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TÓM TẮT

Dự	báo	chuỗi	thời	gian	mờ	đã	thu	hút	được	sự	chú	ý	đáng	kể	nhờ	khả	năng	xử	lý	sự	không	chắc	chắn	và
thiếu	chính	xác	trong	dữ	liệu	chuỗi	thời	gian.	Các	mô	hình	chuỗi	thời	gian	mờ	truyền	thống	thường	gặp	hạn	chế
trong	việc	nắm	bắt	các	mối	quan	hệ	phức	tạp	giữa	các	biến.	Để	giải	quyết	thách	thức	này,	chúng	tôi	đề	xuất	một
mô	hình	tiếp	cận	mới	gọi	là	mô	hình	dự	báo	chuỗi	thời	gian	mờ	dựa	trên	đại	số	gia	tử	(OHAM).	Đầu	tiên,	chúng
tôi	giới	thiệu	khái	niệm	về	đại	số	gia	tử	và	ứng	dụng	của	chúng	trong	phân	tích	chuỗi	thời	gian	mờ.	Sau	đó,	chúng
tôi	trình	bày	các	bước	xây	dựng	mô	hình,	bao	gồm	việc	xác	định	các	nhãn	ngôn	ngữ	trong	đại	số	gia	tử,	xây	dựng
các	quan	hệ	mờ	từ	dữ	liệu,	chia	đoạn	cho	không	gian	tham	chiếu.	Tiếp	đó,	chúng	tôi	đề	xuất	một	thuật	toán	tối	ưu
hóa	để	tinh	chỉnh	các	tham	số	của	OHAM,	nhằm	đạt	được	hiệu	quả	dự	báo	tối	ưu.	Cuối	cùng	là	thử	nghiệm	trên
một	số	bộ	dữ	liệu	cụ	thể	để	đánh	giá	tính	hiệu	quả	của	mô	hình.	Kết	quả	thử	nghiệm	cho	thấy	mô	hình	mới	đề	xuất
ít	sai	số	hơn	so	với	nhiều	mô	hình	khác.

Từ khóa: Dự báo, chuỗi thời gian mờ, đại số gia tử, từ mờ, giá trị ngôn ngữ.
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ABSTRACT

Fuzzy	time	series	forecasting	has	garnered	significant	attention	due	to	its	ability	to	handle	uncertainty	and
imprecision	in	time	series	data.	Traditional	fuzzy	time	series	models	often	face	limitations	in	capturing	complex
relationships	 between	 variables.	To	 address	 this	 challenge,	we	 propose	 a	 novel	 approach	 called	 the	Optimal
Hedge-Algebras-based	Model	(OHAM).	First,	we	introduce	the	concepts	of	hedge	algebra	and	its	application	in
fuzzy	time	series	analysis.	Subsequently,	we	present	the	model	construction	steps,	including	defining	linguistic
labels	 in	 hedge	 algebra,	 constructing	 fuzzy	 relations	 from	 data,	 and	 partitioning	 the	 universe	 of	 discourse.
Following	this,	we	propose	an	optimization	algorithm	to	fine-tune	the	parameters	of	OHAM,	aiming	to	achieve
optimal	forecasting	performance.	Finally,	experiments	are	conducted	on	several	specific	datasets	to	evaluate	the
effectiveness	of	the	model.	The	experimental	results	demonstrate	that	the	newly	proposed	model	exhibits	better
accuracy	than	many	others.

Keywords: Forecasting, fuzzy time series, hedge algebras, vague words, linguistic terms.
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1. INTRODUCTION

The	proposed	hedge	algebra	by	N.	C.	Ho1-3 has 
been	 tested	 in	 various	 applications,	 yielding
positive	 results	 in	 problems	 such	 as	 fuzzy
control,	 classification,	 fuzzy	 clustering,	 and
fuzzy	time	series	forecasting,4,5	among	others.

Forecasting	 plays	 a	 crucial	 role	 in
numerous	 fields	 such	 as	 finance,	 weather
prediction,	and	stock	market	analysis.6,7	In	recent
years,	fuzzy	time	series	forecasting	models	have
gained	attention	due	to	their	ability	to	handle	the
uncertainty	and	vagueness	present	in	real-world
data.	 One	 such	 model	 is	 the	 hedge-algebras-
based	forecasting	model.8

The	 hedge-algebras-based	 forecasting
model	utilizes	an	algebraic	structure	 to	capture
the	 relationships	 between	 historical	 data	 and
future	 predictions.	 However,	 the	 performance
of	 this	 model	 heavily	 relies	 on	 parameter
calibration.	 Determining	 optimal	 parameters
is	 a	 challenging	 task	 that	 requires	 an	 efficient
optimization	algorithm.

In	this	paper,	we	propose	the	application
of	the	Artificial	Bee	Colony	(ABC)	algorithm	to
optimize	 the	parameters	of	 the	hedge-algebras-
based	forecasting	model	for	fuzzy	time	series.	The
ABC	algorithm	 is	 a	metaheuristic	optimization
technique	 inspired	 by	 the	 foraging	 behavior	 of
honey	bees.	 It	has	been	successfully	applied	 to	
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various	 optimization	 problems	 and	 showcases
robustness	and	convergence	efficiency.

By	 employing	 the	 ABC	 algorithm,
this	 research	 aims	 to	 enhance	 the	 accuracy
and	 reliability	 of	 the	 hedge-algebras-based
forecasting	 model.	 The	 ABC	 algorithm	 will
efficiently	 search	 the	 parameter	 space,	 finding
the	 optimal	 combination	 of	 parameters	 for
the	model.	This	 process	will	 help	 in	 achieving
improved	forecast	accuracy,	reduced	error	rates,
and	 enhanced	 decision-making	 capabilities	 in
diverse	applications.

To	 evaluate	 the	 proposed	 approach,
extensive	 experiments	will	 be	 conducted	using
real-world	 datasets	 from	 different	 domains.
Comparative	 analyses	 will	 be	 carried	 out,
comparing	 the	 performance	 of	 the	 optimized
hedge-algebras-based	 forecasting	 model	 with
other	well-established	 optimization	 techniques.
The	 results	 obtained	will	 provide	 insights	 into
the	 effectiveness	 and	 efficiency	 of	 the	 ABC
algorithm	 in	 parameter	 optimization	 for	 fuzzy
time	series	forecasting	models.

2.  PROBLEM OF FUZZY TIME SERIES 
FORECASTING

The	 problem	 in	 time	 series	 forecasting	 is	 to
accurately	predict	future	values	or	trends	based
on	 historical	 data.	 This	 involves	 addressing
challenges	 such	 as	 identifying	 and	 modeling
trends,	 handling	 seasonality	 and	 noise,
accounting	 for	 non-linear	 relationships	 and
non-stationarity,	 and	 choosing	 the	 optimal
model	 and	 parameters.	 The	 goal	 is	 to	 develop
a	robust	forecasting	method	that	can	generalize
well	 beyond	 the	 training	 data	 and	 provide
reliable	 predictions	 for	 effective	 decision-
making.	Overcoming	 these	 challenges	 requires
a	combination	of	statistical	techniques,	machine
learning	 algorithms,	 and	 domain	 expertise	 to
achieve	accurate	and	meaningful	forecasts.

