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ABSTRACT

The aim of this paper is to study characterizations of Milyutin regularity of a set-valued mapping via the

local and non-local slope of the lower semicontinuous envelope of the distance function associated with this

set-valued mapping. By using of these characterizations, we get the stability under perturbation of the Milyutin

regularity.
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1. INTRODUCTION

The emergence of metric regularity is increas-
ingly clear during last decades and considered
one of the important concepts of variational
analysis by its extensively applications in a large
amount of mathematical areas. This property is
studied by experts which obtained valuable
results such as implicit and inverse function
theorem and stability under small variations,..
It is also the basis for qualification conditions
in various calculus rules and optimally criteria,
etc. The reader is referred to many theoretical
results on the metric regularity as well as its

1-21

applications in works , and the references

given therein.

It is also known that metric regularity is one
of powerful tools to examine the solution exis-
tence of equations. For equations of the form
f(z) =y, where f : X — Y is a single-valued
function from a metric space X to metric space
Y, the condition ensuring the existence of

"Corresponding author:
Email: Nguyenhuutron@qnu.edu.vn

solutions is the surjectivity of f. As in nonlin-
ear analysis, regularity of a strictly differentiable
mapping at some point Z is equivalent to its
derivative at the point is onto.

However, variational analysis, especially op-
timization theory, appears the objects may
lack of smoothness: non-differentiable functions
at point of interest, set-valued mappings, etc.
Thus, the condition on the surjectivity of the
derivative mapping at the point may be failed.
One way to overcome this problem is to give an
upper estimation for the distance from a point
near a given solution Z of the generalized equa-
tion y € F(z) to the solution set F~l(y) in
terms of the residual d(y, F(x)). In applications,
the residual is able to calculate or estimate eas-
ily, meanwhile the finding the exact solution set
might be considerably more complicated. The
map F' : X = Y satisfying the above estima-
tion is said to be local metric regularity around
(Z,7), it means that there exist some positive
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numbers 7,0, p such that
d(z, F~}(y)) < md(y, F(x))
for all = € B(z,d) and y € B(y, p).

Due to the crucial role of metric regularity
theory in the areas of applied mathematics such
as optimization, fixed point theory, convergence
analysis of algorithms, economics, equilibrium,
control theory, so on, many authors extended
this property to non-local version. It found that
the non-local regularity can be started from
well-known Banach’s contraction map principle.
Extension of this principle on closed ball in a
complete metric space established a connection
between non-local regularity and fixed point of
maps. This was first observed by Arutynov 2,
Toffe ™15 and some years before Dmitruk, Mi-
Iyutin, Osmolovskii  in connecting to the ex-
tremal problems. The reader is referred to the
works 1016:19:23=25 for these developments. Be-
cause of many applications in such practical
problems, in recent papers "1°, Toffe presented
a complete model of non-local regularity and its
important applications. One of the most impor-
tant properties in this type is Milyutin regular-
ity. This type of regularity is associated with a
regularity horizon function that is convenient to
establish the criterion of regularity. In case of
Milyutin regularity, there is almost no gap be-
tween necessary and sufficient conditons in reg-
ularity criteria, but with any regularity horizon
function, this gap appears. The fact is that if
the considered set is an open set, then the reg-
ularity horizon function is positive on it. Thus,
dealing with Milyutin regularity, we do not need
to be interseted in points outside the set. That
is reason why the Milyutin regularity becomes
important in non-local context.

In this paper, we will characterize Milyutin
regularity via non-local and local slope as well
as its applications in establishing the stability of

the Milyutin regularity under pertubation.

The organization of paper is as follows. In
Section 2, we give some useful notations and
definitions such as openness, pseudo-Lipschitz,
metric regularity, Milyutin metric regularity and
their equivalence. We establish the non-local and
local slope characterizations for the Milyutin
regularity on fixed sets in Section 3. Section 4 is
dedicated for the stability of the Milyutin regu-
larity under suitable pertubation.

