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TÓM TẮT

Các giá trị lịch sử của công suất phát điện gió thường được sử dụng trong hầu hết các mô hình và phương 
pháp dự báo điện gió trong các tài liệu. Tuy nhiên, các thông số vận hành có thể ảnh hưởng đến kết quả dự báo 
chẳng hạn như tốc độ gió, góc pitch, nhiệt độ môi trường, vị trí nacelle, và hướng gió chưa được xem xét trong các 
phương pháp hiện tại. Do đó, mục tiêu cơ bản của bài báo này là đề xuất các mô hình mạng nơ ron hồi quy dùng 
cho dự báo công suất phát điện gió có xem xét các tham số vận hành này. Nghiên cứu này xem xét dữ liệu công 
suất phát điện gió và các tham số vận hành tương ứng từ máy phát tuabin gió số 5 của 1 trang trại gió. Dữ liệu từ 
ngày 01 tháng 7 năm 2024 đến 31 tháng 7 năm 2024 được thu thập từ hệ thống SCADA. Đầu tiên, mô hình mạng 
nơ ron tự hồi quy phi tuyến có các đầu vào được áp dụng để dự báo công suất phát điện gió. Thứ hai, mô hình 
mạng hồi quy lớp được sử dụng để dự báo công suất phát điện gió. Thứ ba, mô hình mạng nơ ron trễ phân tán được 
dùng để dự báo công suất phát điện gió. Thứ tư, mô hình mạng nơ ron trễ thời gian được huấn luyện để ước lượng 
điện gió. Cuối cùng, các mô hình mạng nơ ron hồi quy này được so sánh để xác định mô hình dự báo công suất 
phát điện gió tốt hơn khi xét theo các tiêu chí sai số tuyệt đối trung bình, sai số phần trăm tuyệt đối trung bình và 
sai số bình phương trung bình.

Từ khóa: Dự báo điện gió, mạng nơ ron tự hồi quy phi tuyến có các đầu vào, mạng nơ ron hồi quy lớp, mạng nơ 
ron trễ phân tán, mạng nơ ron trễ thời gian.
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ABSTRACT

The historical values of wind power generation are generally utilized in most forecasting models and methods 
in the literature. Unfortunately, the operational parameters such as wind speed, pitch angle, ambient temperature, 
nacelle position, and wind direction may affect the forecasting results. Therefore, the primary objective of this 
paper is to propose recurrent neural network models for wind power generation forecasting considering these 
operational parameters. In this study, the wind power generation data and the associated operational parameters 
from the wind turbine generator 05 of a wind farm are investigated. The data from July 1st, 2024 to July 31st, 2024 
is collected from the SCADA system. Firstly, the nonlinear autoregressive neural network with external input 
is applied to make the wind power generation prediction. Secondly, the layer recurrent neural network model is 
employed to forecast wind power generation. Thirdly, the distributed delay neural network model is implemented 
to predict wind power generation. Fourthly, the time delay neural network model is trained to estimate the wind 
power. Finally, these recurrent neural network models are compared to determine the better wind power generation 
forecasting model in terms of mean absolute error, mean absolute percent error, and root mean square error.

Keywords: Wind power forecasting, nonlinear autoregressive neural network with external input, layer recurrent 
neural network, distributed delay neural network, time delay neural network.
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1. INTRODUCTION 

The rapid increase in energy demand has driven 
the search for alternative energy sources, in 
addition to traditional ones that are depleting 
and causing pollution issues. Wind power is a 
clean and renewable source. According to the 
Global Wind Report 2024 (by Global Wind 
Energy Council), it is shown that 2023 recorded 
the highest number of new installations in 
history for onshore wind (over 100 GW) and the 
second highest for offshore wind (11 GW). Wind 
energy installations will increase from a level of 
117 GW in 2023 to at least 320 GW of annual 