Fuzzy	 time	 series,	 a	 concept	 derived
from	 fuzzy	 set	 theory,	 is	 a	 powerful	 tool	 for
modeling	 and	 forecasting	 time-dependent	 data
with	 inherent	 uncertainty	 and	 imprecision.	

Unlike	 traditional	 time	 series	 analysis,	 which
assumes	 crisp	 values,	 fuzzy	 time	 series	 allows
for	 the	 representation	 of	 vague	 and	 uncertain
information	 through	 linguistic	 terms	 and
membership	 functions.	 By	 incorporating	 fuzzy
logic	into	the	modeling	process,	fuzzy	time	series
enables	 the	 handling	 of	 complex	 data,	making
it	 particularly	 suitable	 for	 real-world	 scenarios
where	uncertainty	is	prevalent.	This	approach	has
found	applications	in	various	domains,	including
finance,	 economics,	 weather	 prediction,	 and
decision-making	 systems,	 providing	 valuable
insights	 and	 accurate	 predictions	 in	 situations
where	conventional	methods	may	fall	short.

The	problem	is	stated	as	follows:	Given	n
values	y(t1), y(t2),…, y(tn)	where	t1,	t2,	…,	tn are 
point	times.	How	to	predict	the	next	value?

2.1. Some basic definitions

The	fuzzy	time	series	model	was	first	proposed
by	 Q.	 Song	 and	 B.	 S.	 Chissom.9	 Then,	 it	 is
improved	 by	 S.M	 Chen10,11	 to	 process	 some
arithmetic	 calculations.	 From	 that	 point,	 they
can	 get	 more	 exact	 forecasting	 results.	 In	 this
session,	we	briefly	review	the	concepts	of	fuzzy
time	series	as	in	Q.Song.9 

Let	U	be	the	universe	of	discourse,	where	
U	 =	 {u1, u2,..., un}.	A	 fuzzy	 set	 defined	 in	 the
universe	 of	 discourse	U	 can	 be	 represented	 as
follows:	A	=	fA(u1)/u1 + fA(u2)/u2 + ··· + fA(un)/un

,	where	 fA	 denotes	 the	membership	 function	of
the	fuzzy	set	A,	fA : U	→	[0,	1],	and	fA(ui)	denotes
the	degree	of	membership	of	ui	belonging	to	the
fuzzy	set	A,	and	fA(ui) ∈	[0,	1],	and	1	≤	i	≤	n.

Definition 1.9	Let	Y(t) (t	=	...,0,1,2,...)	be
the	universe	of	discourse	and	be	a	subset	of	R.
Assume	fi(t) (i	=	1,2,...)	are	defined	on	Y(t),	and
assume	that	F(t) is a collection of f1(t),	f2(t),	...,
then F(t)	is	called	a	fuzzy	time	series	definition	
Y(t)  (t =	...,0,1,2,...).

Definition 2.9	Assume	that	F(t)	is	caused
by	 F(t−1)	 only,	 denoted	 as	 F(t −	 1)	 →	 F(t),
then	 this	 relationship	 can	 be	 expressed	 as	F(t) 
=	F(t−1)◦R(t,t −	1),	where	F(t)	=	F(t −	1)◦	R(t, 
t−1)	is	called	the	first-order	model	of	F(t),	R(t, 



142 Quy Nhon University Journal of Science, 2025, 19(3), 139-150
https://doi.org/10.52111/qnjs.2025.19311

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

t −	1)	is	the	fuzzy	relationship	between	F(t	−	1)
and	F(t),	 and	 “◦”	 is	 the	Max-Min	 composition
operator.

Definition 3.9	Assume	 that	 the	 fuzzified
input	 data	 of	 the	 ith	 year/month	 is	 Aj	 and	 the
fuzzified	input	data	of	the	i+1th year/month	is	Ak,
where	Aj	and	Ak	are	two	fuzzy	sets	defined	in	the
universe	of	discourse	U,	 then	 the	 fuzzy	 logical
relationship	 can	 be	 represented	 by	 Aj	 →	 Ak,	
where	Aj	is	called	the	current	state	of	the	fuzzy
logical	relationship.

If	we	have	Ai	→	Aj1,	Ai	→	Aj2,	...,	Ai	→	Ajk

then	we	can	write	Ai	→	Aj1, Aj2,	...,	Ajk.   

2.2. Rules for calculating output value

Assume	 that	 Aj	 is	 the	 value	 of	 F(t	 −	 1),	 the
forecasted	output	F(t)	be	defined	as	in	research:10 

If there exists a relation 1-1 within the 
group of the relations where Aj is on the left of 
the rule, suppose that Aj → Ak , and the maximum 
membership value of Ak occurs at interval uk , 
then the output of F(t) is the middle point of uk .  

a)	If	Ak	=	∅,	that	means	Aj	→	∅	and	the
maximum	 membership	 value	 of	 Aj	 occurs	 at
interval	uj,	then	the	output	of	F(t)	is	the	middle
point	of	uj. 

b)	If	we	have	Aj	→	A1,	A2	,…,	An,	and	the
maximum	membership	values	of	A1,	A2	 ,…,	An

occur	at	intervals	u1,	u2,…,	un	respectively,	then
the	output	of	F(t)	is	average	of	the	middle	points
m1,	m2,	…,	mn	of	u1,	u2	,…,	un,	that	is	(m1	+	m2 + 
…	+	mn)/n.

3. THE MODEL OF FORECASTING TIME 
SERIES BASED ON HEDGE ALGEBRAS

In	 this	 section,	 we	 provide	 a	 brief	 overview
of	 the	 algebraic	 approach	 to	 the	 semantics	 of
vague	words	 in	 natural	 languages,	 as	 explored
in	 previous	 studies,1-4	 and	 introduce	 a	 new
forecasting	 method	 based	 on	 hedge	 algebra
theory.

3.1. Algebraic structure of vague term domain

Hedge	 algebras,	 denoted	 as	 AX	 =	 (𝒳, 𝔾, ℂ, 
ℋ,	 ≤),	 are	 a	 mathematical	 structure	 to	 handle	

𝒳     
 𝒳         




and	regarded	as	constants	of	AX	since	they	are
fixed	points;	𝔾	=	{c−,	c+}	is	a	set	of	the	primary
or	 atomic	 words	 of	 the	 linguistic	 variable	 X,
the	first	one	is	called	the	negative	word,	and	the
second,	the	positive	one.	𝔾 ∪ ℂ𝔾 
 ∪ ℂ)	=	
ℂ   ∪ ℋ(𝔾),	the	underlying	set	of	AX	where
for	a	subset	Z	of	𝒳,	the	set	ℋ(Z)	denotes	the	set
of	all	elements	freely	generated	from	the	words
in	Z.	 I.e.	ℋ (Z)	 =	 {σx	 :	 x	∈	 Z	 and	 σ	∈ ℋ*},
where	ℋ*	is	the	set	of	all	strings	of	hedges	in	ℋ,
including	the	empty	string	ε.	Note	that	for	σ	=	ε,	
εx	 =	 x	 and,	 hence,	 Z	 ⊆ ℋ (Z).	 In	 the	 case	
Z	=	{x}	we	shall	write	ℋ (x)	instead	of	ℋ ({x}).
≤	is	a	semantical	order	relation	upon	𝒳. 

