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TOM TAT

Ly thuyét chinh quy métric va cac tinh chit lien quan 13 mot cong cu hitu hicu trong cac linh vie Giai tich
bién phan va T6i wu. Trong vai chuc nim gan day, rat nhic¢u cong trinh nghicn ctu clia nhiéu nha toan hoc da
dong g6p vao 1y thuyét nay, trén ca hai phuong dién Iy thuyét va ing dung. Muc dich ctia bai béo téng quan
nay nham trinh bay mot sé phat trién néi bat gan day, trong dé nhédn manh chinh vao nhimg déng goép cia
nhém chiing toi trong 1y thuyét nay. Dac bict, 1a mot s6 ting dung ciia tinh chinh quy métric trong nghién citu
su hoi tu ctia phuong phap Newton gidi phuong trinh suy rong. Ngoai ra, ching t6i ap dung tinh chinh quy

métric dé thu duge mot phicén ban téng quat ciia nguyen 1y 16i cho 4nh xa da tri.

T khoéa: Tinh chinh quy métric, doi dao ham, tinh on dinh nhiéu, tinh lap Newton, 10i suy rong.
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ABSTRACT

The theory of metric regularity and related topics plays an important role in variational analysis and have
many applications in optimization. In recent decades, it has attracted the study of many researchers in both the
theoretical aspects and applications. In the survey paper, we present some recent developments, with emphasis
on the results established by our research group in the recent decade in this theory and its applications in the

study of the Newton-type methods for solving generalized equations. In addition, based on the metric regularity,

we establish a new result on a generalization of the convex principle for paraconvex multimaps.

Keywords: Metric reqularity, coderivative, perturbation stability, Newton iteration, paraconver.

1. INTRODUCTION

The study of many mathematical problems orig-
inated from practical applications, such as opti-
mization and complementarity problems, varia-
tional inequalities, as well as models in equilib-
rium problems, control theory and design prob-
lems, leads to consider inclusions of the type:

Find z € X st. y€ F(x) forgiven y €Y,
(1.1)

here, X,Y are metric spaces and F : X = Y is
a set-valued mapping (also called multimap or
multifunction) describing the model under con-
sideration. These inclusions are usually called
generalized equations, due to the pioneering
work of Robinson."? The existence of solutions
as well as the behavior and stability of the so-
lutions of (1.1) are important principal topics
and have attracted many authors working in the
fields of variational analysis and optimization.

The readers are referred to the monographs,>~12

*Corresponding author.
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13-15

to some recent contributions and the refer-

ences therein.

One of the key ingredients to deal with the
existence as well as the stability of the solu-
tions of (1.1) is the metric regularity and re-
lated properties. Historically, this property goes
back to the celebrated Banach open mapping
theorem and latter to the Lyusternik theorem
(see910.16-27

Recently, many important applications of this

and the references given therein).

property have been found and investigated, es-
pecially in the study of stability of variational
systems as well as convergence analysis of some
algorithms, e.g., as the Newton type methods

(86628_31)

. More recently, some generalized met-
ric regularity concepts have been introduced and
studied, due to the point of view of applica-
tions. For example, in the papers3*33, some
variants of relative metric regularity have used
in convergence analysis of some optimization al-

gorithms. An important notion of extended met-
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ric regularity is the directional metric regular-
ity (see?439) 6,34,35

references given therein for applications of di-

. One can be referred to and
rectional metric regularity in sensitivity analysis
and optimization.

In this survey paper, we presents some con-
tributions in the recent decade of our research
group to the theory of metric regularity and
some applications. This survey is far to be ex-
haustive on this subject. We recommend the re-
cent book and the survey papers by Ioffe?40:41
for the excellent accounts on the recent devel-
opments of the theory of metric regularity and
divers applications in variational analysis and
optimization. Outline of the paper is as follows.
In Section 2, we recall the notion of the metric
regularity and related notions; some classical re-
sults on the metric regularity; some variational
characterizations and the perturbation stability
of this property. Section 3 is devoted to the rela-
tive metric regularity, in which we present some
very recent results concerning the directional
metric regularity relative to a cone. In the final
section, some applications to the Newton meth-
ods for generalized equations and to the convex
principle for multimaps are reported.

2. METRIC
MULTIMAPS

REGULARITY OF

We recall firstly some basic notations and
notions from set-valued analysis. Throughout
the paper, for a metric space X endowed with
metric d, denote by B(z, p) and B[z, p| the open
and the closed ball centered at z € X with ra-
dius p > 0, respectively. The distance function
to a subset C' C X is denoted by d(z,C) :=
infyeo d(z,u). By a set-valued mapping ( or a
multimap) F' : X = Y, it means a correspon-
dance from X to P(Y), the set of the (possi-
bly empty) subsets of Y. Given a multimap F,
the graph of F, the domain of F' are the sets

gph F:= {(z,y) € X XY : y € F(x)} and
Dom F := {z € X : F(x) # 0}, respectively.
Inverse of F is denoted by F~! : Y = X, and
defined by

reFly) — yecFx).

