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TÓM TẮT

Dự báo chuỗi thời gian mờ đã thu hút được sự chú ý đáng kể nhờ khả năng xử lý sự không chắc chắn và 
thiếu chính xác trong dữ liệu chuỗi thời gian. Các mô hình chuỗi thời gian mờ truyền thống thường gặp hạn chế 
trong việc nắm bắt các mối quan hệ phức tạp giữa các biến. Để giải quyết thách thức này, chúng tôi đề xuất một 
mô hình tiếp cận mới gọi là mô hình dự báo chuỗi thời gian mờ dựa trên đại số gia tử (OHAM). Đầu tiên, chúng 
tôi giới thiệu khái niệm về đại số gia tử và ứng dụng của chúng trong phân tích chuỗi thời gian mờ. Sau đó, chúng 
tôi trình bày các bước xây dựng mô hình, bao gồm việc xác định các nhãn ngôn ngữ trong đại số gia tử, xây dựng 
các quan hệ mờ từ dữ liệu, chia đoạn cho không gian tham chiếu. Tiếp đó, chúng tôi đề xuất một thuật toán tối ưu 
hóa để tinh chỉnh các tham số của OHAM, nhằm đạt được hiệu quả dự báo tối ưu. Cuối cùng là thử nghiệm trên 
một số bộ dữ liệu cụ thể để đánh giá tính hiệu quả của mô hình. Kết quả thử nghiệm cho thấy mô hình mới đề xuất 
ít sai số hơn so với nhiều mô hình khác.

Từ khóa: Dự báo, chuỗi thời gian mờ, đại số gia tử, từ mờ, giá trị ngôn ngữ.
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ABSTRACT

Fuzzy time series forecasting has garnered significant attention due to its ability to handle uncertainty and 
imprecision in time series data. Traditional fuzzy time series models often face limitations in capturing complex 
relationships between variables. To address this challenge, we propose a novel approach called the Optimal 
Hedge-Algebras-based Model (OHAM). First, we introduce the concepts of hedge algebra and its application in 
fuzzy time series analysis. Subsequently, we present the model construction steps, including defining linguistic 
labels in hedge algebra, constructing fuzzy relations from data, and partitioning the universe of discourse. 
Following this, we propose an optimization algorithm to fine-tune the parameters of OHAM, aiming to achieve 
optimal forecasting performance. Finally, experiments are conducted on several specific datasets to evaluate the 
effectiveness of the model. The experimental results demonstrate that the newly proposed model exhibits better 
accuracy than many others.

Keywords: Forecasting, fuzzy time series, hedge algebras, vague words, linguistic terms.
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1. INTRODUCTION

The proposed hedge algebra by N. C. Ho1-3 has 
been tested in various applications, yielding 
positive results in problems such as fuzzy 
control, classification, fuzzy clustering, and 
fuzzy time series forecasting,4,5 among others.

Forecasting plays a crucial role in 
numerous fields such as finance, weather 
prediction, and stock market analysis.6,7 In recent 
years, fuzzy time series forecasting models have 
gained attention due to their ability to handle the 
uncertainty and vagueness present in real-world 
data. One such model is the hedge-algebras-
based forecasting model.8

The hedge-algebras-based forecasting 
model utilizes an algebraic structure to capture 
the relationships between historical data and 
future predictions. However, the performance 
of this model heavily relies on parameter 
calibration. Determining optimal parameters 
is a challenging task that requires an efficient 
optimization algorithm.

In this paper, we propose the application 
of the Artificial Bee Colony (ABC) algorithm to 
optimize the parameters of the hedge-algebras-
based forecasting model for fuzzy time series. The 
ABC algorithm is a metaheuristic optimization 
technique inspired by the foraging behavior of 
honey bees. It has been successfully applied to 
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various optimization problems and showcases 
robustness and convergence efficiency.

By employing the ABC algorithm, 
this research aims to enhance the accuracy 
and reliability of the hedge-algebras-based 
forecasting model. The ABC algorithm will 
efficiently search the parameter space, finding 
the optimal combination of parameters for 
the model. This process will help in achieving 
improved forecast accuracy, reduced error rates, 
and enhanced decision-making capabilities in 
diverse applications.

To evaluate the proposed approach, 
extensive experiments will be conducted using 
real-world datasets from different domains. 
Comparative analyses will be carried out, 
comparing the performance of the optimized 
hedge-algebras-based forecasting model with 
other well-established optimization techniques. 
The results obtained will provide insights into 
the effectiveness and efficiency of the ABC 
algorithm in parameter optimization for fuzzy 
time series forecasting models.

2.  PROBLEM OF FUZZY TIME SERIES 
FORECASTING

The problem in time series forecasting is to 
accurately predict future values or trends based 
on historical data. This involves addressing 
challenges such as identifying and modeling 
trends, handling seasonality and noise, 
accounting for non-linear relationships and 
non-stationarity, and choosing the optimal 
model and parameters. The goal is to develop 
a robust forecasting method that can generalize 
well beyond the training data and provide 
reliable predictions for effective decision-
making. Overcoming these challenges requires 
a combination of statistical techniques, machine 
learning algorithms, and domain expertise to 
achieve accurate and meaningful forecasts.

Fuzzy time series, a concept derived 
from fuzzy set theory, is a powerful tool for 
modeling and forecasting time-dependent data 
with inherent uncertainty and imprecision. 

Unlike traditional time series analysis, which 
assumes crisp values, fuzzy time series allows 
for the representation of vague and uncertain 
information through linguistic terms and 
membership functions. By incorporating fuzzy 
logic into the modeling process, fuzzy time series 
enables the handling of complex data, making 
it particularly suitable for real-world scenarios 
where uncertainty is prevalent. This approach has 
found applications in various domains, including 
finance, economics, weather prediction, and 
decision-making systems, providing valuable 
insights and accurate predictions in situations 
where conventional methods may fall short.

