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ABSTRACT

The development of numerical modeling for safety-related cabinet facilities plays an essential role in

seismic risk assessment. For nonlinear time history analysis, a full finite element model is often time-consuming

due to its computational complexity. A simplified model can significantly reduce modeling complexity, however,

the dynamic characteristics (such as mass, local mode shapes, or nonlinear behavior) are not fully captured. The

current paper presents an overview of the current literature addressing the development of cabinet modeling. The

results are expected to serve as a general reference and starting point to new researchers.

Keywords: Cabinet facility, nuclear power plant, simplified model, finite element modeling.

1. INTRODUCTION

Electric cabinet is one of the essential facilities
innuclear power plants (NPPs). This equipment
is sensitive to acceleration due to carrying
relays and switches.! During an earthquake,
the cabinets can be damaged and they can
extend the accident to nearby structures
triggering an uncontrolled mechanism known
as the Domino Effect (see Figure 1).2 Besides,
the cabinet contains many power distribution
systems such as electric switchboard, control
transformer, or control circuit fuse, and so on,
which is quite sensitive to the performance
of the cabinet. The damage to the mechanical
and electrical equipment in nuclear power
plants causes the large social and economic
damage. Therefore, the seismic performance

*Corresponding author.

of these non-structural components should be
considered carefully.>!!

Generally, to assess the structural
performance of cabinet facilities, the experiment
and finite element methods are popularly used. -4
However, these approaches are expensive and the
result interpretation may be difficult. As shown
in Figure 2, the experimental approach is the
most time-consuming compared to the analytical
one, and when the equipment complexity
increases, the analysis time increases.'” The
large portion of experimental works leads to the
cost increase. Additionally, it is noted that finite
element analysis can produce serious errors due
to inexperience on the part of users.!° Moreover,
due to the complexity of the attached electrical
devices, it will take a long time for analysis.
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Figure 1. Damage of non-structural components. '

to overcome the above limitation, there is a need
to develop a simplified approach for practical
reasons. In 2016, Lim'® developed a method
for generating simplified finite element models
for electrical cabinets, which can capture the
buckling behavior or failure of connectors of
cabinet structure. Various researchers developed
numerical models of cabinets that can capture
the buckling of steel plates, failure of connectors,
and the local buckling effect and nonlinear
behavior support boundary conditions. '

The present paper focuses on surveying
the reported numerical modeling for cabinet
facilities in the nuclear industry. Firstly, the
important structural features of electrical cabinets
are described in Section 2. Secondly, numerical
modeling of the electric cabinet using Finite
Element Model (FEM) is given in Section 3.
Finally, the methodology for generating the
numerical modeling of the electric cabinet using
the simplified approach is discussed in Section 4.
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Figure 2. Work content and hours estimation for
nonstructural qualification based on the complexity
of the electrical equipment.'s

2.IMPORTANTSTRUCTURALFEATURES
OF ELECTRICAL CABINETS

Framing members, steel plates, and the
connections between framing members and
plates/framing members are the main components
of a cabinet. The framing members are usually
connected to each other using fasteners (i.c.,
weld, screw, or bolt). The enclosure steel panels
are usually connected to the framing members via
screw or bolt fasteners. The base-frame members
of the cabinet structure are then anchored to the
floor through channel-section frames using bolt
connectors (Figure 3).%!

In a cabinet structure, the frame members
work similarly to the framing elements of a steel
frame. During seismic loadings, the collapse
of an electrical cabinet causes the following
reasons: (i) failure of connections at the base
or between plates with frame members, (ii)
buckling of the plates, and (iii) buckling of the
frame members.

Other components including operational,
bracing, and isolation systems may contribute
to the dynamic performance of the cabinet.'
Operational attachments are any parts attached
to the cabinet to maintain its active operation
(Figure 4). The bracing attachments can
improve the structural rigidity and reduce
relative displacements of the cabinets. And the
isolation reduces seismic demand and dynamic
amplification in cabinets as well as modifying
their dynamic characteristics.
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Figure 3. Details of anchor bolt.*
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Figure 4. Components in the cabinet.

3. FULL FINITE ELEMENT MODELS

As empirical data has numerous limitations
and large numbers of specimens cannot be
tested on shake tables, it is more practical to
evaluate the seismic vulnerability of electrical

https://doi.org/10.52111/qnjs.2023.17301

equipment using numerical techniques, such as
finite element. Using Finite Element Model with
the supports of finite element softwares is easy
to capture the dynamic behavior of the cabinet
under various boundary conditions and loading
configurations.

In 1999, Gupta et al.** developed finite
element models of 16 types of electric cabinets.
One of them is the DGLSB cabinet (Figure 5)
which is an individual unit and instrument mount
on the doors and internal frame. This FE model
were verified with the results reported by Rustogi
and Gupta.”® The outcomes from the analysis
are used to evaluate in-cabinet response spectra
needed in the seismic qualification of electric
instruments.?*> Later, the method was modified
by Gupta and Yang?® to overcome limitations that
were encountered during applications to actual
cabinets. The results show that the contribution
mode, called “significant mode”, is a local mode
of the cabinet in most cases. However, in some
cases, the global cantilever mode of the cabinet
may also be significant along with or without the
local modes.