2. PRELIMINARIES

In this section, we present some essential defini-
tions and properties that will be used through-
out this paper. Let X and Y be metric spaces en-
dowed with metrics both denoted by d(-,-). Let
F: X =2Y is a set-valued mapping. We use the
notations gphF" := {(z,y) € X xY : y € F(x)}
for the graph of F, domF :={z € X : F(z) #
0} for the domain of F and F71 : Y = X
for the inverse of F. This inverse is defined by
Fly)y={reX : ye F(x)}, y €Y and
satisfies
(z,y) € gphF <= (y,z) € gphF ™.

Given z € X, r > 0, we denote by

B(z,r), B(z,r), the open and closed balls with
center & and radius r > 0, respectively.

In recent works 78, Toffe studied a nonlinear
non-local regularity model of set-valued map-
ping on a box U X V of X x Y. In this paper, we
suggest a new version of this property which is
slightly different from the mentionned one but
on aset of W C X x Y. Let W be a subset of
X x Y and a function v : X — R4 which is
positive on PxW and a function p: Ry — R4

Definition 2.1. Let X,Y be metric spaces, W
be a subset of X XY and let F': X =2 Y be a set-
valued mapping. F' is said to be (p, y)-metrically
regular on W if there exists a positive real num-
bers r, k such that

d(x, F~}(y)) < wu(d(y, F(z)) (1)
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for all (z,y) € W with 0 < ru(d(y, F(z))) <
v(x), where y(z) > 0, for all z € Py W.

Next, we introduce equivalent versions of the
regularity such as (v, u)-Holder property and
(7, )-openness of set-valued mappings.

Definition 2.2. Let X,Y be metric spaces, W
be a subset of X X Y and let F': X =2 Y be a
set-valued mapping. F' is (7, u)-Holder on W if
there are 7,k > (0 such that

d(y, F(x)) < ruld(z, u))
holds for all (z,y) € W,y € F(u) and 0 <
ru(d(z, u)) <7(z).

Definition 2.3. Let X,Y be metric spaces, W
be a subset of X X Y and let ' : X =2 Y be
a set-valued mapping. F'is (v, u)-open on W if
there are 7,k > 0 such that the conclusion

B(F(z), p(rt)) N Wy C F(B(x,krt))
fullfils for all x € PxW and 0 < t < ().

In the case W is a box U x V', one gets simpler
versions of the regularity above as the defintions
below.

Definition 2.4. F' is said to be 7y-metrically
regular on (U, V) if there is a 7,k > 0 such that

d(z, F~}(y)) < md(y, F(x))

provided z € U,y € V and kd(y, F(z)) < y(z).
In the case of 7 = k we denote by reg, F(U|V)
the lowest bound of such 7. If no such 7 exists,
set reg, F'(U|V) = co. We shall call reg, F(U[V)
the modulus (of rate) of y-metric regularity of

Fon (UYV).

Definition 2.5. F is said to have d-pseudo-
Lipschitz property on (U, V) if there is a A such
that

d(y, F(x)) < M(z,u)

if z € Uy e V,Md(z,u) < d(y) and y € F(u).
Denote by lip; F'(U|V') the lower bound of such
A. If no such A exists, set lipsF'(U|V) = oc.
We shall call lip;F' the d-Lipschitz modulus of
F such on (U, V).

Definition 2.6. F is said to be y-open (or 7-
covering) at a linear rate on (U, V) if there is a
r > 0 such that

B(F(z),rt) NV C F(B(z,1)),

if € U and t < y(z). Denote by sur, F(U|V)
the upper bound of such r. If no such r exists,
set sur, [ (U|V) = 0. We shall call sur,F" the
modulus (or rate) of y-openness of F on (U, V).