The problem is stated as follows: Given n 
values y(t1), y(t2),…, y(tn) where t1, t2, …, tn are 
point times. How to predict the next value?

2.1. Some basic definitions

The fuzzy time series model was first proposed 
by Q. Song and B. S. Chissom.9 Then, it is 
improved by S.M Chen10,11 to process some 
arithmetic calculations. From that point, they 
can get more exact forecasting results. In this 
session, we briefly review the concepts of fuzzy 
time series as in Q.Song.9 

Let U be the universe of discourse, where  
U = {u1, u2,..., un}. A fuzzy set defined in the 
universe of discourse U can be represented as 
follows: A = fA(u1)/u1 + fA(u2)/u2 + ··· + fA(un)/un, 
where fA denotes the membership function of the 
fuzzy set A, fA : U → [0, 1], and fA(ui) denotes 
the degree of membership of ui belonging to the 
fuzzy set A, and fA(ui) ∈ [0, 1], and 1 ≤ i ≤ n.

Definition 1.9 Let Y(t) (t = ...,0,1,2,...) be 
the universe of discourse and be a subset of R. 
Assume fi(t) (i = 1,2,...) are defined on Y(t), and 
assume that F(t) is a collection of f1(t), f2(t), ..., 
then F(t) is called a fuzzy time series definition 
Y(t)  (t = ...,0,1,2,...).

Definition 2.9 Assume that F(t) is caused 
by F(t−1) only, denoted as F(t − 1) → F(t),  
then this relationship can be expressed as  
F(t) = F(t−1)◦R(t,t − 1), where F(t) = F(t − 1)◦ 
R(t, t−1) is called the first-order model of F(t), 
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R(t, t − 1) is the fuzzy relationship between  
F(t − 1) and F(t), and “◦” is the Max-Min 
composition operator.

Definition 3.9 Assume that the fuzzified 
input data of the ith year/month is Aj and the 
fuzzified input data of the i+1th year/month is Ak, 
where Aj and Ak are two fuzzy sets defined in the 
universe of discourse U, then the fuzzy logical 
relationship can be represented by Aj → Ak, 
where Aj is called the current state of the fuzzy 
logical relationship.

If we have Ai → Aj1, Ai → Aj2, ..., Ai → Ajk 
then we can write Ai → Aj1, Aj2, ..., Ajk.   

2.2. Rules for calculating output value

Assume that Aj is the value of F(t − 1), the 
forecasted output F(t) be defined as in research:10 

If there exists a relation 1-1 within the 
group of the relations where Aj is on the left of 
the rule, suppose that Aj → Ak , and the maximum 
membership value of Ak occurs at interval uk , 
then the output of F(t) is the middle point of uk .  

a) If Ak = ∅, that means Aj → ∅ and the 
maximum membership value of Aj occurs at 
interval uj, then the output of F(t) is the middle 
point of uj. 

b) If we have Aj → A1, A2 ,…, An, and the 
maximum membership values of A1, A2 ,…, An 
occur at intervals u1, u2,…, un respectively, then 
the output of F(t) is average of the middle points 
m1, m2, …, mn of u1, u2 ,…, un, that is (m1 + m2 + 
… + mn)/n.

3. THE MODEL OF FORECASTING TIME 
SERIES BASED ON HEDGE ALGEBRAS

In this section, we provide a brief overview 
of the algebraic approach to the semantics of 
vague words in natural languages, as explored 
in previous studies,1-4 and introduce a new 
forecasting method based on hedge algebra 
theory.

3.1. Algebraic structure of vague term domain

Hedge algebras, denoted as AX = (𝒳, 𝔾, ℂ, 
ℋ, ≤), are a mathematical structure to handle 

uncertainty and vagueness. In hedge algebras,  
𝒳 represents a set of words ℋ is the set of 
linguistic hedges or modifiers considered as 1-ary 
operations of the algebra AX; ℂ = {0, W, 1} is a 
set of special words which are, respectively, the 
least, the medium and the greatest elements of 𝒳 
and regarded as constants of AX since they are 
fixed points; 𝔾 = {c−, c+} is a set of the primary 
or atomic words of the linguistic variable X, 
the first one is called the negative word, and the 
second, the positive one. 𝔾 ∪ ℂ is the set of the 
generators of the algebra AX that is ℋ (𝔾 ∪ ℂ) = 
𝒳 = ℂ ∪ ℋ(𝔾), the underlying set of AX where 
for a subset Z of 𝒳, the set ℋ(Z) denotes the set 
of all elements freely generated from the words 
in Z. I.e. ℋ (Z) = {σx : x ∈ Z and σ ∈ ℋ*}, 
where ℋ* is the set of all strings of hedges in ℋ, 
including the empty string ε. Note that for σ = ε,  
εx = x and, hence, Z ⊆ ℋ (Z). In the case  
Z = {x} we shall write ℋ (x) instead of ℋ ({x}). 
≤ is a semantical order relation upon 𝒳. 

Consider a hedge algebra AX = (𝒳, 
𝔾, ℂ, ℋ, ≤) of an attribute X with numeric 
reference interval domain U normalized to be 
[0,1], for convenience in a unified presentation 
of the quantification of the hedge algebras. 
Formally, the numeric semantics of the 
words of 𝒳 can be determined by a so-called 
Semantically Quantifying Mapping (SQM), 
f : 𝒳 → [0, 1], defined as follows.

Definition 4.3 A mapping f: 𝒳 → [0, 1] is 
said to be an SQM of AX, if we have:

•	 f is an order isomorphism, i.e. it is one-
to-one and for ∀x, y ∈ 𝒳, x ≤ y ⇒ f(x) ≤ f(y).

•	The image of 𝒳 under f, f(𝒳), is 
topologically dense in the universe [0, 1].

Definition 5.3 A function fm: 𝒳 → [0, 1] 
is said to be a fuzziness measure of the hedge 
algebra AX associated with the given variable X, 
if it satisfies the following axioms, for any x ∈ 𝒳 
and h ∈ ℋ:

4 
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f : 𝒳𝒳 → [0, 1], defined	as	follows. 