Consider	 a	 hedge	 algebra	 AX	 =	 (𝒳, 
𝔾, ℂ, ℋ,	 ≤)	 of	 an	 attribute	 X	 with	 numeric
reference	 interval	 domain	U	 normalized	 to	 be
[0,1],	 for	convenience	 in	a	unified	presentation
of	 the	 quantification	 of	 the	 hedge	 algebras.
Formally,	 the	 numeric	 semantics	 of	 the
words	 of	𝒳	 can	 be	 determined	 by	 a	 so-called
Semantically	 Quantifying	 Mapping	 (SQM),
f : 𝒳	→	[0,	1],	defined	as	follows.

Definition 4.3	A	mapping	f: 𝒳	→	[0,	1]	is
said	to	be	an	SQM	of	AX,	if	we	have:

• f is an order isomorphism,	i.e.	it	is	one-
to-one	and	for	∀x,	y ∈ 𝒳,	x	≤	y ⇒ f(x)	≤	f(y).

•	The	 image	 of	 𝒳	 under	 f,	 f(𝒳),	 is	
topologically	dense	in	the	universe	[0,	1].

Definition 5.3	A	function	fm: 𝒳	→	[0,	1]
is	 said	 to	 be	 a	 fuzziness	measure	 of	 the	 hedge
algebra	AX	associated	with	the	given	variable	X,
if	it	satisfies	the	following	axioms,	for	any	x ∈ 𝒳
and	h ∈ ℋ:

•	

4 
 

all	 strings	 of	 hedges	 in	ℋ,	 including	 the	 empty	
string	. Note that for  =	,	x	=	x	and,	hence,	Z	
 ℋ(Z).	In	the	case	Z	=	{x}	we	shall	write	ℋ(x)	
instead	of	ℋ({x}).	 is	a	semantical	order	relation	
upon	𝒳𝒳.  

Consider	a hedge	algebra AX	=	(𝒳𝒳,	𝔾𝔾,	ℂ ,	ℋ,	) 
of	an	attribute	X	with	numeric	reference	 interval	
domain	U normalized	to	be	[0,1],	for	convenience	
in	 a	 unified	 presentation	 of	 the	 quantification	 of	
the	 hedge	 algebras.	 Formally,	 the	 numeric	
semantics	of	the	words	of	𝒳𝒳 can	be	determined	by	
a so-called	 Semantically	 Quantifying	 Mapping	
(SQM), 
f : 𝒳𝒳→ [0, 1], defined	as	follows. 

Definition 4.3 A	mapping	f: 𝒳𝒳 → [0, 1] is 
said	to	be	an	SQM	of	AX,	if	we	have: 

 f is an order isomorphism,	i.e.	it	is	one-to-one 
and	for	x,	y  𝒳𝒳,	x  y  f(x)  f(y). 

 The	image	of	𝒳𝒳 under	f,	f(𝒳𝒳),	is	topologically	
dense	in	the	universe	[0,	1]. 

Definition 5.3 A	function	fm: 𝒳𝒳 → [0, 1] is 
said	 to	 be	 a	 fuzziness	 measure	 of	 the	 hedge	
algebra AX	associated	with	the	given	variable	X,	
if	it	satisfies	the	following	axioms,	for	any	x  𝒳𝒳
and	h  ℋ: 

 fm(c) + fm(c+) = 1.
 ∑                             . 

𝔾𝔾

 fm(hx) = (h)fm(x), where (h) is called for 
convenience the fuzziness measure of h as 
well.  

 For x = hnhn – 1 … h1c,  fm(x) = fm(hnhn – 1 … 
h1c) = (hn)(hn – 1) … (h1)fm(c), c   = { 
c, c+}. 
 Setting ∑                    & 
∑                 , we have      
∑                       . 

In	 the	 general	 case,	 for	 given	 values	 of	 the	
fuzziness	 parameters	 of	 X, we	 can	 establish a 
recursive	 expression	 to	 compute	 the	 SQM	 fm,	
called	 the	 SQM	 induced	 by	 the	 given	 fm,	 as	
follows:3 

 fm(W) =   = fm(c), fm(c) =   fm(c)= 
fm(c), fm(c+) =  +fm(c+); 



   (   )  
          (   )  (∑           

         

(   (   ))  (  ))       

here 
(   )  

 
 [      (   )                ]  

  } , for all j  [q…p],	 j ≠ 0, and sign() 
function	is	defined	as	in research3,4.   

.  Converting values between semantic and 
reference domains 

convert	the	values	from	the	reference	domain	

w
 
{ 

3.2

To	
to the semantic	domain	of	a	variable	X	and	vice	
versa,	 we	 synthesize	 some	 transformations	 as:	
Assume	 that	 [a, b]	 is	 a	 reference	 domain	 of	 the	
variable	 X,	 and	 [as,bs]	 [0,	 1]	 is	 the semantic	
domain.	 The	 conversion	 value	 x from	 [a, b]	 to	

s,bs]	 is	 called	 semantization,	 denoted	 S(x) and	
conversion	 value	 y from [as,bs]	 to	 [a,b]	 is	

called	desemantization,	denoted	D(y).  
For	 flexibility	 in	 semantization	 or	

desemantization,	we	add	some	parameters	sp, dp 
[-1,	1]	then: S(x)  =  f(x, sp),	satisfy 0 ≤ f(x, sp) 
1 ,  f(x=a, sp) = 0, f(x=b, sp) = 1.	And,	D(y)  = 
y, dp),	satisfy	a ≤ g(y, dp) ≤ b, g(y = 0, dp) = a, 

[a
the	


≤ 
g(
g(y = 1, dp) = b.  

In	 this	 paper,	 we	 use	 the	 functions: S(x) = 
f(x,sp) = (sp×x(1-x)+x)/(b-a)	 and	 D(y) = g (y, 
dp)= dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ f(y, 
sp). 

Figure	1	illustrates	the	hedge	algebra	AX	=	
(𝒳𝒳,	𝔾𝔾,	ℂ ,	ℋ,	) with	the	hedge	set	ℋ ={Very-V,	
More-M,	 Rather-R,	 Less-L}	 and	 the	 transfer	 of	
values	from	the	semantic	domain	to	the	reference	
domain	 and	 vice	 versa.
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l fm(hx) = µ(h)fm(x), where µ(h) is called for 
convenience the fuzziness measure of h as 
well. 

l For x = hnhn – 1 … h1c,  fm(x) = fm(hnhn – 1 
… h1c) = µ(hn)µ(hn – 1) … (h1)fm(c), c ∈ 𝔾 =  
{ c−, c+}.