A multimap between normed spaces is called
a convex (respectively closed) multimap if its
graph is convex (respectively closed) graph in
the product space.

2.1. Metric
results

regularity: Classical

Consider an operator equation defined by

flx) =y, (2.1)

where f: X — Y is a mapping acting between
metric spaces X,Y .

In practice, one finds out an approximate solu-
tion rather than an exact one. The error of some
approximate solution x is the quantity

d(z, f~H(y)) = inf{d(z,u) - f(u) =y}.

Naturally, the distance d(y, F'(z)) is used to
judge approximate solutions. One seeks so an
error estimate of the form

d(z, f(y)) < wd(y, f(z)) (2:2)
for all (z,y) in a suitable domain. If (2.2) is satis-
fied for (z,y) near a given (z,y) with gy = F(Z),
then [ is called metrically regular at z.

The metric inequality can be extended natu-
rally to multimaps. For example, consider a sys-
tem of inequalities:

gi(z) <yi,i=1,...,m. (2.3)

This system of inequalities can be investi-
gated via the generalized equation of the form:
y € G(z), where,

G(z) = (gi(®))i=1,..m + R y = (¥i)i=1,...m>
(2.4)

https://doi.org/10.52111/qnjs.2022.16101
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then GG : X = R™ is a multimap.

Let us now recall the notion of metric regu-
larity.

Definition 1. A multimap (set-valued map-
ping) F: X =Y is said to be metrically reqular
at (Z,y) (y € F(z)) if there are ,0 > 0 such
that

d(z, F~!(y)) < rd(y, F(x))
for all (z,y) € B((Z,9),
k denoted by Reg F(Z,7), and is called the reg-
ular modulus of F at (Z,7).

9). The infimum of such

In the linear case, the metric regularity is
closely related to the Banach open mapping
principle for bounded linear operators between
Banach spaces, restated as follows.

Theorem 2. (Banach open mapping principle)
Let X, Y be Banach spaces and let A € L(X,Y),
the space of bounded linear operators from X
to Y. If the operator A is surjective, that is,
ImA =Y, then A is an open mapping,that is,
there is r > 0 such that rBy C A(Bx). The up-
per bound of such r is called the Banach constant

of A:

C(A) = inf{[| A"+ [ly"[| = 1}.
Moreover, the following inequality holds
d(z, A7 (y)) < C(A) Y| Az — y]

for all (z,y) € X x Y.

The Banach open mapping principle tells us
that a bounded linear operator between Banach
spaces is (locally or equivalently globally) met-
rically regular if and only if it is surjective. This
principle was extended to continuously differen-
tiable mappings by Lyusternik as follows.

Theorem 3. (Lyusternik) Let X,Y be Banach
spaces; and let f : X — Y be a continuously
differentiable mapping ot & € X with f(Z) :=
Then f is metrically reqular at T if and only if
Df(z) is onto: If InDf(z) =Y.

https://doi.org/10.52111/qnjs.2022.16101

The metric regularity is strongly connected
to the Robinson and Mangasarian-Fromovitz
constraint qualifications in Mathematical Pro-
gramming. Consider F' := f—C, where f : X —
Y is a mapping of C' class and C C Y is a
nonempty closed convex subset. Given (z,0) €
gph F, then F' is metrically regular at (Z,0) if
the Robinson constraint qualification (RCQ) is
satisfied:

0 € int[f(z) + Df()X - C].

In particular, for systems of equality and in-
equality (2.4), one has the equivalence:

(RCQ) & (MFCQ) (Mangasarian-Fromovitz

constraint qualification).

In the case of convex multimaps, a necessary
and sufficient condition was given by Robinson-
Ursescu, stated in the following theorem.

Theorem 4. (Robinson-Ursescu) Given Ba-
nach spaces X, Y, a closed and convex multimap
F:X =3Y (F has a closed and convex graph),
F is metrically reqular at (zo,y0) € gph F if and
only if yo € int(ImF).

Next we recall the two notions of the open-
ness at a linear rate and of Lipschitz-like (or
Aubin) property of multimaps.

Definition 5. Let F' : X = Y be a mul-
timap acting between metric spaces X,Y and let

(Z,9) € gph F.

(a) F is said to be open at a linear rate around
(Z,7) if there exist s,e > 0 such that

By, ts) € F(B(x,1)),

V(x,y) € B((Z,9),¢) Ngph F. The supre-
mum of such r denoted by Sur F(z,y) and
is called the rate of openness (or surjec-
tion) of F at (Z,7).

8 | Quy Nhon University Journal of Science, 2022, 16(1), 5-21
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(b) We say that F is Lipschitz-like (or Aubin)
at (Z,79) if there exist L,e > 0 such that

d(y. F(z)) < Ld(z,u),

Va € B(z,¢), (u,y) € B((Z,9),e) Ngph F.
The supremum of such L is the Lipschitz
rate (or modulus) of F at (Z,y), and is
denoted by Lip F(Z,7).