Definition 4.3 A	mapping	f: 𝒳𝒳 → [0, 1] is 
said	to	be	an	SQM	of	AX,	if	we	have: 

 f is an order isomorphism,	i.e.	it	is	one-to-one 
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Definition 5.3 A	function	fm: 𝒳𝒳 → [0, 1] is 
said	 to	 be	 a	 fuzziness	 measure	 of	 the	 hedge	
algebra AX	associated	with	the	given	variable	X,	
if	it	satisfies	the	following	axioms,	for	any	x  𝒳𝒳 
and	h  ℋ: 

 fm(c) + fm(c+) = 1. 
 ∑                             . 
 fm(hx) = (h)fm(x), where (h) is called for 

convenience the fuzziness measure of h as 
well.  

 For x = hnhn – 1 … h1c,  fm(x) = fm(hnhn – 1 … 
h1c) = (hn)(hn – 1) … (h1)fm(c), c 𝔾𝔾 = { 
c, c+}. 
 Setting ∑                    & 
∑                 , we have      
∑                       . 

In	 the	 general	 case,	 for	 given	 values	 of	 the	
fuzziness	 parameters	 of	 X, we	 can	 establish a 
recursive	 expression	 to	 compute	 the	 SQM	 fm,	
called	 the	 SQM	 induced	 by	 the	 given	 fm,	 as	
follows:3 

 fm(W) =   = fm(c), fm(c) =   fm(c)= 
fm(c), fm(c+) =  +fm(c+); 

   (   )  
          (   )  (∑           

         

(   (   ))  (  ))       

where 
  (   )  

 
 [      (   )                ]  

{   } , for all j  [q…p],	 j ≠ 0, and sign() 
function	is	defined	as	in research3,4.   

3.2.  Converting values between semantic and 
reference domains 

To	convert	the	values	from	the	reference	domain	
to the semantic	domain	of	a	variable	X	and	vice	
versa,	 we	 synthesize	 some	 transformations	 as:	
Assume	 that	 [a, b]	 is	 a	 reference	 domain	 of	 the	
variable	 X,	 and	 [as,bs]	 [0,	 1]	 is	 the semantic	
domain.	 The	 conversion	 value	 x from	 [a, b]	 to	
[as,bs]	 is	 called	 semantization,	 denoted	 S(x) and	
the	 conversion	 value	 y from [as,bs]	 to	 [a,b]	 is	
called	desemantization,	denoted	D(y).  

For	 flexibility	 in	 semantization	 or	
desemantization,	we	add	some	parameters	sp, dp 
[-1,	1]	then: S(x)  =  f(x, sp),	satisfy 0 ≤ f(x, sp) 
≤ 1 ,  f(x=a, sp) = 0, f(x=b, sp) = 1.	And,	D(y)  = 
g(y, dp),	satisfy	a ≤ g(y, dp) ≤ b, g(y = 0, dp) = a, 
g(y = 1, dp) = b.  

In	 this	 paper,	 we	 use	 the	 functions: S(x) = 
f(x,sp) = (sp×x(1-x)+x)/(b-a)	 and	 D(y) = g(y, 
dp)= dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ f(y, 
sp). 

Figure	1	illustrates	the	hedge	algebra	AX	=	
(𝒳𝒳,	𝔾𝔾,	ℂ ,	ℋ,	) with	the	hedge	set	ℋ ={Very-V,	
More-M,	 Rather-R,	 Less-L}	 and	 the	 transfer	 of	
values	from	the	semantic	domain	to	the	reference	
domain	 and	 vice	 versa.
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l   fm(hx) = µ(h)fm(x), where µ(h) is called for 
convenience the fuzziness measure of h as well.

l   For x = hnhn – 1 … h1c,  fm(x) = fm(hnhn – 1 … 
h1c) = µ(hn)µ(hn – 1 ) … μ(h1)fm(c), c ∈ 𝔾 =  
{ c−, c+}.

In the general case, for given values of 
the fuzziness parameters of X, we can establish 
a recursive expression to compute the SQM υfm, 
called the SQM induced by the given fm, as 
follows:3

3.2.  Converting values between semantic and 

reference domains

To convert the values from the reference domain 
to the semantic domain of a variable X and vice 
versa, we synthesize some transformations as: 
Assume that [a, b] is a reference domain of the 
variable X, and [as,bs] ⊆ [0, 1] is the semantic 
domain. The conversion value x from [a, b] to 
[as,bs] is called semantization, denoted S(x) and 
the conversion value y from [as,bs] to [a,b] is 
called desemantization, denoted D(y). 

For flexibility in semantization or 
desemantization, we add some parameters sp,  
dp ∈[-1, 1] then: S(x)  =  f(x, sp), satisfy 0 ≤ f(x, 
sp) ≤ 1 ,  f(x=a, sp) = 0, f(x=b, sp) = 1. And, 
D(y)  = g(y, dp), satisfy a ≤ g(y, dp) ≤ b, g(y = 0, 
dp) = a, g(y = 1, dp) = b. 

In this paper, we use the functions:  
S(x) = f(x,sp) = (sp×x(1-x)+x)/(b-a) and D(y) = 
g(y, dp)= dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ 
f(y, sp).

Figure 1 illustrates the hedge algebra AX 
= (𝒳, 𝔾, ℂ, ℋ, ≤) with the hedge set ℋ ={Very-V, 
More-M, Rather-R, Less-L} and the transfer of 
values from the semantic domain to the reference 
domain and vice versa.

Figure 1. A graph representation of ℋ (Z) ⊆ ℋ (c-) and transform a value from [0, 1] to [a, b] and vice versa.
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Hedge	algebras,	denoted	as	AX	=	(𝒳𝒳,	𝔾𝔾,	ℂ, ℋ, ≤), 
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modifiers	 considered	 as	 1-ary operations	 of	 the	
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=	,	x	=	x	and,	hence,	Z	 ℋ(Z). In the case Z = 
{x} we shall write ℋ(x) instead of ℋ({x}).  is a 
semantical	order	relation	upon	𝒳𝒳.  