installations by 2030. Actually, wind power 
generation plays a significant role in electricity 
supply. However, wind energy integration into 
power systems presents inherent unpredictability 
because of the intermittent nature of wind 
energy.1 As wind energy makes significant 
penetration into the electricity grid, the need for 
accurate predictions of wind power generation 
becomes critical and urgent.2,3 To address these 
challenges, wind power forecasting (WPF) has 
emerged as a valuable solution. Consequently, 
numerous WPF models and methods have been 
proposed and implemented in the literature. 
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Based on the forecasting time horizon, WPF can 
be categorized into ultra short-term, short-term, 
medium-term, and long-term. Various types of 
forecasting models and methods are developed 
for wind power generation time series. The 
traditional statistical models and methods are 
usually applied by using the previous historical 
data to perform a forecast. In WPF, the statistical 
models are commonly applied as exponential 
smoothing approach,4,5 autoregressive,6 
autoregressive moving average (ARMA),7,8 
autoregressive integrated moving average 
(ARIMA).9,10 Statistical models are more user-
friendly and cost-effective to develop than other 
types of models. Statistical methods primarily rely 
on historical wind data to forecast the upcoming 
few hours, making them suitable for short-term 
predictions. While statistical forecasting models 
such as ARIMA and exponential smoothing 
are simple and interpretable, they suffer from 
limitations such as linearity assumptions, 
difficulty incorporating multiple external 
variables, and poor scalability to nonlinear or 
high-dimensional problems. Besides, artificial 
intelligence (AI)-based models are another 
research direction in WPF. Fundamentally, AI-
based models, when adequately trained, have 
the potential to outperform traditional statistical 
models in forecasting accuracy. Depending on 
the structure of neural networks (NNs), various 
models are proposed in wind power generation 
forecasting. Feed-forward NN models are used 
to make the wind power prediction such as 
multi-layer perceptron11 and back-propagation 
(BP) NN.12 Another kind of NN model with 
feedback known as the recurrent NN (RNN) 
model is also widely applied in this research 
direction. The RNN model-based WPF methods 
are Elman NN,13 layer RNN,14 nonlinear 
autoregressive NN,15 long short-term memory 
(LSTM),16 bidirectional LSTM,17 gated recurrent 
unit,18 and echo state network.19 Deep learning 
models such as LSTM, bidirectional LSTM, 
gated recurrent unit, and echo state network have 
demonstrated improved forecasting performance 
compared to earlier NN architectures. Moreover, 

support vector machine,20 gradient boosting 
regression tree algorithms,21 and ensemble 
model22 belonging to machine learning are also 
implemented in WPF. These machine learning 
models have also been shown to outperform NN 
models in specific research cases. Other attempts 
have been made to combine different models 
or methods in various ways to improve the 
forecasting results. These include combinations 
such as autoregressive fractionally integrated 
moving average and least square support vector 
machine,22 boosting algorithm and ARMA 
model,23 hybrid CEEMDAN-EWT deep learning 
method,24 and neuro wavelet and LSTM models.25 
These combined models have also demonstrated 
improved forecasting performance compared 
to each individual model. In these existing 
studies, most WPF models address the wind 
power generation time series data issues without 
taking the operational parameters into account. 
These operating parameters have a direct impact 
on the power output of wind turbines in real-
world conditions; therefore, they influence the 
accuracy of forecasting results. Some significant 
operational parameters can be considered wind 
speed, pitch angle, ambient temperature, nacelle 
position, and wind direction. Therefore, in this 
paper, one of the six turbines of a wind farm, 
located on the south-central coast, Vietnam 
with a 114-metre height and a 132-metre rotor 
is considered. These operational parameters 
and wind power generation time series data 
are collected at 10-minute intervals from the 
SCADA system. The dataset spans from July 
01st, 2024 to July 31st, 2024. This data is divided 
into three different case studies. Subsequently, 
numerous RNN models are proposed for 
wind power forecasting, including nonlinear 
autoregressive NN with external input (Narxnet), 
layer RNN (Layrecnet), distributed delay NN 
(Distdelaynet), and time delay neural network 
(Timedelaynet). These models incorporate 
both operational parameters and wind power 
generation data. To evaluate the performance 
of WPF models, evaluation criteria such as 
mean absolute error  (MAE), mean absolute 
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percent error (MAPE), and root mean square 
error (RMSE) are employed. Based on the final 
results, the most effective forecasting model 
can be determined. An overview of wind power 
generation forecasting using RNN models can 
be represented in Figure 1. 

Figure 1. Overview of wind power generation 
forecasting using RNN models.

2. METHODOLOGY

2.1. Nonlinear autoregressive neural network 
with external input

Narxnet is a nonlinear autoregressive model with 
exogenous inputs commonly used in time series 
modeling. Narxnet is first formally proposed 
and popularized in the mid-1990s by Lin et 
al.26 In this model, the current value of a time 
series depends on both past values of the same 
series and current and past values of exogenous 
series. The Narxnet model, applied to time series 
forecasting, can be mathematically represented 
as follows:

1 2 1 2( , ,..., , , ,...)t t t t t ty f y y x x x− − − −=  (1)

where f denotes an unknown nonlinear function 
(i.e., transfer function or activation function),  yt 
denotes the predicted value of the time series 
data of y at a discrete time t, and xt denotes the 
externally determined variable. The Narxnet 
model can be illustrated in Figure 2.