In	 the	 general	 case,	 for	 given	 values	 of
the	fuzziness	parameters	of	X,	we	can	establish
a	recursive	expression	to	compute	the	SQM	υfm,	
called	 the	 SQM	 induced	 by	 the	 given	 fm,	 as
follows:3

3.2.  Converting values between semantic and 
reference domains

To	convert	the	values	from	the	reference	domain
to	the	semantic	domain	of	a	variable	X	and	vice
versa,	 we	 synthesize	 some	 transformations	 as:
Assume	that	[a, b]	is	a	reference	domain	of	the
variable	X,	and	 [as,bs]	⊆	 [0,	1]	 is	 the	 semantic
domain.	The	conversion	value	x	 from	[a, b]	 to
[as,bs]	is	called	semantization,	denoted	S(x)	and
the	 conversion	 value	 y	 from	 [as,bs]	 to	 [a,b]	 is
called	desemantization,	denoted	D(y). 

For	 flexibility	 in	 semantization	 or
desemantization,	 we	 add	 some	 parameters	 sp, 
dp ∈[-1,	1]	then:	S(x)  =  f(x, sp),	satisfy 0 ≤ f(x, 
sp) ≤ 1 ,  f(x=a, sp) = 0, f(x=b, sp) = 1.	And,
D(y)  = g(y, dp),	satisfy	a ≤ g(y, dp) ≤ b, g(y = 0, 
dp) = a, g(y = 1, dp) = b. 

In	 this	 paper,	 we	 use	 the	 functions:
S(x) = f(x,sp) = (sp×x(1-x)+x)/(b-a)	and	D(y) = 
g(y, dp)= dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ 
f(y, sp).

Figure	1	illustrates	the	hedge	algebra	AX
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string	. Note that for  =	,	x	=	x	and,	hence,	Z	
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In	 this	 paper,	 we	 use	 the	 functions: S(x) = 
f(x,sp) = (sp×x(1-x)+x)/(b-a)	 and	 D(y) = g (y, 
dp)= dp×(f(y, sp)– a)×(b – f(y, sp))/(b – a)+ f(y, 
sp). 

Figure	1	illustrates	the	hedge	algebra	AX	=	
(𝒳𝒳,	𝔾𝔾,	ℂ ,	ℋ,	) with	the	hedge	set	ℋ={Very-V,	
More-M,	 Rather-R,	 Less-L}	 and	 the	 transfer	 of	
values	from	the	semantic	domain	to	the	reference	
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3.3.  Hedge-Algebras-based Model (HAM) for 
time series forecasting

We	 consider	 each	 reference	 domain	 in	 the
forecasting	 problem	 to	 correspond	 to	 a	 hedge
algebra.	 Let	 PAR	 be	 a	 set	 of	 parameters,
including	the	fuzzy	measures	of	the	hedges	and
the	values	sp	and	dp.	Given	that	PAR	has	been
determined,	in	this	section,	we	present	the	fuzzy
time	series	forecasting	algorithm	as	follows.

4. THE OPTIMAL HEDGE-ALGEBRAS-
BASED MODEL 

In Step 2 of the HAM model above,	 we
assume	that	each	point	at	a	time	will	belong	to
a	word	in	the	hedge	algebra	AX	= (𝒳, 𝔾, ℂ, ℋ,	
≤),	C	=	{c-,	c+},	ℋ	=	{h-q,	…,	h-1,	h1,…hp}	with
given	 parameters	µ(hi),	 hi ∈	 H.	 Obviously,	 all
parameters	to	be	used	in	HAM	contain	n = p+q+2 
parameters,	 which	 are	 µ(h-q), (h-q+1),… µ(h-1), 
µ(h1),…, µ(hp), and sp, dp for	semantization	and
desemantization.	So	we	can	present	that	by	the
vector	PAR	=	 (x1,	x2,	…,	xn)	where	x1	=	µ(h-q) , 
x2	=	µ(h-q+1) ,… xn-2	=	µ(hp) , xn-1	=	sp , xn	=	dp. 
Vector	PAR	is	also	an	artificial	bee	in	the	OHAM
below.

To	 optimize	 the	 parameters,	 we	 choose
the	fitness	function	to	be	the	Root	Mean	Square
Error	(RMSE),	where	a	smaller	value	indicates
better	fitness.	The	 root	mean	squared	error	can
be	expressed	as	follows:

where	yt	is	the	actual	data	point	at	time	t,	and	yât
is	the	predicted	value	at	time	t.

The	fitness	function	can	be	written:

Algorithm 1. HAM(PAR)

INPUT: 
- n	values	of	data	{y(t1), y(t2),…, y(tn)}	with	t1,	t2,
…,	tn	are	point	times.
-	System	of	the	parameters	of	hedge	algebras	and
sp,	 dp	 for	 semantization	 and	 desemantization,
denoted	PAR.

OUTPUT:	the	forecasted	value F(ti).
Step	1.	Define	the	discourse	U

Put U = [D min, Dmax] where Dmin = min{y(t1), 
y(t2),…, y(tn)} and Dmax = max{y(t1), y(t2),…, 
y(tn)}. 

Step	2.	Building	the	intervals	upon	U	by	using	the
fuzziness	model	of	hedge	algebra.
Based on an algebra AX = (𝒳, 𝔾, ℂ, ℋ, ≤) we 
divide U into k intervals u1, u2, …, uk w.r.t level l 
(see Figure 1). The interval ui is labeled Ai, i = 1, 
2,…, k satisfying A1 < A2 < … < Ak. We calculate 
fui = fm(Ai)×(Dmax - Dmin), i = 1, 2, …, k. So we 
have u1 = [u1d, u1c] = [Dmin, Dmin + fu1], u2 = [u2d, 
u2c] = [u1c+1, u2d+fu2], …, uk = [ukd, ukc] = [u(k-1)

c+1, ukd+fuk]. 
Step	 3.	 Quantifying	 semantics	 of	 the	 linguistic

values	A1,	A2,	…,	Ak .
To quantify the semantic of A1, A2, …, Ak, we use 
SQM υfm as SA1 = υfm(A1), SA2 = υfm(A2), ..., SAk

= υfm(Ak). By properties of hedge algebras, it is 
clear that SA1 < SA2 < ... < SAk.

Step	4.	Constructing	the	relationships
Suppose that, F(t − 1) is Ai, F(t) is Aj, and F(t) is 
caused by F(t − 1). Clearly, we have a relation 
between Ai and Aj, denoted Ai  → Aj.     

Step	5.	Grouping	relationships
If Ai  → Aj1, Ai  → Aj2,..., Ai  → Ajm, then we 
establish the relation by grouping all of them into 
a unique relation Ai  → Aj1, Aj2, ..., Ajm.