Consider	a hedge	algebra AX	=	(𝒳𝒳,	𝔾𝔾,	ℂ, ℋ, ) of 
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domain	U normalized	to	be	[0,1],	for	convenience	
in	a	unified	presentation	of	the	quantification	of	the	
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of	the	words	of	𝒳𝒳 can	be	determined	by	a	so-called	
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said	to	be	an	SQM	of	AX,	if	we	have: 
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and	for	x,	y  𝒳𝒳,	x  y  f(x)  f(y). 

• The	image	of	𝒳𝒳 under	f,	f(𝒳𝒳),	is	topologically	
dense	in	the	universe	[0,	1]. 

Definition 5.3 A	function	fm: 𝒳𝒳 → [0, 1] is 
said	to	be	a	fuzziness	measure	of	the	hedge	algebra 
AX	 associated	 with	 the	 given	 variable	 X,	 if	 it	
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called	 the	 SQM	 induced	 by	 the	 given	 fm,	 as	
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3.2.  Converting values between semantic and 
reference domains 

To	convert	the	values	from	the	reference	domain	
to the semantic	domain	of	a	variable	X	and	vice	
versa,	 we	 synthesize	 some	 transformations	 as:	
Assume	 that	 [a, b]	 is	 a	 reference	 domain	 of	 the	
variable	 X,	 and	 [as,bs]	 [0,	 1]	 is	 the semantic	
domain.	 The	 conversion	 value	 x from	 [a, b]	 to	
[as,bs]	 is	 called	 semantization,	 denoted	 S(x) and	
the	 conversion	 value	 y from	 [as,bs]	 to	 [a,b]	 is	
called	desemantization,	denoted	D(y).  

For	 flexibility	 in	 semantization	 or	
desemantization,	we	add	some	parameters	sp, dp 
[-1,	1]	then: S(x)  =  f(x, sp),	satisfy 0 ≤ f(x, sp) ≤ 
1 ,  f(x=a, sp) = 0, f(x=b, sp) = 1.	And,	D(y)  = 
g(y, dp),	satisfy	a ≤ g(y, dp) ≤ b, g(y = 0, dp) = a, 
g(y = 1, dp) = b.  

In	 this	 paper,	 we	 use	 the	 functions: S(x) = 
f(x,sp) = (sp×x(1-x)+x)/(b-a)	and	D(y) = g(y, dp)= 
dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ f(y, sp). 

Figure	1	illustrates	the	hedge	algebra	AX	=	
(𝒳𝒳,	𝔾𝔾,	ℂ, ℋ, ) with	the	hedge	set	ℋ ={Very-V,	
More-M,	 Rather-R,	 Less-L}	 and	 the	 transfer	 of	
values	from	the	semantic	domain	to	the	reference	
domain	and	vice	versa.
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3.3.  Hedge-Algebras-based Model (HAM) for 
time series forecasting

We consider each reference domain in the 
forecasting problem to correspond to a hedge 
algebra. Let PAR be a set of parameters, 
including the fuzzy measures of the hedges and 
the values sp and dp. Given that PAR has been 
determined, in this section, we present the fuzzy 
time series forecasting algorithm as follows.

4. THE OPTIMAL HEDGE-ALGEBRAS-
BASED MODEL 

In Step 2 of the HAM model above, we assume 
that each point at a time will belong to a word 
in the hedge algebra AX = (𝒳, 𝔾, ℂ, ℋ, ≤), 
ℂ  = {c-, c+}, ℋ = {h-q, …, h-1, h1,…hp} with 
given parameters µ(hi), hi ∈ ℋ . Obviously, all 
parameters to be used in HAM contain n = p+q+2 
parameters, which are µ(h-q), μ(h-q+1),… µ(h-1), 
µ(h1),…, µ(hp), and sp, dp for semantization and 
desemantization. So we can present that by the 
vector PAR = (x1, x2, …, xn) where x1 = µ(h-q) ,  
x2 = µ(h-q+1) ,… xn-2 = µ(hp) , xn-1 = sp , xn = dp. 
Vector PAR is also an artificial bee in the OHAM 
below.

To optimize the parameters, we choose 
the fitness function to be the Root Mean Square 
Error (RMSE), where a smaller value indicates 
better fitness. The root mean squared error can 
be expressed as follows:

where yt is the actual data point at time t, and yât 
is the predicted value at time t.

The fitness function can be written:

Algorithm 1. HAM(PAR)

INPUT: 
- n values of data {y(t1), y(t2),…, y(tn)} with t1, t2, 
…, tn are point times.
- System of the parameters of hedge algebras and 
sp, dp for semantization and desemantization, 
denoted PAR.

OUTPUT: the forecasted value F(ti).
Step 1. Define the discourse U

Put U = [Dmin, Dmax] where Dmin = min{y(t1), 
y(t2),…, y(tn)} and Dmax = max{y(t1), y(t2),…, 
y(tn)}. 

Step 2. Building the intervals upon U by using the 
fuzziness model of hedge algebra.
Based on an algebra AX = (𝒳, 𝔾, ℂ, ℋ, ≤) we 
divide U into k intervals u1, u2, …, uk w.r.t level l 
(see Figure 1). The interval ui is labeled Ai, i = 1, 
2,…, k satisfying A1 < A2 < … < Ak. We calculate 
fui = fm(Ai)×(Dmax - Dmin), i = 1, 2, …, k. So we 
have u1 = [u1d, u1c] = [Dmin, Dmin + fu1], u2 = [u2d, 
u2c] = [u1c+1, u2d+fu2], …, uk = [ukd, ukc] = [u(k-1)

c+1, ukd+fuk]. 
Step 3. Quantifying semantics of the linguistic 

values A1, A2, …, Ak .
To quantify the semantic of A1, A2, …, Ak, we use 
SQM υfm as SA1 = υfm(A1), SA2 = υfm(A2), ..., SAk 
= υfm(Ak). By properties of hedge algebras, it is 
clear that SA1 < SA2 < ... < SAk.

