJ||; < 16
and from the theorem we have

F(A,B) > <1—f|rA BI}/*)2.

Let’s compare the value (1 — ||A BHI/Q)

and the value 1 — %HA — B||1 on the left-hand-
side part in the Fuchs-van de Graaf inequality.
By a simple computation, if ||A — BJ||; > 64/81
then we have

1/2\2 1
F(A,B) > (1—3l|A= B/ > 1~ Z]|A~B|..

Indeed, from the last inequality we have
1/2\2 1

<1—+|A B 2 1= Z[|4- Bl

1/2

& 1-gllA- Bl + |4~ Bl

1
>1--||A-B
>1- 5|4 Bl

F(4, B)).

A_B 1/2
=P (- 1) 20

which is equivalent to that
I|A — B||1 > 64/81.

Therefore, the main result is a refinement of
the Fuchs-van de Graaf inequality for a big set
of quantum states A and B.
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