Step	6.	Calculating	output	value

From	a	group	of	the	relations	in	Step	5,	applying
the	 rules	 as	 in	Section	2.2	we	get	 the	 results	 of
F(t),	scilicet:	If	there	is	a	relation	Ai  →	Aj,	then	
F(j)	=	D(SAj)	upon	uj	=	[ujd,	ujc].	If	Ai → ∅ then 
F(j)	=	D(∅)	upon	ui	=	[uid,	uic].	If	Ai	→	Aj1,	Aj2,
...,	Ajk	then	F(j)	=	D(Wi,j1×SAj1	+ Wi,j2×SAj2	+... + 
Wi,jk×SAjk)	upon	 interval	 [min{uj1d,	uj2d,	 ...,	 ujkd},
max{uj1c,	uj2c,	 ...,	 ujkc}]	where	Wi,j	 is	 the	weights	
measured	in	the	ratio	number	of	times	of	real	data
in	the	interval	ui		to	sum	of	number	of	times	of	real
data	in	the	intervals	uj1,	uj2,	...,	ujk.

Step	7.	Return	the	values	F(ti),	i	=	1,…,	n.

6 
 

c+}, ℋ = {h-q, …, h-1,	 h1,…hp}	 with	 given	
parameters	 (hi),	 hi  ℋ. Obviously, all 
parameters	to	be	used	in	HAM	contain	n = p+q+2 
parameters,	 which	 are	 (h-q), (h-q+1),… (h-1), 
(h1),…, (hp), and sp, dp for	semantization	and	
desemantization.	 So	 we	 can	 present	 that	 by	 the	
vector	PAR =	 ( x1,	x2, …, xn)	where	 x1 =	(h-q) , 
x2 =	(h-q+1) ,… xn-2 =	(hp) , xn-1 =	 sp , xn =	dp. 
Vector	PAR is	also	an	artificial	bee	in	the	OHAM	
below. 

To	optimize	the	parameters,	we	choose	the	
fitness	function	to	be	the	Root	Mean	Square	Error	
(RMSE),	 where	 a	 smaller	 value	 indicates	 better	
fitness. The	 root	 mean	 squared	 error	 can	 be	
expressed	as	follows: 

RMSE	=	√Σ𝑡𝑡=1𝑛𝑛 (𝑦𝑦𝑡𝑡−𝑦̂𝑦𝑡𝑡)2
𝑛𝑛

where 𝑦𝑦𝑡𝑡 is	the	actual	data	point	at	time	t,	and	𝑦̂𝑦𝑡𝑡
is	the	predicted	value	at	time	t. 

The	fitness	function	can	be	written: 

Algorithm 2. Fitness(PAR) 

INPUT:	 A	 system	 of	 parameters	 PAR
represented	for	a	bee;	a	real	dataset	{𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑛𝑛 .
OPUT:	Value	of	fitness	of	PAR. 

Step 1. Generate	 language	 lattice	 of	 HA	 and	
quantify	 those	 values	 based	 on	
parameters	in	PAR. 

Step 2. Calculate forecast	values	𝑦̂𝑦𝑡𝑡  (t = 1,…, n) 
by	HAM(PAR). 

Step 3. Set Err	=	0. 

Step 4. For	 each	 real	 value	𝑦𝑦𝑡𝑡  and	 forecasted	
value	𝑦̂𝑦𝑡𝑡  at t time,	we	put:	 

Err	=	Err	+	(𝑦𝑦𝑡𝑡 −  𝑦̂𝑦𝑡𝑡)2. 

Step 5. RMSE	=	√𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛 . 

Step 6. Return value RMSE. 

 

The	model	is	built	as: 

Algorithm 3. OHAM() 

INPUT:	n values	 of	data	 {y(t1), y(t2),…, y(tn)} 
with	t1,	t2, …, tn are	point	times. 

OUTPUT: the	 best	 system	 of	 parameters	 for	
solving	optimization	forecast	problems.  

Step 1.	Initialization 

Start	by	randomly	initializing	a	population	
of	artificial	bees,	where	each	bee	represents	
a	 potential	 solution	 to	 the	 optimization	
problem.	 The	 population	 size	 is	 typically	
defined	beforehand. 

Step 2.	Employed	Bees'	Phase 

Each	employed	bee	explores	a	new	solution	
by	 adjusting	 its	 current	 position	 based	 on	
information	 shared	 with	 a	 randomly	
selected	neighbor	bee.	The	new	solution	is	
generated	by	modifying	the	position	using	
specific	search	operators	or	strategies.	After	
generating	 the	new	solution,	 the	fitness	of	
both	 the	 current	 and	 new	 solutions	 is	
evaluated. 

Step 3.	Onlooker	Bees'	Phase 

Onlooker	 bees	 probabilistically	 choose	 a	
solution	 to	 explore	 based	 on	 the	 fitness	
values	 of	 employed	 bees.	 The	 better	 the	
fitness	value,	 the	higher	the	probability	of	
being	 chosen.	 This	 phase	 allows	 good	
solutions	to	be	shared	among	the	population 
and	improves	the	overall	search	process. 

Step 4.	Scout	Bees'	Phase 

If	an	employed	bee	exhausts	its	exploration	
resources	without	finding	a	better	solution,	
it	becomes	a	scout	bee.	Scout	bees	generate	
a	 new	 random	 solution	 to	 diversify	 the	
search	 space	 and	 prevent	 the	 algorithm	
from	getting	stuck	in	local	optima. 

Step 5.	Memorize	 the	best	solution	(BestPAR) 
achieved	so	far. 

Step 6.	Termination 

The	 algorithm	 will	 be	 stopped	 if	 a	
termination	condition	is	satisfied.	If	not,	go	
back	to	Step 2. 

Step 7. Return BestPAR. 

 

 

5.  EXPERIMENTAL RESULTS 

In	this	section,	the	proposed	approach	is	applied	to	
forecast	 the	 price	 of	 State	 Bank	 of	 India	 (SBI)	
shares	 at	 BSE	 India	 from	 April	 2008	 to	March	
2010,	 the	 enrollments	 at	 the	 University	 of	
Alabama	from	years	1971	to	1992,	and	the	TAIEX	
Index	 of	 November	 and	 December	 2004.	 The	
result	 will	 then	 be	 compared	 with	 different	
published	methods.	 To	measure	 the	 accuracy	 of	
the	forecasting	methods,	the	following	metrics	are	
used	for	comparison	with	RMSE. 
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Algorithm 3. OHAM()

INPUT:	n	values	of	data	{y(t1), y(t2),…, y(tn)}	with
t1,	t2,	…,	tn	are	point	times.
OUTPUT: the best system of parameters for 
solving optimization	forecast	problems. 
Step	1.	Initialization

Start	 by	 randomly	 initializing	 a	 population	
of	 artificial	 bees,	where	 each	 bee	 represents	 a
potential	solution	to	the	optimization	problem.
The	 population	 size	 is	 typically	 defined
beforehand.