Step 4. Constructing the relationships
Suppose that, F(t − 1) is Ai, F(t) is Aj, and F(t) is 
caused by F(t − 1). Clearly, we have a relation 
between Ai and Aj, denoted Ai  → Aj.   	  

Step 5. Grouping relationships
If Ai  → Aj1, Ai  → Aj2,..., Ai  → Ajm, then we 
establish the relation by grouping all of them into 
a unique relation Ai  → Aj1, Aj2, ..., Ajm.

Step 6. Calculating output value

From a group of the relations in Step 5, applying 
the rules as in Section 2.2 we get the results of 
F(t), scilicet: If there is a relation Ai  → Aj, then 
F(j) = D(SAj) upon uj = [ujd, ujc]. If Ai → ∅ then 
F(j) = D(∅) upon ui = [uid, uic]. If Ai → Aj1, Aj2, 
..., Ajk then F(j) = D(Wi,j1×SAj1 + Wi,j2×SAj2 +... + 
Wi,jk×SAjk) upon interval [min{uj1d, uj2d, ..., ujkd}, 
max{uj1c, uj2c, ..., ujkc}] where Wi,j is the weights 
measured in the ratio number of times of real data 
in the interval ui  to sum of number of times of real 
data in the intervals uj1, uj2, ..., ujk.

Step 7. Return the values F(ti), i = 1,…, n.
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c+}, ℋ = {h-q, …, h-1,	 h1,…hp}	 with	 given	
parameters	 (hi),	 hi  ℋ. Obviously, all 
parameters	to	be	used	in	HAM	contain	n = p+q+2 
parameters,	 which	 are	 (h-q), (h-q+1),… (h-1), 
(h1),…, (hp), and sp, dp for	semantization	and	
desemantization.	 So	 we	 can	 present	 that	 by	 the	
vector	PAR =	 (x1,	x2, …, xn)	where	 x1 =	(h-q) ,  
x2 =	(h-q+1) ,… xn-2 =	(hp) , xn-1 =	 sp , xn =	dp. 
Vector	PAR is	also	an	artificial	bee	in	the	OHAM	
below. 

To	optimize	the	parameters,	we	choose	the	
fitness	function	to	be	the	Root	Mean	Square	Error	
(RMSE),	 where	 a	 smaller	 value	 indicates	 better	
fitness. The	 root	 mean	 squared	 error	 can	 be	
expressed	as	follows: 

RMSE	=	√Σ𝑡𝑡=1𝑛𝑛 (𝑦𝑦𝑡𝑡−𝑦̂𝑦𝑡𝑡)2
𝑛𝑛  

where 𝑦𝑦𝑡𝑡 is	the	actual	data	point	at	time	t,	and	𝑦̂𝑦𝑡𝑡 
is	the	predicted	value	at	time	t. 

The	fitness	function	can	be	written: 

Algorithm 2. Fitness(PAR) 

INPUT:	 A	 system	 of	 parameters	 PAR 
represented	for	a	bee;	a	real	dataset	{𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑛𝑛 . 
OUTPUT:	Value	of	fitness	of	PAR. 

Step 1. Generate	 language	 lattice	 of	 HA	 and	
quantify	 those	 values	 based	 on	
parameters	in	PAR. 

Step 2. Calculate forecast	values	𝑦̂𝑦𝑡𝑡  (t = 1,…, n) 
by	HAM(PAR). 

Step 3. Set Err	=	0. 

Step 4. For	 each	 real	 value	𝑦𝑦𝑡𝑡  and	 forecasted	
value	𝑦̂𝑦𝑡𝑡  at t time,	we	put:	 

Err	=	Err	+	(𝑦𝑦𝑡𝑡 −  𝑦̂𝑦𝑡𝑡)2. 

Step 5. RMSE	=	√𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛 . 

Step 6. Return value RMSE. 

 

The	model	is	built	as: 

Algorithm 3. OHAM() 

INPUT:	n values	 of	data	 {y(t1), y(t2),…, y(tn)} 
with	t1,	t2, …, tn are	point	times. 

OUTPUT: the	 best	 system	 of	 parameters	 for	
solving	optimization	forecast	problems.  

Step 1.	Initialization 

Start	by	randomly	initializing	a	population	
of	artificial	bees,	where	each	bee	represents	
a	 potential	 solution	 to	 the	 optimization	
problem.	 The	 population	 size	 is	 typically	
defined	beforehand. 

Step 2.	Employed	Bees'	Phase 

Each	employed	bee	explores	a	new	solution	
by	 adjusting	 its	 current	 position	 based	 on	
information	 shared	 with	 a	 randomly	
selected	neighbor	bee.	The	new	solution	is	
generated	by	modifying	the	position	using	
specific	search	operators	or	strategies.	After	
generating	 the	new	solution,	 the	fitness	of	
both	 the	 current	 and	 new	 solutions	 is	
evaluated. 

Step 3.	Onlooker	Bees'	Phase 

Onlooker	 bees	 probabilistically	 choose	 a	
solution	 to	 explore	 based	 on	 the	 fitness	
values	 of	 employed	 bees.	 The	 better	 the	
fitness	value,	 the	higher	the	probability	of	
being	 chosen.	 This	 phase	 allows	 good	
solutions	to	be	shared	among	the	population 
and	improves	the	overall	search	process. 

Step 4.	Scout	Bees'	Phase 

If	an	employed	bee	exhausts	its	exploration	
resources	without	finding	a	better	solution,	
it	becomes	a	scout	bee.	Scout	bees	generate	
a	 new	 random	 solution	 to	 diversify	 the	
search	 space	 and	 prevent	 the	 algorithm	
from	getting	stuck	in	local	optima. 