The equivalence of these notions to the
metric regularity was given independently by
several authors (see, e.g., Borwein-Zuang 2
Kruger®3, Penot**, Toffe?).

Proposition 6. For a multimap F : X = Y
between melric spaces XY, and for (I,7) €
gph F the following three assertions are equiv-
alent.

(a) F is metrically regular around (Z,7);
(b) F is open at linear rate around (,7);
(¢c) F~1 is Lipschitz-like around (Z,7).

Moreover, one has the equality between modulus

1
F(z,7)=LipF Y(§,7) = —————.
Reg F(z,y) = Lip " (4, 7) SuFE.g)
2.2 Characterization of the metric
regularity via strong slopes

Let f: X — RU{+o00} be an extended real-
valued function defined on a metric space. We
make use of the notations: domf = {z € X :

f(z) < +o0}, the domain of f; limsup, liminf
yozyte YDTYET

mean that the limits superior/inferior are taken

as y — z and y # x; while limsup, liminf al-
y—T y—=x

low the case y = z. The symbol [f(z)]; stands
for max(f(z),0). Recall that the local slope of a
lower semicontinuous function f at x € domf is
denoted by |V f|(x) and defined by |V f|(z) =0
if  is a local minimum of f; otherwise

f@) = 1y)

|V f|(z) = limsup pTE)

Y=z yFe

For z ¢ domf, we set |V f|(z) = +o00. The non-
local slope of f is defined by

Tfl(z) = iil; T

For 2 ¢ domf, we set [I'f|(z) = 4+oc.

It is well-known in the literature that if X is a
normed space and f is Fréchet differentiable at x
then |V f|(x) = | f'(z)]|. Obviously, one always
has the relation |V f|(z) < [T'f|(x) for all z € X.

Recall the lower semicontinuous envelope
(z,y) — o (z,y) = @5(:1:) of the function
(z,y) — d(y,F(x)) defined by, for (z,y) €
X xY,

Foy.
oy ()= it urr
For the simplification of the notation, when one
works only with a given mapping F', one denotes
¢y =@k . The following theorem established by
Ngai-Tron-Théra®® gives an estimate of the reg-
ularity rate Reg F(Z, y) via strong slopes of the
functions .

Theorem 7. (Ngai -Tron- Théra*®) Let X be
a complete metric space and let 'Y be a metric
space. For a multimap F: X =Y, and for given
(Z,7) € gph F, one has

Reg F(z,7) ! = Sur F(z.7)

> lim inf Vo l(x).
> i 9l

When'Y is a normed space (or more general, a
smooth manifold, or a length metric space), the
equality holds

Reg F(z,7) " = lim inf

\V ).
(z,yH(f,@),y&F(z)‘ #l@)

liminf d(v, F(u)) = liminf d(y, F(u)).

https://doi.org/10.52111/qnjs.2022.16101
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2.3 Coderivative characterizations

Firstly we recall the main definitions and re-
sults from Variational Analysis necessary and
used in the sequel. Let f : X — R U {+o0}
be an extended real-valued function defined on
a Banach space X, the Fréchet (regular) subdif-
ferential of f at z € domf is defined by

T—T [lz—z]]

0f(z) = { € X* : liminf LT @l e=8) o}.

When f is a convex function, the Fréchet sub-
differential coincides with the subdifferential in
the sense of convex analysis. When z ¢ dom f,
one sets df(Z) = (). We shall also work on an in-
teresting subclass of Banach spaces, called As-
plund spaces being spaces such that on which
every convex continuous function is generically
Fréchet differentiable. Notice that any space
with a Fréchet smooth renorming (and therefore
any reflexive space) is Asplund. It is well-known
that a Banach space is Asplund if and only if
each of its separable subspaces has a separable
dual.

In the Asplund setting, the Fréchet subd-
ifferential enjoys a fuzzy sum rule which was

firstly proved by Fabian®® (see also!%7/m-2:33),

Given a nonempty closed set C' C X, the
indicator function associated to C' is the func-
tion vc defined by tc(x) = 0, when z € C' and
tc(z) = oo otherwise. The Fréchet normal cone
to C at T is the set N(C,Z) := duc(z) if £ € C,
and N(C,Z) == 0uo(7)=0if 7 ¢ C.

The limiting subdifferential (or also called
the Mordukhovich subdifferential) is defined by
Opf(z)={o* €X™: Jap ez, f(z) = f(T),

and 3af € Of (), o = ¥}

The limiting normal cone N;(C,Z) to a closed
set C' is defined through the indicator function
of the set:

NE(C, 3_;‘) = 8550(5?).

https://doi.org/10.52111/qnjs.2022.16101

Given a normal cone mapping N, it is associ-
ated with a set-valued mapping F' : X = Y a
coderivative Dy : Y* = X* by the formula

DyF(z,y)(y") = {z" € X*|

(z*,—y*) € N(gph F, (z,9))}.
(2.5)

For further the properties and calculus rules
for the Fréchet and liniting subdifferentials as

104951 and the refer-

well as coderivatives, see
ences given therein. In what follows, the Fréchet
coderivative of F' will be denoted by DZF, or
simply by D*F, while the limiting coderivative

is noted by D} F'.

