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TOM TAT

Bat ding thitc Aczél xuat hien lan dau tien vio nam 1956. Ké tit d6, no da thu hit sy quan tam ciia nhiéu nha
toan hoc. Tt d6 cac két qua md rong va ting dung ciia bat déng thiic nay da duge cong bd. Trong bai béo nay,
chiing t6i trinh bay céc phién ban tich phan cho mot s6 mé rong clia bat ding thic Aczél. Qua d6, ching t6i thu
duge dang tich phan cho céc bat déng thitc Aczél va Bellman.
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ABSTRACT

Aczél inequality was first proposed in 1956. Then it has been considered by many mathematicians. Thus its

generalizations and applications were published. In this paper we establish integral versions of some generalizations

of Aczél’s inequality. As a consequence, we obtain integral types of Aczél’s inequality and Bellman’s inequality.

Keywords: Aczél-type inequality, Bellman’s inequality, Popoviciu’s inequality.

1. INTRODUCTION

In 1956, a famous result of J. Aczél was published

in the research! stated as follows.

Theorem A (). If a1, as,...,an, by, ba,... by,
are positive real numbers such that a3 > a3 + a3 +

o4 a2 and b3 > b3+ b3 + - + b2, then

n n n 2
(a% — Z af) (b% — Z b?) < <a1b1 — Z aibi)
=2 .

=2 1=2

(1)

Inequality (1) was later called ‘Aczél’s inequal-
ity’. In 1959, the first extension of (1) was provided
by Popoviciu® and later called ‘Popoviciu’s inequal-

ity’ stated as follows.
Theorem B (3). Let p, q be positive real numbers

1 1
such that — + — =1 and let ay,...,ayn, b1,..., b,
p q
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be positive real numbers such that o} > a¥+---+a?,

and by > b3 4 --- + bl. Then

n 1/p n 1/q n
(a’l’ - Zaf) (b’f - be) <arb — Zaibi.
i=2 =2 =2
(2)

The next result is the famous Bellman’s inequal-
ity. Although this inequality was discovered in 1934
by Hardy et al.?, it is also considered as a Aczél-

type inequality. Let us recall this inequality.

Theorem C (?). Let ay,...,an, b1,...,b, be pos-

itwe real numbers and p > 1. If a > ab +--- +a?,

andbf>b‘g+-~+bp then

n’

n 1/p n 1/p
(afZaf) +<bbef)
i=2 i=2

n

(a1 +b1)” =) (a;i +b;)?

=2

1/p

- 3)

<
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Recently, some generalizations of inequalities
(2) and (3) are presented by Chang-Jian Zhao and
Wing-Sum Cheung.? These results are stated as the

following theorems.

Theorem D (4

~—

Let p, q be positive real numbers

1 1
such that — + — = 1 and let a;,b;, a5, (1 =
q
1,...,n,5 = 1,...,m) be positive real numbers
such that
n m m n
(-2) - (S-S >0
=2 j=11i=2
n m m n
(s1-30) - (-2
i=2 j=1 j=11i=2
aﬂ a]‘n
7= =7 J = 17 , 1M
bj1 bin
Then

Zaylbﬂ - Zzaﬂ ji

<a1b1 Z ab )

j=1i=2
" mon 1/p
(- 3e) - (-3
j=1 =1 i=2
1/a
o (r-2) - (Sm-Tem
=1 =1 i=2

(4)
Theorem E (4> Letp > 1, ai,bi,aji,bji (] =

,- ., n) be positive real numbers such

j=1 j=11i=2
a1 a9 a
JL __ n _
b - b - - b’ J= 17 27 ,
j1 2 in

Then
((al +01)P = > (@i +0:)” ) = | (a1 +bj1)
i=2 j=1
- Z (aﬂ + bﬂ)
=1 i=2
> |(-3) - (Z bS5
=2 j=1 Jj=11i=2
n m m n 1/p
< (r-2) - (S-S
i=2 j=1 =1 i=2

In the present paper we establish integral ver-
sions for inequalities (4) and (5). As a result, re-
spective integral versions of inequalities (1) and (3)

are obtained.

2. MAIN RESULTS

We first establish an integral version of inequality
(4) in Theorem D as follows.

Theorem 2.1. Let A,B, A;,B; (j = 1,...,m)
be positive real numbers. Let f, g, fj,g; (7 =
1,...,m) be positive Riemann integrable functions

on [a,b] such that

Uy —Usy >0, (6)
Vo= Vam >0, (7)
ﬁz —Aj, Vo€ fab], j=1,2,...,m, (8)
where

b
Uy = A? — /fQ(x)dx,

b

Vo =B? - /gQ(x)da:,

a

m m b
=>4 -Y [
j=1 J=17

m m b
=38 =Y [ G
j=1 j=1
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Then