Step 5.	Memorize	 the	best	solution	(BestPAR) 
achieved	so	far. 

Step 6.	Termination 

The	 algorithm	 will	 be	 stopped	 if	 a	
termination	condition	is	satisfied.	If	not,	go	
back	to	Step 2. 

Step 7. Return BestPAR. 

 

 

5.  EXPERIMENTAL RESULTS 

In	this	section,	the	proposed	approach	is	applied	to	
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Algorithm 3. OHAM()

INPUT: n values of data {y(t1), y(t2),…, y(tn)} with 
t1, t2, …, tn are point times.
OUTPUT: the best system of parameters for solving 
optimization forecast problems. 
Step 1. Initialization

Start by randomly initializing a population 
of artificial bees, where each bee represents a 
potential solution to the optimization problem. 
The population size is typically defined 
beforehand.

Step 2. Employed Bees' Phase
Each employed bee explores a new solution 
by adjusting its current position based on 
information shared with a randomly selected 
neighbor bee. The new solution is generated 
by modifying the position using specific search 
operators or strategies. After generating the new 
solution, the fitness of both the current and new 
solutions is evaluated.

Step 3. Onlooker Bees' Phase
Onlooker bees probabilistically choose a solution 
to explore based on the fitness values of employed 
bees. The better the fitness value, the higher the 
probability of being chosen. This phase allows 
good solutions to be shared among the population 
and improves the overall search process.

6 
 

c+}, ℋ = {h-q, …, h-1,	 h1,…hp}	 with	 given	
parameters	 (hi),	 hi  ℋ. Obviously, all 
parameters	to	be	used	in	HAM	contain	n = p+q+2 
parameters,	 which	 are	 (h-q), (h-q+1),… (h-1), 
(h1),…, (hp), and sp, dp for	semantization	and	
desemantization.	 So	 we	 can	 present	 that	 by	 the	
vector	PAR =	 (x1,	x2, …, xn)	where	 x1 =	(h-q) ,  
x2 =	(h-q+1) ,… xn-2 =	(hp) , xn-1 =	 sp , xn =	dp. 
Vector	PAR is	also	an	artificial	bee	in	the	OHAM	
below. 

To	optimize	the	parameters,	we	choose	the	
fitness	function	to	be	the	Root	Mean	Square	Error	
(RMSE),	 where	 a	 smaller	 value	 indicates	 better	
fitness. The	 root	 mean	 squared	 error	 can	 be	
expressed	as	follows: 

RMSE	=	√Σ𝑡𝑡=1𝑛𝑛 (𝑦𝑦𝑡𝑡−𝑦̂𝑦𝑡𝑡)2
𝑛𝑛  

where 𝑦𝑦𝑡𝑡 is	the	actual	data	point	at	time	t,	and	𝑦̂𝑦𝑡𝑡 
is	the	predicted	value	at	time	t. 

The	fitness	function	can	be	written: 

Algorithm 2. Fitness(PAR) 

INPUT:	 A	 system	 of	 parameters	 PAR 
represented	for	a	bee;	a	real	dataset	{𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑛𝑛 . 
OUTPUT:	Value	of	fitness	of	PAR. 

Step 1. Generate	 language	 lattice	 of	 HA	 and	
quantify	 those	 values	 based	 on	
parameters	in	PAR. 

Step 2. Calculate forecast	values	𝑦̂𝑦𝑡𝑡  (t = 1,…, n) 
by	HAM(PAR). 

Step 3. Set Err	=	0. 
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value	𝑦̂𝑦𝑡𝑡  at t time,	we	put:	 

Err	=	Err	+	(𝑦𝑦𝑡𝑡 −  𝑦̂𝑦𝑡𝑡)2. 

Step 5. RMSE	=	√𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛 . 

Step 6. Return value RMSE. 
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fitness	value,	 the	higher	the	probability	of	
being	 chosen.	 This	 phase	 allows	 good	
solutions	to	be	shared	among	the	population 
and	improves	the	overall	search	process. 

Step 4.	Scout	Bees'	Phase 

If	an	employed	bee	exhausts	its	exploration	
resources	without	finding	a	better	solution,	
it	becomes	a	scout	bee.	Scout	bees	generate	
a	 new	 random	 solution	 to	 diversify	 the	
search	 space	 and	 prevent	 the	 algorithm	
from	getting	stuck	in	local	optima. 

Step 5.	Memorize	 the	best	solution	(BestPAR) 
achieved	so	far. 

Step 6.	Termination 

The	 algorithm	 will	 be	 stopped	 if	 a	
termination	condition	is	satisfied.	If	not,	go	
back	to	Step 2. 
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resources without finding a better solution, it 
becomes a scout bee. Scout bees generate a new 
random solution to diversify the search space and 
prevent the algorithm from getting stuck in local 
optima.

Step 5. Memorize the best solution (BestPAR) achieved 
so far.

Step 6. Termination
The algorithm will be stopped if a termination 
condition is satisfied. If not, go back to Step 2.
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5.  EXPERIMENTAL RESULTS

In this section, the proposed approach is applied 
to forecast the price of State Bank of India 
(SBI) shares at BSE India from April 2008 to 
March 2010, the enrollments at the University 
of Alabama from years 1971 to 1992, and the 
TAIEX Index of November and December 2004. 
The result will then be compared with different 
published methods. To measure the accuracy of 
the forecasting methods, the following metrics 
are used for comparison with RMSE.

For each test dataset, we used hedge 
algebra consisting of four hedge operators: 
Very, More, Possible, and Little, along with 
two parameters, sp and dp, for semantization 
and desemantization. The OHAM model was 
implemented using the ABC optimization 
algorithm with a maximum of 3000 iterations, 
and the number of employed and onlooker bees 
was set to 50. The optimal parameters obtained 
correspond to the experimental datasets: the 
SBI price, student enrollment at the University 
of Alabama, and the TAIEX stock index, as 
presented in Table 1.