Step	2.	Employed	Bees'	Phase
Each	 employed	 bee	 explores	 a	 new	 solution	
by	 adjusting	 its	 current	 position	 based	 on
information	 shared	 with	 a	 randomly	 selected
neighbor	 bee.	 The	 new	 solution	 is	 generated
by	modifying	the	position	using	specific	search
operators	or	strategies.	After	generating	the	new
solution,	the	fitness	of	both	the	current	and	new
solutions	is	evaluated.

Step	3.	Onlooker	Bees'	Phase
Onlooker	bees	probabilistically	choose	a	solution	
to	explore	based	on	the	fitness	values	of	employed
bees.	The	better	the	fitness	value,	the	higher	the
probability	 of	 being	 chosen.	 This	 phase	 allows
good	solutions	to	be	shared	among	the	population
and	improves	the	overall	search	process.

6 

c+}, ℋ = {h-q, …, h-1,	 h1,…hp}	 with	 given	
parameters	 (hi),	 hi  ℋ. Obviously, all 
parameters	to	be	used	in	HAM	contain	n = p+q+2 
parameters,	 which	 are	 (h-q), (h-q+1),… (h-1), 
(h1),…, (hp), and sp, dp for	semantization	and	
desemantization.	 So	 we	 can	 present	 that	 by	 the	
vector	PAR =	 ( x1,	x2, …, xn)	where	 x1 =	(h-q) ,  
x2 =	(h-q+1) ,… xn-2 =	(hp) , xn-1 =	 sp , xn =	dp. 
Vector	PAR is	also	an	artificial	bee	in	the	OHAM	
below. 

To	optimize	the	parameters,	we	choose	the	
fitness	function	to	be	the	Root	Mean	Square	Error	
(RMSE),	 where	 a	 smaller	 value	 indicates	 better	
fitness. The	 root	 mean	 squared	 error	 can	 be	
expressed	as	follows: 

RMSE	=	√Σ𝑡𝑡=1𝑛𝑛 (𝑦𝑦𝑡𝑡−𝑦̂𝑦𝑡𝑡)2
𝑛𝑛

where 𝑦𝑦𝑡𝑡 is	the	actual	data	point	at	time	t,	and	𝑦̂𝑦𝑡𝑡
is	the	predicted	value	at	time	t. 

The	fitness	function	can	be	written: 

Algorithm 2. Fitness(PAR) 

INPUT:	 A	 system	 of	 parameters	 PAR
represented	for	a	bee;	a	real	dataset	{𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑛𝑛 .
OUTPUT:	Value	of	fitness	of	PAR. 

Step 1. Generate	 language	 lattice	 of	 HA	 and	
quantify	 those	 values	 based	 on	
parameters	in	PAR. 

Step 2. Calculate forecast	values	𝑦̂𝑦𝑡𝑡  (t = 1,…, n) 
by	HAM(PAR). 

Step 3. Set Err	=	0. 

Step 4. For	 each	 real	 value	𝑦𝑦𝑡𝑡 and	 forecasted	
value	𝑦̂𝑦𝑡𝑡  at t time,	we	put:	 

Err	=	Err	+	(𝑦𝑦𝑡𝑡 −  𝑦̂𝑦𝑡𝑡)2.

Step 5. RMSE	=	√𝐸𝐸𝐸𝐸𝐸𝐸
𝑛𝑛 .

Step 6. Return value RMSE. 

The	model	is	built	as: 

Algorithm 3. OHAM() 

INPUT:	n values	 of	data	 {y(t1), y(t2),…, y(tn)} 
with	t1,	t2, …, tn are	point	times. 

OUTPUT: the	 best	 system	 of	 parameters	 for	
solving	optimization	forecast	problems.  

Step 1.	Initialization 

Start	by	randomly	initializing	a	population	
of	artificial	bees,	where	each	bee	represents	
a	 potential	 solution	 to	 the	 optimization	
problem.	 The	 population	 size	 is	 typically	
defined	beforehand. 

Step 2.	Employed	Bees'	Phase 

Each	employed	bee	explores	a	new	solution	
by	 adjusting	 its	 current	 position	 based	 on	
information	 shared	 with	 a	 randomly	
selected	neighbor	bee.	The	new	solution	is	
generated	by	modifying	the	position	using	
specific	search	operators	or	strategies.	After	
generating	 the	new	solution,	 the	fitness	of	
both	 the	 current	 and	 new	 solutions	 is	
evaluated. 

Step 3.	Onlooker	Bees'	Phase 

Onlooker	 bees	 probabilistically	 choose	 a	
solution	 to	 explore	 based	 on	 the	 fitness	
values	 of	 employed	 bees.	 The	 better	 the	
fitness	value,	 the	higher	the	probability	of	
being	 chosen.	 This	 phase	 allows	 good	
solutions	to	be	shared	among	the	population 
and	improves	the	overall	search	process. 

Step 4.	Scout	Bees'	Phase 

If	an	employed	bee	exhausts	its	exploration	
resources	without	finding	a	better	solution,	
it	becomes	a	scout	bee.	Scout	bees	generate	
a	 new	 random	 solution	 to	 diversify	 the	
search	 space	 and	 prevent	 the	 algorithm	
from	getting	stuck	in	local	optima. 

Step 5.	Memorize	 the	best	solution	(BestPAR) 
achieved	so	far. 

Step 6.	Termination 

The	 algorithm	 will	 be	 stopped	 if	 a	
termination	condition	is	satisfied.	If	not,	go	
back	to	Step 2. 

Step 7. Return BestPAR. 

5.  EXPERIMENTAL RESULTS 

In	this	section,	the	proposed	approach	is	applied	to	
forecast	 the	 price	 of	 State	 Bank	 of	 India	 (SBI)	
shares	 at	 BSE	 India	 from	 April	 2008	 to	March	
2010,	 the	 enrollments	 at	 the	 University	 of	
Alabama	from	years	1971	to	1992,	and	the	TAIEX	
Index	 of	 November	 and	 December	 2004.	 The	
result	 will	 then	 be	 compared	 with	 different	
published	methods.	 To	measure	 the	 accuracy	 of	
the	forecasting	methods,	the	following	metrics	are	
used	for	comparison	with	RMSE. 

Step	4.	Scout	Bees'	Phase
If	 an	 employed	 bee	 exhausts	 its	 exploration	
resources	 without	 finding	 a	 better	 solution,	 it
becomes	a	 scout	bee.	Scout	bees	generate	a	new
random	solution	to	diversify	the	search	space	and
prevent	 the	algorithm	from	getting	stuck	 in	 local
optima.

Step	5.	Memorize	the	best	solution	(BestPAR)	achieved
so far.

Step	6.	Termination
The	 algorithm	 will	 be	 stopped	 if	 a	 termination
condition	is	satisfied.	If	not,	go	back	to	Step 2.

Step 7. Return BestPAR.