Likely, the FEM of the cabinet is generated
using SAP2000 by Tran et al.,”’° as shown in
Figure 6. The main-frames and sub-frames are
modeled using the frame elements, and the steel
plates are modeled using the shell elements.
Plates and frames are connected by link elements.
The connection between the door and main-
frame is simulated as a hinge, which is fixed at
five degrees of freedom. Meanwhile, the locks
between panels and main-frames are fixed at three
translational degrees of freedom. For the support
boundary condition, the simplified pressure-
cone method as stated by Shigley is adopted to
calculate the stiffness of the anchor bolt.*® Later,
using this developed FEM, Cao et al.*' proposed
a simplified approach for assessing the seismic
risks for cabinets. The method is a combination
of fragility analysis and cumulative absolute
velocity (CAV) analysis.

In reality, the cabinets will be connected
together and how rational is the approach to
consider the seismic response ofa single electrical
cabinet and its integration into the multi-cabinets
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(as called a “grouping effects”) (Figure 7).33*
The grouping effect is the inclusion of the
structural modification to the idea and it was
considered in the form of two entities mainly
the mass and stiffness provided by the cabinets.
The rigid links are considered for connecting the
cabinets, which is not inducing any change in the
dynamic characteristic of the structure.

Regarding the impact of boundary
conditions on the performance of electric
cabinets, various researches are also studied.
Rocking behavior of cabinet subjected to Reg.
1.60* was carried out by Jeon et al.* In this
research, different models were developed using
Abaqus and ANSYS, and verified using the
experiment data.
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Figure 5. Cabinet models proposed, adapted from Gupta et al.
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Figure 6. Cabinet models proposed, adapted from Tran et al.”’
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Figure 7. Typical cabinet models, adapted from Salman et al. 3%
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Figure 8. Finite element models of cabinet, adapted from Jeon et al. 3¢

4.SIMPLIFIED FINITE ELEMENT MODELS

In 2016, Lim" developed a method to generate
simplified finite element models for electrical
cabinets. The model is comprised of beam
elements, shell elements, and spring and
constraint equations. These models can capture
the nonlinear behavior of cabinet structure,
such as the buckling of steel plates, failure of
connectors, and the local buckling effect near
the end of the framing members. In this research,
two configurations of cabinet namely Class I and
Class II are presented, as shown in Figure 9.
Class I is a model of an electrical switchboard
cabinet where all structural components are
constructed from plain sections. Class II is the
model with some applied improvements of the
screw connections between plates and framing
members. A comparison of the modeling features
between Class I and Class II is summarized in
Table 1. Besides, the effects of electric devices
installed inside the cabinet (i.e., busbar, main
circuit breaker, and meter devices) on the

nonstructural performance were also studied.

Later, Tran et al.*’ also developed bare-
frame model to capture the local buckling
behavior of frame members. The numerical

models are developed using OpenSees.*® The

https://doi.org/10.52111/qnjs.2023.17301

fiber-based plasticity approach, which can
capture the nonlinear behavior, is utilized. In
this model, the elements must be discretized into
fibers, as shown in Figure 10. Five integration
points divide elements into sub-elements. To
consider the nonlinear behavior, the relationship
of stress-strain of each fiber on the cross-section
of the sub-element (i.e., steel0l, steel02) is
defined.*#!
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Figure 9. Cabinet models proposed, adapted from

Lim."

Class 11

10 | Quy Nhon University Journal of Science, 2023, 17(3), 5-13



QUY NHON UNIVERSITY

I SCIENCE

Table 1. Comparison between Class I and Class II configurations.
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Figure 10. Cabinet models proposed, adapted from Tran et al.’’

4. DISCUSSIONS

The development of the numerical models of the
cabinet using different approaches is presented
in this paper. The models using finite element
approach are accurate to capture both local
and global behavior of the cabinet. The global
behavior of the frame members can affect the
local mode shapes of the plates.

In practice, the simplified models are
preferred to depict the global behavior rather
than the full model which considers the local
modes and requires time-consuming. However,
it should be noted that the accuracy of the
simplified models depends on the assumptions
for idealization.

The application of the simplified models
may be limit when considering the effects of
local mode shapes or the occurring possibility of
the buckling modes of sections.

5. CONCLUSIONS

This paper has collected and reviewed the
methodologies used to develop the numerical
model of the electric cabinet. A description
of the important characteristics is presented
first, followed by a description of modeling
development. In each of them, the different
strategies of structural modeling are discussed.
The present paper has attempted to give an
overview of the different research directions and
it is expected to serve as a general reference and
starting point to new researchers.
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