Using the RMSE metric to evaluate 
forecasting performance, it is evident that the 
OHAM model produces less error than other 
models (see the last column of Tables 2-4). 
Visually, from Figures 2-4, the forecasted 
data curves generated by the proposed method 
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Table 1.  The optimal parameters obtained by OHAM.

Parameters
Forecasting problems

µ(Little) µ(Possible) µ(More) µ(Very) sp dp

SBI 0.316 0.286 0.204 0.194 0.467 -0.457

Enrollment 0.205 0.213 0.395 0.187 0.066 -0.167

TAIEX 0.194 0.239 0.149 0.418 0.113 -0.449

5.1.  SBI prices forecasting

Table 2.  Results of the forecasting models for SBI data.

Months
Actual 

SBI 
Prices

Chen10

(1996)
Huarng12 

(2001)
Pathak and 

Singh13 (2011)

Joshi and 
Kumar14 

(2012)

Kumar and 
Gangwar15 

(2015)

Bisht and 
Kumar6

(2016)
OHAM

April-08 1819.95 - - - - - - -

May-08 1840.00 1900 1855 1770.00 1777.80 1725.98 1877.657 1867.00

June-08 1496.70 1900 1855 1832.50 1865.71 1725.98 1877.657 1583.00

July-08 1567.50 1500 1575 1470.00 1531.50 1512.39 1466.360 1583.00

August-08 1638.90 1500 1505 1570.00 1531.50 1512.39 1466.360 1583.00

September-08 1618.00 1600 1610 1670.00 1777.80 1574.35 1533.504 1583.00

October-08 1569.90 1600 1610 1603.33 1531.50 1574.35 1533.504 1583.00

November-08 1375.00 1500 1505 1670.00 1531.50 1512.39 1466.360 1366.00

December-08 1325.00 1433 1482 1382.50 1504.23 1305.52 1520.652 1366.00

January-09 1376.40 1433 1365 1332.50 1504.23 1665.90 1520.652 1366.00

February-09 1205.90 1433 1482 1332.50 1504.23 1305.52 1520.652 1192.00

March-09 1132.25 1433 1155 1195.00 1258.23 1294.27 1144.718 1192.00

April-09 1355.00 1300 1365 1145.00 1258.23 1294.27 1322.446 1366.00

May-09 1891.00 1433 1482 1357.50 1504.23 1665.90 1520.652 1867.00

June-09 1935.00 1900 1890 1882.50 1865.71 2006.51 1877.657 1867.00

July-09 1840.00 1900 1890 1970.00 1883.93 2006.51 1895.491 1867.00

August-09 1886.90 1900 1855 1470.00 1865.71 1725.98 1877.657 1867.00

September-09 2235.00 1900 1855 1970.00 1865.71 2006.51 1877.657 2259.00

October-09 2500.00 2300 2485 2245.00 2142.04 2520.00 2311.382 2498.00

November-09 2394.00 2300 2415 2470.00 2245.65 2420.00 2374.204 2384.00

December-09 2374.75 2300 2345 2395.00 2191.75 2365.99 2352.723 2384.00

January-10 2315.25 2300 2205 2395.00 2191.75 2365.99 2352.723 2384.00

February-10 2059.95 2300 2205 2295.00 2142.04 2020.00 2311.382 2083.00

March-10 2120.05 2100 2135 2070.00 1883.93 2120.00 2166.247 2083.00

RMSE 187.26 164.04 205.96 200.17 131.28 179.03 36.50

follow the actual trend more closely compared 
to other models. Notably, at points with large 
amplitude variations, the OHAM model's 

predictions remain closer to the actual values, 
further demonstrating the high adaptability of 
the proposed model.
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Figure 2.  Line chart of forecast method results for SBI data.

5.2.  Enrollment student forecasting

Table 3.  Results of the forecasting models for enrollment student.

Actual 
data

Song and 
Chissom9 

(1993)

Chen10 
(1996)

Huarng12 
(2001)

Lee and 
Chou16 
(2004)

SC_time 
variant17 

(1994)

Cheng 
et al.18 
(2006)

Cheng 
et al.19 
(2008)

Yolcu et 
al.20 (2009)

Qiu 
et al.21 
(2011)

Joshi and 
Kumar14 

(2012)

Kumar  
and 

Gangwar15 
(2015)

Bisht and 
Kumar6

(2016)
OHAM

13055 - - - - - - - - - - - - -

13563 14000 14000 - 14025 - 14230 14242 14031.35 14195 14250 - 13595.67 13752

13867 14000 14000 - 14568 - 14230 14242 14795.36 14424 14246 13693 13814.75 13752

14696 14000 14000 14000 14568 - 14230 14242 14795.36 14593 14246 13693 14929.79 14753

15460 15500 15500 15500 15654 14700 15541 15474.3 14795.36 15589 15491 14867 15541.27 15341

15311 16000 16000 15500 15654 14800 15541 15474.3 16406.57 15645 15491 15287 15540.62 15341

15603 16000 16000 16000 15654 15400 15541 15474.3 16406.57 15634 15491 15376 15540.62 15341

15861 16000 16000 16000 15654 15500 16196 15474.3 16406.57 16100 16345 15376 15540.62 16040

16807 16000 16000 16000 16197 15500 16196 16146.5 16406.57 16188 16345 15376 16254.5 16879

16919 16813 16833 17500 17283 16800 16196 16988.3 17315.29 17077 15850 16523 17040.41 16879

16388 16813 16833 16000 17283 16200 17507 16988.3 17315.29 17105 15850 16066 17040.41 16040

15433 16789 16833 16000 16197 16400 16196 16146.5 17315.29 16369 15850 17519 16254.5 15341

15497 16000 16000 16000 15654 16800 15541 15474.3 16406.57 15643 15450 16606 15540.62 15341

15145 16000 16000 15500 15654 16400 15541 15474.3 16406.57 15648 15450 15376 15540.62 15341

15163 16000 16000 16000 15654 15500 15541 15474.3 16406.57 15622 15491 15376 15541.27 15341