Proposition 2.7. (see 1) Let F : X = Y
be a set-valued mapping defined between metric
spaces X andY, U,V be subsets of X and Y re-
spectively, and v : X — R be a extended-valued
function which is positive on U. Then, the fol-
lowing three properties are equivalent

(i) F is y-open at a linear rate on (U, V);
(i) F is y-metrically regular on (U,V);
(iii) F~1 has ~-pseudo-Lipschitz property on
(V. U).

Moreover, under the convention that 0- 0o =1,
one has

sury F(U[V) - reg, F(UV) = 1,
reg, F(U|V) = lip, F~'(V|U).

By choosing the gauge function ~(z) is
m(z) = d(x,X \ U) with U be an open sub-
set of X, we get the Milyutin regularity of F' on
(U, V).

Definition 2.8. F is said to be Milyutin metri-
cally regular on (U, V) if there is a 7, k > 0 such
that

d(z, F~\(y)) < 7d(y, F(x))

provided z € U,y € V and rd(y, F(z)) < m(z).
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A special case of this property is U :=
B(z,r),m(z) :=r —d(z,z). When V =Y, we
say that F'is Milyutin regular on U. Then, we
write reg,, F'(U) rather reg,, F(U|Y). And, we
say that F' is globally regular if it is regular on
DomF x Y with v = oc.

Remark 2.9. Unlike the local regularity, the
domains U,V are essential elements of the defi-
nitions above. In the non-local case, the regular
domain cannot be freely changed.

Example 2.10. Let X = Y = R, F(z) =
{,3}, U = (0,1),V = (0,2). Then, F is 1-
regular on (U, V) with modulus 1 but F' is not
y-regular on (U, V') with V' = (0,3) for any
constant 7.

Indeed, one has that for x € U, y € V
such that d(y, F'(z)) < v(x). So, d(y, F(z)) <
1. Thus, d(y,F(z)) = |z — y|. Therefore,
d(z,FY(y)) = |z —y| = d(y, F(x)). It means
that F is 1-metrically regular on U x V'. How-
ever, F is not y-regular on U = (0,1), V' = (0, 3)
for any 7 because for x € U, there exists t > 0
such that 0 < x4+t < 1, then (3 —¢,3) C
B(F(z),t) n V' but (3 —¢,3) ¢ F(B(x,t)) =
(x—t,z+1t)U{3}.

3. CHARACTERIZATIONS
LYUTIN REGULARITY

FOR MI-

Let X be a metric space and let f : X — R
be a given function. As usual, Dom f := {z €
X : f(z) < +oo} denotes the domain of f. The
symbol [f(z)]+ stands for max(f(z),0). Recall
that the local slope |V f|(z) of a lower semicon-
tinuous function f at x € domf is the quantity
defined by [V f|(z) = 0 if z is a local minimum
of f; otherwise

. f(x) = fly)
= lim .
Vi) = fmsp = )

For = ¢ domf, we set |V f|(z) = +00. The non-
local slope of f is defined by

ey = =iy

For x ¢ domf, we set |T'f|(z) = +o0.

It is easy to see that if X be a normed
space and f is Fréchet differentiable at = then
IVIl(z) = [ f'(z)] and [V f|(z) < |T'f|(2) for all
reX.

Example 3.1. Let f : R — R be given as

g2, ifa >0,
flz) =

—z, ifz<0.

Since f attains the (global) minimum at z = 0,
IV£1(0) = |T'|(0) = 0. For z # 0, f is differen-
tiable, so we have |V f|(z) = 2z if x > 0 and
Vfl(z) =1if z <0.

We notice that if F' is any set-valued map-
ping, the distance function d(-, F(-)) is not gen-
erally a lower semicontinuous function. However,
the tools of variational analysis often require
the considered function to be lower semicontin-
uous. Therefore, instead of using the distance
function, we often use the lower semicontinu-
ous envelope (z,y) — @, (x) (which is always
lower semicontinous) of the function (z,y) —
d(y, F(x)) defined by, for (z,y) € X x Y,

ipy() = liminf d(y, F(u)).