The following theorem gave an estimate for
the slope of ¢, via the coderivative of the mul-
timap in question.

Theorem 8. (Ngai-Tron-Théra*S) Let F : X =
Y be a closed multimap acting between Asplund
spaces X and Y. Then for any (z,y) € X x Y
with y ¢ F(x), one has the following estimate

Veyl(z) > 7(z,y). (2.6)
where T(z,y) is defined by

a* € D*F(uv) (y*), [ly*] =1,
(u,v) € gph F. u € B(z,¢),
[y =l < @y(@) +¢,

[(y*, 0 —y) —py@)| <€

7(z,y) = liminf § [lo"]]

This theorem yields immediately the follow-
ing corollary.

Corollary 9. With the assumptions as in the
preceding theorem, for any (Z,y) € gph F, one
has

minf , ) z.9)0¢F @) [ Voyl(T) =
limo inf{[|2*] : 2* € D*F(u,v)(y"),
(u,v) € B((7,9).€), [y = 1}-

In view of this corollary, Theorem 7 im-
plies immediately the following characterization
of the metric regularity through the coderiva-
tives.

10 | .Quy Nhon University Journal of Science, 2022, 16(1), 5-21
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Theorem 10. (Ioffe®®) With the assumptions
as in the preceding corollary, one has

Sur F(z,9) =
lim. o inf{||z*| : 2* € D*F(u,v)(y"),

(u,v) € B((Z,9),¢), lly*| =1}
In the case when X, Y are finite dimensional,

one obtains the following nice point-based char-
acterization due to Mordukhovich (e.g.,'?).

Theorem 11. (Mordukhovich®®) Suppose that
X, Y are finite dimensional spaces, and
F: X =Y is a closed multimap. For given
(z,y) € gph F, F is metrically reqular at (Z,7)
if and only if

Ker D F(z,y) = {0},
where
Ker D} F(7,5) = {y* € Y*: 0€ DLF(z,9)(y")}.

2.4 Stability of the metric regularity
and regularity radius

For a mapping f : X — Y, let us denote

Lip f sup d(f(ifl),g(@));

1,226 X, 01772 d(l’1,$2)
d
o1, masF s A(T1,12)

called the Lipschitz modulus of f on X and near
Z, respectively.

The regularity radius of a multimap F at
(Z,7) € gph F is defined by

Rad F(z,5) = inf {Lip f(Z): F + f fails to be
[ X=Y

metrically regular at (Z,7 + (7))}

The following relation between the regularity
modulus and the regularity radius was estab-
lished in 53:54:40;

1

T.y) > —m .
Rad F(z,y) > Rea F(.7)

(2.7)

Precisely,

Theorem  12. (Ioffe™,  Dontchev-Lewis-
Rockafellar®) Let F : X =Y be a closed mul-
timap from a completed metric space X to a
normed space Y. Assume that F is metrically
reqular al (Z,y) € gph F with reg F(z,y) = T.
Then for any locally Lipschitz mapping f : X —
Y at T with Lipschitz constant L € (0,771), one
has

Reg (F + f)(z,5+ f(z)) < 1/(r™" ~ L).

Note that, due to Dontchev, Lewis, and
Rockafellar®® and also to Toffe®, that the equal-
ity holds if one of the following conditions is sat-
isfied:

e X and Y are finite dimensional spaces;

o [': X — Y is a single-valued mapping.

The following theorem due to Ngai®® shows the
validity of the equality in (2.7) holds for the case
of multimaps under suitable assumptions.

Theorem 13. (Ngai®) Let F: X = Y be
a closed multimap acting from a completed
metric space X to a uniformly convex space
Y. Assume that F is metrical regular around
(z,9) € gph F with reg F(z,y) =7 € (0,+00).
Then the equality in (2.7) holds under one of the
two following conditions:

(1) F is upper semicontinuous around &, F(u) is
convez for u near T and either F(Z) is singleton
or y is an interior point of F(Z);

(ii) Y is a finite dimensional space.
3. RELATIVE METRIC REGULARITY

Given a subset W of X x Y and a point
(z,y) € X x Y, define the following set:

W, ={z€Y: (z,2) eV}

and W, :={ueX: (uy) eV}

https://doi.org/10.52111/qnjs.2022.16101
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Definition 14. (loffe’®) For W ¢ X x Y, a
multimap F' : X =Y is said to be metrically
regular relative to W at (z,y) € W Ngph F
with a modulus 7 > 0, if there is 0 > 0 such
that

A, F () Nl Wy) < 7d(y, F(z)  (31)

(B(z,0) x B(y.6)) N W and

whenever (z,y) €
dly, F()) < 5.

We shall denote regy, F(Z,y), the infinum
over all T > 0 such that (3.1) is verified.