5.  EXPERIMENTAL RESULTS

In	this	section,	the	proposed	approach	is	applied
to	 forecast	 the	 price	 of	 State	 Bank	 of	 India
(SBI)	 shares	 at	 BSE	 India	 from	April	 2008	 to
March	 2010,	 the	 enrollments	 at	 the	University
of	Alabama	 from	 years	 1971	 to	 1992,	 and	 the
TAIEX	Index	of	November	and	December	2004.
The	result	will	then	be	compared	with	different
published	methods.	To	measure	the	accuracy	of
the	 forecasting	methods,	 the	 following	metrics
are	used	for	comparison	with	RMSE.

For	 each	 test	 dataset,	 we	 used	 hedge
algebra	 consisting	 of	 four	 hedge	 operators:
Very,	 More,	 Possible,	 and	 Little,	 along	 with
two	 parameters,	 sp	 and	 dp,	 for	 semantization
and	 desemantization.	 The	 OHAM	 model	 was
implemented	 using	 the	 ABC	 optimization
algorithm	with	 a	maximum	of	 3000	 iterations,
and	the	number	of	employed	and	onlooker	bees
was	set	to	50.	The	optimal	parameters	obtained
correspond	 to	 the	 experimental	 datasets:	 the
SBI	price,	 student	enrollment	at	 the	University
of	 Alabama,	 and	 the	 TAIEX	 stock	 index,	 as
presented	in	Table	1.

Using	 the	 RMSE	 metric	 to	 evaluate
forecasting	 performance,	 it	 is	 evident	 that	 the
OHAM	 model	 produces	 less	 error	 than	 other
models	 (see	 the	 last	 column	 of	 Tables	 2-4).
Visually,	 from	 Figures	 2-4,	 the	 forecasted
data	 curves	 generated	 by	 the	 proposed	method	
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Table 1.		The	optimal	parameters	obtained	by	OHAM.

Parameters
Forecasting problems

µ(Little) µ(Possible) µ(More) µ(Very) sp dp

SBI 0.316 0.286 0.204 0.194 0.467 -0.457

Enrollment 0.205 0.213 0.395 0.187 0.066 -0.167

TAIEX 0.194 0.239 0.149 0.418 0.113 -0.449

5.1.  SBI prices forecasting

Table 2.		Results	of	the	forecasting	models	for	SBI	data.

Months
Actual 

SBI 
Prices

Chen10

(1996)
Huarng12

(2001)
Pathak and 

Singh13 (2011)

Joshi and 
Kumar14

(2012)

Kumar and 
Gangwar15

(2015)

Bisht and 
Kumar6

(2016)
OHAM

April-08 1819.95 - - - - - - -

May-08 1840.00 1900 1855 1770.00 1777.80 1725.98 1877.657 1867.00

June-08 1496.70 1900 1855 1832.50 1865.71 1725.98 1877.657 1583.00

July-08 1567.50 1500 1575 1470.00 1531.50 1512.39 1466.360 1583.00

August-08 1638.90 1500 1505 1570.00 1531.50 1512.39 1466.360 1583.00

September-08 1618.00 1600 1610 1670.00 1777.80 1574.35 1533.504 1583.00

October-08 1569.90 1600 1610 1603.33 1531.50 1574.35 1533.504 1583.00

November-08 1375.00 1500 1505 1670.00 1531.50 1512.39 1466.360 1366.00

December-08 1325.00 1433 1482 1382.50 1504.23 1305.52 1520.652 1366.00

January-09 1376.40 1433 1365 1332.50 1504.23 1665.90 1520.652 1366.00

February-09 1205.90 1433 1482 1332.50 1504.23 1305.52 1520.652 1192.00

March-09 1132.25 1433 1155 1195.00 1258.23 1294.27 1144.718 1192.00

April-09 1355.00 1300 1365 1145.00 1258.23 1294.27 1322.446 1366.00

May-09 1891.00 1433 1482 1357.50 1504.23 1665.90 1520.652 1867.00

June-09 1935.00 1900 1890 1882.50 1865.71 2006.51 1877.657 1867.00

July-09 1840.00 1900 1890 1970.00 1883.93 2006.51 1895.491 1867.00

August-09 1886.90 1900 1855 1470.00 1865.71 1725.98 1877.657 1867.00

September-09 2235.00 1900 1855 1970.00 1865.71 2006.51 1877.657 2259.00

October-09 2500.00 2300 2485 2245.00 2142.04 2520.00 2311.382 2498.00

November-09 2394.00 2300 2415 2470.00 2245.65 2420.00 2374.204 2384.00

December-09 2374.75 2300 2345 2395.00 2191.75 2365.99 2352.723 2384.00

January-10 2315.25 2300 2205 2395.00 2191.75 2365.99 2352.723 2384.00

February-10 2059.95 2300 2205 2295.00 2142.04 2020.00 2311.382 2083.00

March-10 2120.05 2100 2135 2070.00 1883.93 2120.00 2166.247 2083.00

RMSE 187.26 164.04 205.96 200.17 131.28 179.03 36.50

follow	 the	 actual	 trend	more	 closely	 compared
to	 other	 models.	 Notably,	 at	 points	 with	 large
amplitude	 variations,	 the	 OHAM	 model's	

predictions	 remain	 closer	 to	 the	 actual	 values,
further	 demonstrating	 the	 high	 adaptability	 of
the	proposed	model.
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Figure 2.		Line	chart	of	forecast	method	results	for	SBI	data.

5.2.  Enrollment student forecasting

Table 3.		Results	of	the	forecasting	models	for	enrollment	student.

Actual 
data

Song and 
Chissom9 

(1993)

Chen10

(1996)
Huarng12

(2001)

Lee and 
Chou16 
(2004)

SC_time 
variant17 

(1994)

Cheng 
et al.18

(2006)

Cheng 
et al.19

(2008)

Yolcu et 
al.20 (2009)

Qiu 
et al.21

(2011)

Joshi and 
Kumar14

(2012)

Kumar 
and 

Gangwar15 
(2015)

Bisht and 
Kumar6

(2016)
OHAM

13055 - - - - - - - - - - - - -

13563 14000 14000 - 14025 - 14230 14242 14031.35 14195 14250 - 13595.67 13752

13867 14000 14000 - 14568 - 14230 14242 14795.36 14424 14246 13693 13814.75 13752

14696 14000 14000 14000 14568 - 14230 14242 14795.36 14593 14246 13693 14929.79 14753

15460 15500 15500 15500 15654 14700 15541 15474.3 14795.36 15589 15491 14867 15541.27 15341

15311 16000 16000 15500 15654 14800 15541 15474.3 16406.57 15645 15491 15287 15540.62 15341

15603 16000 16000 16000 15654 15400 15541 15474.3 16406.57 15634 15491 15376 15540.62 15341

15861 16000 16000 16000 15654 15500 16196 15474.3 16406.57 16100 16345 15376 15540.62 16040

16807 16000 16000 16000 16197 15500 16196 16146.5 16406.57 16188 16345 15376 16254.5 16879

16919 16813 16833 17500 17283 16800 16196 16988.3 17315.29 17077 15850 16523 17040.41 16879

16388 16813 16833 16000 17283 16200 17507 16988.3 17315.29 17105 15850 16066 17040.41 16040