We need two lemmas in the sequel.

Lemma 3.2. Let F: X =Y be a closed multi-
function, i.e., its graph is a closed set in X x Y.
Then, for eachy €Y,

F7l(y)={z € X+ gy(z) = 0}.

Proof. Indeed, if z € F~!(y), then 0 <
py(z) < d(y, F(z)) = 0, so gy(z) = 0. Con-
versely, suppose ¢,(z) = 0. There exists a

Journal of Science - Quy Nhon University, 2020, 14(3), 37-45 | 41



KHOA HOC

TRUONG DAl HOC QUY NHON

sequence {Z}neny converging to x such that
d(y, F(z,)) converges to 0. Then, we can find
a sequence {vy}nen such that v, € F(zx,) and
d(y,v,) — 0. Since the graph of F is closed, then
(7,y) € gphF, ie. z € F1(y).

Lemma 3.3. Let X,Y be metric spaces, W be
a subset of X XY, let F': X =Y be a set-valued
mapping. If there are positive reals v, k such that

d(z, F~(y)) < ripy () (2)

for all (z,y) € W with 0 < ro,(x) < y(z) then
F is y-metrically reqular on W. Conversely, if
F is y-metrically reqular on the open set W of
X xY then (2) holds.

Proof. Because of p,(z) < d(y, F(z)) for all
(z,y) € W, if (2) satisfies then F is y-metrically
regular on W. Conversely, suppose that F' is v-
metrically regular on open subset W of X x Y.
Let now (z,y) € W such that 0 < ryg,(z) <
v(z), there exists a sequence x, € X converg-
ing to x such that d(y, F(x,)) = ¢y(x) when n
tends to co. Because of the openness of PxW
and z € PxW, z,, € PxW for sufficiently large
n. Thus, due to the regularity of F', and the
continuity of v, one has for sufficiently large n,
0 < rd(y, F(x,)) < y(z,). It follows that

d(n, F~(y)) < wd(y, F(z,)).

Let n tends to oo in this inequality, one gets

d(x, F~!(y)) < roy(2)-

The proof is complete.

The following result establishes the neces-
sary and sufficient condition for Milyutin regu-
larity through the nonlocal slope of the lower en-
velope of distance function (z,y) — d(y, F(z)).

Theorem 3.4. Let X be a complete metric
space and Y be a metric space, U C X,V C Y
be open subsets of X and Y, respectively and

let F': X =Y be a closed set-valued map-
ping. Then, if any x € U and y € V with
0 < Tpy(x) <m(z),

[Poy|(z) > 77,

then F'is Milyutin reqular on U X V' with mod-
ulus 7. Conversely, if F is Milyutin reqular on
U x V with modulus 7, forx € U and y € V
with 0 < 7o, (z) < m(z),

[Dy|(2) > 77"

Proof. For the sufficient condition, take x €
Uand y € V with 0 < ¢y(2) < 7m(x) such that

[Doy|(z) > 77" (3)

We shall prove that F' is Milyutin regular on
U x V with modulus 7. Indeed, take z € U and
y € V with 0 < 7d(y, F(z)) < m(z). If follows
that 0 < ¢,(z) < 7~ 'm(z). Fixing y € V and
applying now the Ekeland’s variational principle
for the function u — f(u) := ¢, (u), one can find
a point z € X satisfying the folowing conditions

(i) d(z,z) < m(z);
(i) f(z) + 77" d(x, 2) < f(2);
(iti) f(u)+71d(u, 2) > f(2),Vu # 2.

We shall prove f(z) = 0. Suppose the contradic-
tion that f(z) > 0. By (i), z € U. By (ii),

f(2) < f(x) =77 td(z, 2) <
<7t m(z) — 774 d(z, 2) < 77 im(2).
By (i),
Df|(z) <77h

This contradicts to (3). So, f(z) = 0. It implies
that y € F(z) From (ii), one obtains that

d(x, 2) < flx).
Thus,
7 d(x, F7Y(y)) < 771d(x, 2) <
< f(z) < d(y, F(z)).
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Consequently,
d(x, F~(y)) < 7d(y, F(2)).