Given a cone C' C Y in a normed linear space
Y, for > 0, let us set

C()={veY: dvC)<d|v|}.
and
Wp(C,6) :={(z,y) e X x Y :

Let us recall the definition of the metric regu-
larity with respect to a cone.

Definition 15. F is called metrically reqular
relative to C at (Z,y) € gph F, if there is
0 > 0 such that F' is metrically regular relative
to W :=Wg(C,0) at (Z,7).

Due to Definition 14, we see that F' is rela-
tively metrically regular with respect to a cone
C at (Z,y) € gph F' with a modulus 7 > 0, if
there is € > (0 such that

d(z, F () N Wy (C,6)) < 7d(y, F(x))
(3:2)
for all (z,y) € (B(Z,¢) x B(§,¢)) N Wg(C,9)

with d(y, (:r)) <e.

We consider the lower semicontinuous en-
velope relatively to W of the function z —
d(y, F'(z)), which is defined as follows.

AWy su—a (33)

= liminf d(y,F(u)) ifz e clW,
orw(@,y)
—+00 otherwise.

https://doi.org/10.52111/qnjs.2022.16101

yeF(2)+C6)}.

Note that obviously ¢rpw(z.y) > 0 and

erw(z,y) < d(y, F(z)) for every (z,y) €
clW, xY.

The following result established by Ngai-
Théra® | gave a slope characterization of the rel-
ative metric regularity.

Theorem 16. Let F': X =Y be a closed mul-
timap from a completed metric space X to a met-
ric one Y. For (z,y) € gph FNW, W Cc X xY
and T € (0,400), consider the following asser-
tions, one has (a) < (b) < (c).

(a) F is metrically reqular relative to W at (7, 7)
with modulus T;

(b) There are o, f > 0 such that

Corw (@) =77
for any (x,y) € B(Z,a) x B(y,«a) with
90F7W(33,y) € (07ﬁ)

(¢) There are o, 5 > 0 such that

Vorw (. y)|(z) =77

for any (x,y) € B(Z,a) x B(y,a) with
(,9F7W(117,y) € (O?ﬁ)

As the usual metric regularity, the relatively
metric regularity with respect to a cone also pos-
sesses the following perturbation stability.

Theorem 17. (Ngai-Tron-Théra, 2019°%) Let
F:X =Y be a closed multimap from a com-
pleted X to a normed space Y. For a nonempty
cone C' CY, if F is relatively metrically reqular
at (z,7y) with a modulus 7 > 0 with respect to C,
then for any locally lipschitz mappingg : X =Y
around T with a sufficiently small Lipschitz con-
stant, the multimap F + g s also relatively met-
rically regular with respect lo C' al (Z,§+ g(T)).

12 | .Quy Nhon University Journal of Science, 2022, 16(1), 5-21
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The next result is a characterization in terms
of coderivatives of the relative metric regularity.
For this, associated to F': X = Y, we define the
multimap G : X = Y x Y as follows

Gle) = F(e) x F(z), € X.

Theorem 18. (Ngai- Tron - Théra,®®) Let
F: X =Y be a closed multimap between As-
plund spaces X,Y. For (z,y) € gph F and a
nonempty cone C C'Y, suppose that F has con-
vex values around T. Then F' is relatively met-
rically reqular with respect to C with modulus
T <m~! at (z,7), provided

liminf  d(0, D%G(z,y1.92)(T(C,4))) > m >0,

G, _ _ _
(z,y1,y2)—(%,5,9)
slot

(3.4)

Recall that A multimap F : X = Y is
partially sequentially normally compact (PSNC,
shortly,'%) at (Z, §) € gph F, if for all se-
quence { (k. Yk, Tf- i) nen C gph F x X* x Y*
verifying

(xkayk) - (jag)v xz € D}F(xk»yk)(yl):)v

vi = 0, |kl = 0,

one has |[yz|| = 0 as k& — oo. Mention that
(PSNC) at (z,7y) € gph F holds automatically
for any multimap when Y is a finite dimensional
space. Under condition (PSNC), we obtain a
point-based sufficient condition for the relative
metric regularity as follows.

Corollary 19. (sec®®) With the assumptions as
in Theorem 18, assume in addition that F~1 is

PSNC at (2,5, 7). If
di(0, D7 G(7,9,9)(T(C,0))) > 0,

then F is relatively metrically reqular with re-
spect to C around (Z,9).

In particular for the case F(z) := g(x) — D,
here D C Y, a closed convex subset, g : X — Y

is a continuous map near a given point ¥ € X
such as ¢g(z) € D, one obtains the following
corollary.