15984 16000 16000 16000 15654 15500 15541 15474.3 16406.57 15623 15491 15376 15541.27 16040

16859 16000 16000 16000 16197 15500 16196 16146.5 16406.57 16231 16345 15287 16254.5 16879

18150 16813 16833 17500 17283 16800 17507 16988.3 17315.29 17090 17950 16523 17040.41 18283

18970 19000 19000 19000 18369 19300 18872 19144 19132.79 18325 18961 17519 18902.3 19291

19328 19000 19000 19000 19454 17800 18872 19144 19132.79 19000 18961 19500 19357.3 19291

19337 19000 19000 19000 19454 19300 18872 19144 19132.79 19000 18961 19000 19168.56 19291

18876 - 19000 19000 - 19600 18872 19144 19132.79 19000 18961 19500 19168.56 19291

RMSE 650.40 880.73 638.36 476.97 501.28 511.04 478.45 805.17 511.33 433.76 493.56 428.63 178.21
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Figure 3.  Line chart of forecast method results for enrollment student data.

5.3.  TAIEX index forecasting

Table 4.  Results of the forecasting models for TAIEX index. 

Date Actual 
Index

Chen’ 
Forecasted 

Index10

Loc’ 
Forecasted
Index7 (a)

Loc’ 
Forecasted
Index8 (b)

OHAM

2/11/2004 5759.61 5674.81 5743.00 5768.00
3/11/2004 5862.85 5768.14  5852.00 5886.00 5863.00
4/11/2004 5860.73 5854.81 5876.04 5886.00 5863.00
5/11/2004 5931.31 5908.26 5876.04 5934.00 5942.00
8/11/2004 5937.46 5934.81 5912.05 5934.00 5942.00
9/11/2004 5945.2 5943.81 5912.05 5934.00 5942.00
10/11/2004 5948.49 5934.81 5912.05 5978.00 5942.00
11/11/2004 5874.52 5937.12 5912.05 5886.00 5863.00
12/11/2004 5917.16 5908.26 5919.27 5934.00 5903.00
15/11/2004 5906.69 5934.81 5919.27 5934.00 5903.00
16/12/2004 5910.85 5934.81 5919.27 5934.00 5903.00
17/11/2004 6028.68 5937.12 5919.27 5978.00 6038.00
18/11/2004 6049.49 6068.14 5979.18 5978.00 6038.00
19/11/2004 6026.55 6068.14 5979.18 5978.00 6038.00
22/11/2004 5838.42 5976.47 5979.18 5886.00 5833.00
23/11/2004 5851.10 5854.81 5876.04 5886.00 5833.00
24/11/2004 5911.31 5934.85 5876.04 5934.00 5903.00
25/11/2004 5855.24 5934.81 5919.27 5886.00 5863.00
26/11/2004 5778.65 5854.81 5876.04 5768.00 5768.00
29/11/2004 5785.26 5762.12 5797.89 5768.00 5768.00
30/11/2004 5844.76 5762.12 5852.00 5886.00 5833.00
1/12/2004 5798.62 5834.85 5876.04 5768.00 5768.00
2/12/2004 5867.95 5803.26 5797.89 5886.00 5863.00
3/12/2004 5893.27 5854.81 5876.04 5886.00 5903.00
6/12/2004 5919.17 5854.81 5919.27 5934.00 5903.00
7/12/2004 5925.28 5937.12 5912.05 5934.00 5942.00
8/12/2004 5892.51 5876.47 5912.05 5886.00 5903.00
9/12/2004 5913.97 5854.81 5919.27 5934.00 5903.00
10/12/2004 5911.63 5934.81 5919.27 5934.00 5903.00
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13/12/2004 5878.89 5937.12 5919.27 5863.00 5863.00
14/12/2004 5909.65 5854.81 5919.27 5903.00 5903.00
15/12/2004 6002.58 5934.81 5919.27 5994.00 5994.00
16/12/2004 6019.23 6068.14 5979.18 6038.00 6038.00
17/12/2004 6009.32 6062.12 5979.18 5994.00 5994.00
20/12/2004 5985.94 6062.12 5979.18 5994.00 5994.00
21/12/2004 5987.85 5937.12 5979.18 5994.00 5994.00
22/12/2004 6001.52 5934.81 5979.18 5994.00 5994.00
23/12/2004 5997.67 6068.14 5979.18 5994.00 5994.00
24/12/2004 6019.42 5934.81 5979.18 6038.00 6038.00
27/12/2004 5985.94 6068.14 5979.18 5994.00 5994.00
28/12/2004 6000.57 5937.12 5979.18 5994.00 5994.00
29/12/2004 6088.49 6068.14 5979.18 6125.00 6125.00
30/12/2004 6100.86 6062.12 6119.36 6125.00 6125.00
31/12/2004 6139.69 6137.12 6143.57 6125.00 6125.00

RMSE 56.86 48.02 26.88 12.73

Figure 4.  Line chart of forecast method results for TAIEX index data.

6.  CONCLUSIONS

In this study, we propose a new fuzzy time 
series forecasting method using hedge algebra. 
We also introduce a segmentation approach for 
the reference space based on k-level and the 
fuzziness measure of linguistic terms of hedge 
algebra. 

The effectiveness of this fuzzy time series 
forecasting method is demonstrated by applying 
it to the benchmark problem of forecasting 
the enrollment numbers at the University of 
Alabama. The relatively small RMSE value 
indicates that the proposed model outperforms 
other methods. Moreover, financial time series 
exhibit intrinsic characteristics such as relatively 

high volatility and frequent fluctuations in 
individual time series data over time, making 
forecasting more challenging compared to other 
types of time series data. Even well-established 
time series forecasting methods tend to produce 
high forecasting errors. However, the proposed 
OHAM model proves to be highly suitable and 
effective for forecasting financial time series, 
where nonlinearity, intrinsic characteristics, and 
fuzziness complicate the forecasting process.
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