One finishes the sufficient condition.

Conversely, suppose that F' is Milyutin reg-
ular on U x V with modulus 7. Take now x €
Uy € V with 0 < 7py(z) < m(x). Subse-
quently, taking into account Lemma 3.3,

d(z, F~'(y)) < 1oy (x).

Then, for every ¢ > 0, there is u € F~*(y) such
that

d(w,u) < (T+e)py(r) = (T+e)py (@)= (T+e)py (u).

Note that u # x and one gets

IPyyl(z) > (T +e)7"
Let € tend to 0, we obtain that
Poyl(z) > 77,

and we finish the necessary condition. The the-

orem is proved.

Using the local slope of the function men-
tioned above, one only gets the sufficient condi-
tion for the Milyutin regularity.

Theorem 3.5. Let X be a complete metric
space and Y be a metric space, U C X,V CY
be open subsets of X and Y, respectively and let
F: X =Y be a closed set-valued mapping. If for
any x € U and y € V with 0 < Ty (x) < m(x),

Veyl(z) > 77!

then F is Milyutin reqular on U x V with mod-

ulus .

Proof. The proof of this theorem is very sim-
ple with noting that |V f|(z) < [I'f|(z) for all
x € X. Therefore, if |Vi,|(z) > 77! then
ITy|(z) > 771, So, by Theorem 3.4, one ob-
tains the result.

However, the converse of this result is not
true in general and the results above can be ex-
tended to more general case when one considers
the regularity on an open subset W of X x Y

Theorem 3.6. Let X be a complete metric
space and Y be a metric space, W C X xY be
an open subset of X xY andlet F: X =Y be a
closed set-valued mapping. If for any x € PxW
and y € PyW with 0 < 1¢,(z) < m(z) =
d(z, X\ PxW),

[Pyl (x) > 771

then, F is Milyutin reqular on W with modu-
lus T. Conversely, if F is Milyutin reqular on W
with modulus T for any x € PxW andy € PyW
with 0 < 7oy (z) <m(z) =d(z, X \ PxW),

\Wy\(ﬂ«") 2 L

When F'is Milyutin regular on W we get the
following characterization.

Theorem 3.7. Let X be a complete metric
space and Y be a metric space, let W C X XY
be an open set. Let F': X =Y be a closed set-
valued mapping. m : PxW — Ry is Lipschitz
function on Px W with constant 1, p: Ry — Ry
is a gauge function. Then F is Milyutin reqular
on W if and only if

d(z,Wy)

liminf ¢ [To,|(z):  ye Py W, > 0.
040 py(2)
0< T <9

4. MILYUTIN REGULARITY UNDER
PERTURBATION

Using Theorem 3.7, we can establish the sta-
bility of the Milyutin regularity under suitable
perturbation.

Theorem 4.1. Let X be a Banach space and
Y be a normed space, U,V be open sets in X
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and Y, respectively. Let F': X =Y be a closed
set-valued mapping. If F is Milyutin reqular on
U x V with modulus 7, g : X =Y is Lipschitz
on U with constant A > 0 satisfying TA < 1 then
F + g is Milyutin reqular on W, where W :=
{(z,y) € XxY 12 € U,B(y—g(z),m(z)) C V}.

Proof. For in detail, see Ngai, Tron, Han?®.

5. CONCLUSIONS

In this paper, we established the characteriza-
tions for the Milyutin regularity of closed set-
valued mappings defined on the complete met-
ric spaces throughout the slopes of the lower
semicontinuous envelope assiciated to this map.
Then, by using obtained results in previous sec-
tions, we give the stability of the Milyutin reg-
ularity under perturbation.
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