Corollary 20. (see’®) Let X,Y and C CY be
as before. Let D C'Y be a closed convex subset
and g : X — Y be a continuous map around
z € X with dy := f(Z) € D. Then the multimap
F(x):=g(x)— D, x € X is relatively metrically
reqular with respect to C' around (Z,y) with a
modulus T = m™!, provided

(x,dl.yzl)n—é(gf,dn.dn) (0, D% f(x)(T(C,0) N N(D,d1) x N(K,dy)) >0,

3l0*

(3.5)

4. APPLICATIONS

4.1. Newton methods for solving gen-
eralized equations

4.1.1. Newton iteration for equations and
the Kantorovich theorem

We recall firstly the classical Newton algo-
rithm for solving equations associate to smooth
mappings beween Banach spaces. Consider the
equation

find x € X such that f(z) =0,

where X, Y are Banach spaces and f : X — Y is
a continuously differentiable map. The Newton
method for solving this equation consists of the
iterations:

Thi1 = o — Df (23) 7 flap),

here zg is a started point, and D f(xy) is invert-
ible for all k. In the other works, the regular
zeros (i.e., at which the derivative is invertible)
of f are the fixed points of the following Newton
operator:

Ni(z) =2 — Df(a)" f(=).

https://doi.org/10.52111/qnjs.2022.16101
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Generally, when D f(x) is not necessarily invert-
ible, but assumed just to be surjective, the New-
ton operator is given by

Ny(z) = — Df(2)" f(z),

here Df(x)* denotes the Moore-Penrose gener-
alized inverse which coincides with the usual in-
verse Df(z)~! when it exists.

The following local and non-local quadratic con-

vergence results are due to Kantorovich (1948)

(see57_59).

Theorem 21. (Kantorovich-1948%%) Let f :
X =Y be a mapping of class C>. Let £ € U be
such that f(§) = 0 and the derivative of f at this
point be surjective. For r > 0 with B[, p] C U,
set

M(f,&p)= sup |Df(€)"D*f(a)|.

lz—€ll<p

If 2M(f§,p)p < 1 then fOT all Ty € B[f,p],
then the Newton sequence xpi1 = Ny(xy) is
completely defined and converges to &, with a

quadratically convergence rate,

1 2k 1
o=l < (5)  leo=dlh

Set B(f,20) = [ Df(w0)™ f(wo)| if Df(xo) is

surjective, and S(f, zo) = +00, otherwise.

Theorem 22. (Kantorovich®®) Let f: X — Y
be a mapping of class C*. For zo € X, suppose
that the following conditions are satisfied:

o Df(xg) is surjective,

o Qﬁ(f,l‘()) Spv

° 2/8(f7 LIZ())]W(f, .’L'()”O) <L

Then the Newton sequence xpi1 = Ny(xy)
is well-defined and converges to some & with
(&) =0, and one has the estimation

https://doi.org/10.52111/qnjs.2022.16101

1 2k—1
o el < Loaste (3) el
with

ZOO 1
=0

4.1.2. Newton type method of generalized
equations

Given Banach spaces X, Y. consider the fol-
lowing generalized equation of the form of the
sum of a single-valued map and a set-valued one:

0€ f(x)+ F(z), z€X (4.1)

here f : X — Y is a function of class C, and
F: X =Y is a closed multimap.

The Newton type method for solving (4.1)

2,6061). Given a

can be described as follows (see
starting point g, the sequence (x) is iteratively
defined in solving the auxiliary generalized equa-

tion: x11 is a suitable solution of

0€ f(xp)+Df(xg)(x—2f)+F(x) fork=0,1,..
(12)
Equivalently,

21 € (Df(ax) + F)"H(Df(ax) — flan).

This Newton type method means of the use
of "partial linearization” of the single-valued

part f.

The following theorem due to Adly-Ngai-
Vu® gives a local version of convergence for
Newton’s iteration (4.2).

Theorem 23. (Adly - Ngai-VuS?) Let f :
X — Y be a second-order continuously dif-
ferentiable function on an open subset U of X
and let FF : X = Y be a closed multimap.
Let £ € U be a solution of (4.1) and set  :=
Df(&)(&) — f(&) € Y. Suppose that the mul-
timap ® = Df(§) + F is metrically regular on

14 | Quy Nhon University Journal of Science, 2022, 16(1), 5-21
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V =B[¢, r] x B¢, p] of (€,¢) with modulus 7 > 0
with r > 0, B[S, 7] C U. Set

M(r, & r) =7 sup
lu—¢ll<r

D*f(2)

)

0 = min {7‘, 3 Tp}.
If 2M(1,&,7)r < 1, then for any xo € B[E, 0],
the sequence (zy,)n>0 n (4.2) is well-defined and
converges quadratically to &. More precisely, one
has

12”—1
o=l < (3) =gl @3

In order to establish a non-local of the Kan-
torovich theorem, we need the following defini-
tion of the metric regularity on a suitable do-
main.

Definition 24. Let a multimap F : X = Y,
xo € X and positive constants r > 0, s > 0, we
define

V(F,xzo,r,8) ={(z,y) € XXY : 2z € Blzo,r],

d(y,F(x)) < s}.
(4.4)

The multimap F is called metrically reqular on
V(F,xo,r,s) with a modulus 7 > 0 if for all
(x,y) € V(F,xz9,7,5), one has

d(z, F_l(y)) < 7d(y, F(z)). (4.5)

When the multimap F verifies Definition 24,
denote the quantity reg (F, zg,r, s), the infimum
over all 7 > 0 satisfying (4.5). Otherwise, set
reg (F,xo,7,8) = 00.