[WQ - WQ,m]z 2 [UQ - U2,m] X [V2 - V2,m] ) (9)

where
b
Wy = AB — /f(x)g(x)dm
m m b
Wom = ZAij — Z/fj(a:)g](m)dm
j=1 j=1

Proof. For any positive integer n, we choose an

equidistant partition of [a,b] by n + 1 points

o <X <--- < Ty,

—a

with xg = a, x; = a +1 A =2 — X1 =
b—a

n

,1=1,2,...,n. Due to (6) and (7), it follows
that there exists a positive integer number N such
that for all n > N we have

<A2 =3 P (wie) A$> -

i=1

[un

j=1 j=11i=1

and

<B2 — Zgz (-%'i—l) Az
i=1

~_—
I

j=1 j=11i=1

- (Zb? —ZZQ i 1)Aw>
It follows from (8) that
, b—a
AGIEE=

95 (aJr(il)b;a)

for j = 1,2,...,

m and i = 2,3...,n. Applying

Theorem D with

1
p:q:§,a1:A,b1 B (ljl—A bglsz,
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forj=1,...,

aj; = [ (a+(i—1)

b=y (=)

m, 1=1,...

b—a

b—

, 1, we obtain

(AB — Zf (l‘ifl)g (.Tifl) (Al‘)% ;> —
i=1

X
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n

m

n

j=11i=1

i=1

n

i=1

(ZB2 3 g2 (o 1)Am>

m

(z/f S5 2

Jj=11i=1

<32 = g% (i) AI) -

j=11i=1

1/2

- (ZAJBJ SN fi @ic1) gy (@im1) (Az) 2 5)

<A2 = (@im) Aﬂﬁ) -

1/2

)

1/2
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Since f, g, fj, g; are Riemann integrable on [a, b],
SO are f27 927 fg’ f]27 957 and f]g] (-] = 17"',m)'
Letting n — oo in both sides of (*), we obtain (9).

The proof is complete. O

In the case of m = 1, we get an integral type of

Aczél’s inequality (1):

Corollary 2.2. Let A > 0, B > 0, and let f,g
[a,0] — (0,00) be Riemann integrable functions
such that A®> > ff2 Ydx and B? > fg
Then

b b

<A2—/f2(m)dx —/gQ(x)da:)
b
<48~ [ rgas | - o

By using a similar method in the proof of The-
orem 2.1, we get the following result, which is an

integral version of inequality (5).

Theorem 2.3. Let p > 1, A > 0, B > 0. Let
aj, b, (j=1,...,m) be positive real numbers. Let
f7 g, fj?.gj (]:177

tegrable functions on [a,b] such that

m) be positive Riemann in-

Up —Upm >0, (11)
Vo = Vom >0, (12)
filx) _a; ,
==, x € la,b], j=1,2,...,m, (13)
gi(z) b, .0
where

m m b

BN
Then
[Hy — Hypn]"? 2 [Up = Uy /? + [V = Vo] 7,

(14)
where
b
:M+BV—/U@Hﬂ@W¢E

-y (a; +b;)? Z/ x) + gj(2)]" dz.

j=1
Proof. For any positive integer n, we choose an
equidistant partition of [a,b] by n + 1 points

To <X < -+ < Ty,

. . b—a
with 2o = a, v; = a +1 A =2 —

b—a

Ti—1 =

,i=1,2,...,n. Owing to (11) and (12), there

exists a positive integer number N such that for all

n>N
(Ap—zn:fp ("Eil)A$> —
i=1
-(S4-EXgena) >0
j=1i=1
and

(Bp - ng (zi-1) Ax) -
i=1

m n

pr Zng (2i-1) > 0.

j=11i=1

Since (13) , it follows that

fila) (Ax)'?

] .
A A =i =1,2,...,m.
g;(z:) (Ax)'/? Bj

Applying Theorem E with a; = A, by = B, and for
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aji=A;,  bj=Bj,
ai = f (2i-1) (D)7,
bi =g (wi1) (Ax)'7,
aji = fi (zio1) (Ax)"/P

bji = gj (wi-1) (Az)"/?

we get

{(A+B

m

— [ D4+ B))r-

ﬁ.
i M:
I

(xiz1) + g (ziz 1)]pr>—

j=1
m n 1/p
B Z Z [fj (xic1) + g5 (wi1)]” Az
J=1i=1
(Ap - z”: fP (i) Aw) -
z:lm ! 1/p
DAL= DA @i Aa
Jj=1 j=1i=1

1/p

(**)

Since f, g, fj,g; are Riemann integrable on [a, b],

it follows that f?, g9, (f + 9), f}, gf, (fi +9;),

j=1,...,m are also Riemann integrable on [a, b].
Letting n — oo in both sides of (**), we obtain

(14). The proof of Theorem 2.3 is complete. O

By setting m = 1 in (14), we obtain an integral

version of the famous Bellman’s integral as follows.

08

Corollary 2.4. Letp > 1, A > 0, B > 0. Let

f and g be positive Riemann integrable functions

on [a,b] such that AP > ffp )dxz and BP >

b
[ ¢*(x)dz. Then

b 1/p b 1/p
AP — / fP(z)dx - / 9" (x)
a b a 1/p
<|@snr- [ @+ @)
(15)
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