15433 16789 16833 16000 16197 16400 16196 16146.5 17315.29 16369 15850 17519 16254.5 15341

15497 16000 16000 16000 15654 16800 15541 15474.3 16406.57 15643 15450 16606 15540.62 15341

15145 16000 16000 15500 15654 16400 15541 15474.3 16406.57 15648 15450 15376 15540.62 15341

15163 16000 16000 16000 15654 15500 15541 15474.3 16406.57 15622 15491 15376 15541.27 15341

15984 16000 16000 16000 15654 15500 15541 15474.3 16406.57 15623 15491 15376 15541.27 16040

16859 16000 16000 16000 16197 15500 16196 16146.5 16406.57 16231 16345 15287 16254.5 16879

18150 16813 16833 17500 17283 16800 17507 16988.3 17315.29 17090 17950 16523 17040.41 18283

18970 19000 19000 19000 18369 19300 18872 19144 19132.79 18325 18961 17519 18902.3 19291

19328 19000 19000 19000 19454 17800 18872 19144 19132.79 19000 18961 19500 19357.3 19291

19337 19000 19000 19000 19454 19300 18872 19144 19132.79 19000 18961 19000 19168.56 19291

18876 - 19000 19000 - 19600 18872 19144 19132.79 19000 18961 19500 19168.56 19291

RMSE 650.40 880.73 638.36 476.97 501.28 511.04 478.45 805.17 511.33 433.76 493.56 428.63 178.21
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Figure 3.		Line	chart	of	forecast	method	results	for	enrollment	student	data.

5.3.  TAIEX index forecasting

Table 4.		Results	of	the	forecasting	models	for	TAIEX	index.	

Date Actual 
Index

Chen’ 
Forecasted 

Index10

Loc’ 
Forecasted
Index7 (a)

Loc’ 
Forecasted
Index8 (b)

OHAM

2/11/2004 5759.61 5674.81 5743.00	 5768.00
3/11/2004 5862.85 5768.14 	5852.00	 5886.00	 5863.00
4/11/2004 5860.73	 5854.81 5876.04	 5886.00	 5863.00
5/11/2004 5931.31 5908.26	 5876.04	 5934.00	 5942.00
8/11/2004 5937.46 5934.81 5912.05	 5934.00	 5942.00
9/11/2004 5945.2 5943.81 5912.05	 5934.00	 5942.00
10/11/2004 5948.49 5934.81 5912.05	 5978.00	 5942.00
11/11/2004 5874.52 5937.12 5912.05	 5886.00	 5863.00
12/11/2004 5917.16 5908.26	 5919.27 5934.00	 5903.00
15/11/2004 5906.69	 5934.81 5919.27 5934.00	 5903.00
16/12/2004 5910.85	 5934.81 5919.27 5934.00	 5903.00
17/11/2004 6028.68	 5937.12 5919.27 5978.00	 6038.00
18/11/2004 6049.49	 6068.14	 5979.18 5978.00	 6038.00
19/11/2004 6026.55	 6068.14	 5979.18 5978.00	 6038.00
22/11/2004 5838.42 5976.47 5979.18 5886.00	 5833.00
23/11/2004 5851.10	 5854.81 5876.04	 5886.00	 5833.00
24/11/2004 5911.31 5934.85 5876.04	 5934.00	 5903.00
25/11/2004 5855.24 5934.81 5919.27 5886.00	 5863.00
26/11/2004 5778.65 5854.81 5876.04	 5768.00	 5768.00
29/11/2004 5785.26 5762.12 5797.89 5768.00	 5768.00
30/11/2004 5844.76 5762.12 5852.00	 5886.00	 5833.00
1/12/2004 5798.62 5834.85 5876.04	 5768.00	 5768.00
2/12/2004 5867.95 5803.26	 5797.89 5886.00	 5863.00
3/12/2004 5893.27 5854.81 5876.04	 5886.00	 5903.00
6/12/2004 5919.17 5854.81 5919.27 5934.00	 5903.00
7/12/2004 5925.28 5937.12 5912.05	 5934.00	 5942.00
8/12/2004 5892.51 5876.47 5912.05	 5886.00	 5903.00
9/12/2004 5913.97 5854.81 5919.27 5934.00	 5903.00
10/12/2004 5911.63 5934.81 5919.27 5934.00	 5903.00
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13/12/2004 5878.89 5937.12 5919.27 5863.00 5863.00
14/12/2004 5909.65	 5854.81 5919.27 5903.00 5903.00
15/12/2004 6002.58	 5934.81 5919.27 5994.00 5994.00
16/12/2004 6019.23	 6068.14	 5979.18 6038.00 6038.00
17/12/2004 6009.32	 6062.12	 5979.18 5994.00 5994.00
20.12.2004 5985.94 6062.12	 5979.18 5994.00 5994.00
21/12/2004 5987.85 5937.12 5979.18 5994.00 5994.00
22/12/2004 6001.52	 5934.81 5979.18 5994.00 5994.00
23/12/2004 5997.67 6068.14	 5979.18 5994.00 5994.00
24/12/2004 6019.42	 5934.81 5979.18 6038.00 6038.00
27/12/2004 5985.94 6068.14	 5979.18 5994.00 5994.00
28/12/2004 6000.57	 5937.12 5979.18 5994.00 5994.00
29/12/2004 6088.49	 6068.14	 5979.18 6125.00 6125.00
30/12/2004 6100.86	 6062.12	 6119.36 6125.00 6125.00
31/12/2004 6139.69 6137.12 6143.57 6125.00 6125.00
RMSE 56.86 48.02 26.88 12.73

Figure 4.		Line	chart	of	forecast	method	results	for	TAIEX	index	data.

6.  CONCLUSIONS

In	 this	 study,	 we	 propose	 a	 new	 fuzzy	 time
series	 forecasting	method	using	hedge	 algebra.
We	also	introduce	a	segmentation	approach	for
the	 reference	 space	 based	 on	 k-level	 and	 the
fuzziness	measure	 of	 linguistic	 terms	of	 hedge
algebra.	

The	effectiveness	of	this	fuzzy	time	series
forecasting	method	is	demonstrated	by	applying
it	 to	 the	 benchmark	 problem	 of	 forecasting
the	 enrollment	 numbers	 at	 the	 University	 of
Alabama.	 The	 relatively	 small	 RMSE	 value
indicates	 that	 the	 proposed	model	 outperforms
other	methods.	Moreover,	 financial	 time	 series
exhibit	intrinsic	characteristics	such	as	relatively	

high	 volatility	 and	 frequent	 fluctuations	 in
individual	 time	 series	 data	 over	 time,	 making
forecasting	more	challenging	compared	to	other
types	of	time	series	data.	Even	well-established
time	series	forecasting	methods	tend	to	produce
high	forecasting	errors.	However,	 the	proposed
OHAM	model	proves	to	be	highly	suitable	and
effective	 for	 forecasting	 financial	 time	 series,
where	nonlinearity,	intrinsic	characteristics,	and
fuzziness	complicate	the	forecasting	process.
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