The next result states a global convergence
result of the Newton iterations. The assump-
tions for this are based on the classical Kan-

torovich’s theorem (see®).

Theorem 25. (Adly-Ngai-Vu$?) Let f: X —
Y and F
tween Banach spaces X, Y. Suppose thal [ is a

X = Y be maps acting be-

C?—mapping on an open subset U C X and F is
a closed multimap. Consider problem (}.1), and
define the following quantities

B(r,z) = Td(O, (f + F)(az)),

M(r,x,p) =7 sup HDQf(u)H .
[u—z]<p

Letz €U, 6 € (0,1] and p > 0, t > 0 such that
the following statements hold.

1. G := Df(x) + F is metrically regular on
V :=V(G,x,4p,t) with a modulus 7 > 0,

2.d(0, f(z) + F(z)) < s,
3. 26(r,x)M(1,2,p) <9,

4. 2nB(r, ) < p,
- _1-V1s 1
with n = =—% = TS

Then the generalized equation (4.1) has a solu-
tion & satisfying

|z = €|l < 2nB(7, ) < p. (4.6)

Moreover, there exists a sequence (z,,) generated
by the Newton iterations (4.2) with the starting
point x and converges to &, and the following
error estimate holds

o ifd <1, then

4H/1=6 6*"

L — €|l < —
lea - €l < = Bl ),
(4.7)
_1-/1-3.
where 0 = Vs
o if 0 =1, then
lz — €l <2771 B(7, 2). (4.8)

When the mapping f is analytic, an ex-
tension of Smale’s («,y)—theory to generalized
equation was also extensively developed in®?.

https://doi.org/10.52111/qnjs.2022.16101
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4.1.3. Newton methods under relativemetric
regularity

We consider now the case in which the mul-
timap is not longer metrically regular but merely
relatively metrically regular. For a cone C' C 'Y,
consider the inexact Newton iterations with re-
spect to C' defined as follows.

0€ f(z)+ Df(x)(x — ) + F(x) +,C NSy
(4.9)
for £k = 0,1,..., where Sy stands for the unit
sphere in Y, and (g,) is a suitable sequence of
positive reals, converging to zero.
To analyze the convergence of the iterative pro-
cess (4.9), we established a non-local version of
the relative metric regularity as was stated in
the following theorem.

Theorem 26. (Ngai %) Let F : X =3 Y be
a closed multimap acting from a completed met-
ric space X to a normed one Y. For a nonempty
cone C C Y, suppose that F : X = Y is met-
rically reqular on V(F,Z,r,s) for some r,s > 0
with a modulus 7 > 0, relatively to C, i.e., there
is a real § € (0,1) such that for all (x,y) €
V(F,z,r,s) N Wg(C,0), one has

d(z, F~'(y) Nl W, (C,0)) < 7d(y, F(z)).
(4.10)
Then with a map f: X — Y being locally Lips-
chitz on B[Z,r] with a Lipschitz constant L > 0,
the multimap G := F + g 1is relatively metrically
reqular on V(G,Z, 7, R) with respect to C with
modulus

_ 1-8(1+6 -1
Rego(G, 2,1, R) < k= <_T(1+ ((1+9)_)) - L) ’

provided that

6(1—-p5)
g€ (0,1),0<9< Tm, and

0)5

L<

https://doi.org/10.52111/qnjs.2022.16101

b1 = _ T
T[1+B(1+60)] (1+06)  Bi= mm{s 5&}'

The convergence result of the iterative pro-
cess (4.9) is stated as follows.

Theorem 27. (Ngai®) Given a nonempty
cone C' C Y, a function f : X — Y between
two Banach spaces X, Y being a C*—mapping
on an open subset U C X and a closed mul-
timap F : X =Y. Consider problem (4.1), and
define the quantities

B(r,x) = Td(O, (f + F)(:E)),

M(r,z,p) =7 sup Hsz(u)H

lu—zl<p

Let z € U, 6 € (0,1] and p > 0, t > 0, such thal
the following statements hold.

1. G = Df(x) 4+ F is metrically regular on
V = V(G,z,4r,s) relatively to C with a
modulus T > Regq (G, x,4r, s),

2.0€ f(z) + F(z) + C,
3.d(0, f(x) + F(z)) < t,
4. 28(r,x)M (7, 2,p) <9,
9. 2nB(r,x) < p,

1-v1-6 _ 1
5 =

with n = VS

Then the generalized equation (4.1) has a solu-
tion £ € U satisfying

[z = &Il < 2nB(r,2) < 7. (4.11)

Moreover, there are constants 0 < b1,by < 1 and
€ > 0 such that for any sequence of positive reals

(en) satisfying
€ € (078); Ent1 < bien; 5121 < b25n+17 n €N,

there exists a sequence (x,,) generated by the it-
erative process (4.9) with the starting point x
and converges to &. In addition, if § < 1 and
lim sup,, o, 44
rate of such seizuence (@) is quadratic.

< 400, then the convergence

16 | .Quy Nhon University Journal of Science, 2022, 16(1), 5-21
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4.2. Convex principle for multimaps

In%46% Polyak has established an interesting
convex principle with numerous applications in
linear algebra, optimization and control theory.
This convex principle states that a nonlinear im-
age of a small ball in a Hilbert space is convex,
provided the mapping is of class Cb! and the
center of the ball is a regular point of the map-
ping. In this final subsection, based on the met-
ric regularity theory, we present a generalization
of the Polyak convex principle for multimaps.
Recall% that a multimap F : X = Y between
normed spaces X,Y is paraconvex with a mod-
ulus L > 0 if for all zq,29 € X, ¢ € [0,1],

tE(z1) + (1 —t)F () CF(tey + (1 — t)ze)+
+ Lt(l - t)||m1 - 332”2.

Obviously, a single-valued mapping of class
Cl! is paraconvex.

Theorem 28. Let X be a Hilbert space and Y
be a mormed space. Let F': X =Y be a para-
convex multimap with modulus L > 0. For given
(Z,7) € gph F, e1,69 > 0, if F is metrically reg-
ular with a constant k > 0 on B(Z,e1)x B(y,€2),
then for 0 < § < & := min{e, (2kL)~'}, the set
F(Blz,0]) N B(y,e2) is a convex set in'Y.

We need the following lemma.

Lemma 29. Let X be a Hilbert spaces. For
§ > 0,7 € X, xz,29 € B[z,0], t € (0,1),
zy = tx; + (1 — t)xq, one has

Blz;,6 — /82 — 5| C Bz, 6],
where s == t(1 —t)||z1 — 292
Proof. Using the equality
lta+(1-t)0l* = tlal*+(1-t)[[Bl*~t(1~2) |a—b]*,

validated in any Hilbert space X, a,b € X, and
t € R, one has the estimation

lze = (% = tllas = Z(* + (1 = )]l — 7P~
— (1= t)Jor — 2
<6 —t(1— b))y — ao]? = 0% — 5.

Hence for v := 6 — V2 — s, z € By, 7], one
has

< (2 = ]| + |z — z[))?
= ||z = @e|® + 2|2 — welll|ze — T + |20 — 7]
<A+ 29V02 — s+ 6% - 5 = 82,

that is, z € B[z, 0], and the lemma is proved. O

Proof of Theorem 28. Let wyi,y2 €
F(B[z,0]) N B(g,e2), t € (0,1) be given. We
want to show y; 1= ty; + (1 —t)ys € F(B[z,0])N
B(y,e2). As obviously y; € B(y,€2), for y1,y2 €
B(y,e9), t € (0,1), it suffices to show y; €
F(B[z,6]). Let z1,29 € Bz,6] be such that
yi € F(x;),7=1,2. Then ; :=toy+ (1 —t)zg €
Blz, ] € B(z,e1), according to the metric regu-
larity with constant k of F'on B(Z,e1)x B(y, €2),
one has

d(xe, - (yr) < wd(ys, F ).
Since F' is paraconvex with modulus L,
yp €1F(x1) + (1 =) F(wg) C Flzy) + Lt(1 = t) ]y — 29 |,

therefore, d(y, F(x;)) < Lt(1 — t)||z; — x2|%,
which along with the previous inequality yields

d(:vtvF_l(yt)) < KLU = t)||zy — 1‘2”2 = KkLs.

As by assumption, kL < §/2, one can find
z € F~Y(y:) such that ||z; — 2|| < ds/2. Then

by
0s/2 <0 — /6% — s,

one has z € Blay,0 — V0% — s, and thanks
to Lemma 29, z, € B[z,d], consequently vy, €
F(z) € F(B[z,d)). o

https://doi.org/10.52111/qnjs.2022.16101
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5. CONCLUSIONS

The paper gives a survey on some recent con-
tributions of our research group to the theory of
metric regularity and its applications. Some im-
portant characterizations of the metric regular-
ity via the strong slopes as well as the coderiva-
tives have established. We have presented some
extended variants of the notion of metric regu-
larity and related properties. Regarding the ra-
dius of metric regularity which is an interesting
topic in this theory, we have established a rela-
tionship between the regularity radius and the
regularity modulus for general multimaps under
some suitable assumptions. It remains still some
open questions related to estimate the regular-
ity radius for future studies. Many applications
to numerical algorithms for solving optimization
problems and generalized equations have found
out recently, especially the applications to the
Newton type methods have been investigated in
this paper. We have used the metric regularity to
obtain a new result related to the convexity of an
image of balls through paraconvex multimaps.
Many open problems related to the theory of
metric regularity and applications are devoted
to future researches.
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