2.2. Layer recurrent neural network

Layrecnet is another type of RNN models. The 
concept of Layrecnet model is proposed by 
Schmidhuber.27 In this architecture, the output of 
the hidden layer is fed back to the input layer 
with delays. As a result, the network is capable 
of exhibiting an infinite dynamic response to 
time series input data. The Layrecnet model can 
be illustrated in Figure 3.

Operating parameters
(wind speed, pitch angle, ambient temperature, 

nacelle position, wind direction)
Wind power generation

DISTDELAYNET TIMEDELAYNETLAYRECNETNARXNET

MAE WAPE RMSE

Better forecasting model

Transfer 
function

x(t)
y(t)∑

Delays

Delays
∑ Transfer 

function
y(t)

Hidden layer Output layerInput layer

Figure 2. Narxnet model.

Transfer 
function

x(t)

y(t)∑Delays ∑ Transfer 
function

Hidden layer Output layerInput layer

Figure 3. Layrecnet model.

2.3. Distributed delay neural network

Distdelaynet is another type of RNN model. The 
concept of Distdelaynet model is proposed by 
Waibel  et al.28 The input and hidden layers have a 
tap delay line associated with them. Therefore, the 
network exhibits a finite dynamic response to time 
series input data. The Distdelaynet model can be 
illustrated in Figure 4.

Transfer 
functionx(t) y(t)∑Delays Delays ∑ Transfer 

function

Hidden layer Output layerInput layer

Figure 4. Distdelaynet model.

2.4. Time delay neural network

Timedelaynet is another type of RNN model. The 
concept of Distdelaynet model is also proposed by 
Waibel  et al.28 In this NN model, the input layer 
has a tap delay line associated with it. Therefore, 
the network exhibits a finite dynamic response to 
time series input data. The Timedelaynet model 
can be illustrated in Figure 5.

Transfer 
functionx(t) y(t)∑Delays ∑ Transfer 

function

Hidden layer Output layerInput layer

Figure 5. Timedelaynet model.

2.5. Transfer function

In NN models, transfer functions (also known 
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as activation functions) play a crucial role in 
introducing nonlinearity and determining the 
output of each neuron. Commonly, three types of 
transfer functions are employed, each serving a 
specific purpose within the network architecture:

Linear (i.e., purelin):

(1)

Hyperbolic tangent sigmoid (i.e., tansig):

(2)

Log-sigmoid (i.e., logsig):

(3)

2.6. Training algorithm

The training process of a NN begins with the 
random initialization of connection weights, 
which serve as the adjustable parameters 
controlling how input signals are transformed 
through the network layers. These weights 
are then iteratively updated to minimize a 
predefined cost (or loss) function, which 
quantifies the discrepancy between the network's 
predicted output and the actual target value.29 
This minimization is typically performed using 
gradient-based optimization algorithms that 
adjust the weights in the direction that reduces 
the error. 

Several well-established training algorithms are 
employed for this purpose, each with distinct 
convergence characteristics and computational 
requirements:

	¾ Resilient BP (i.e, trainrp): Focuses on the 
sign of the gradient rather than its magnitude to 
achieve stable convergence, especially in noisy 
or flat error surfaces.

	¾ Bayesian regularization BP (i.e, trainbr): 
Incorporates a regularization term into the cost 
function to prevent overfitting by balancing 
model complexity and data fitting.

	¾ BFGS quasi-Newton BP (i.e., trainbfg): 
Utilizes second-order derivative approximations 
to speed up convergence, particularly effective 
in medium-sized networks.

f x= . 

2
2 1

1 xf
e−

= −
+

.

1
1 xf

e−
=

+
.

	¾ Levenberg–Marquardt BP (i.e., trainlm): 
Combines the advantages of the Gauss–Newton 
algorithm and gradient descent, offering fast 
convergence and high accuracy for smaller 
datasets or networks.

The choice of training algorithm can significantly 
affect the learning efficiency, generalization 
ability, and computational cost of the neural 
network model.

2.7. Evaluation criteria

In this study, three evaluation criteria are 
employed to assess the performance of the 
forecasting models. These criteria are widely 
adopted in time series forecasting tasks, as they 
provide comprehensive insights into prediction 
accuracy and error distribution. Specifically, the 
evaluation metrics used are as follows:

MAE:

	 (4)

where At is the actual value, Ft is the forecasted 
value, and n  is the number of observations.

WAPE:

(5)

RMSE:

(6)

3. CASE STUDIES

The time-series data from the wind turbine no. 05 
(3.5 MW, 114-meter hub height, 132-meter rotor 
diameter) in a wind farm were collected from July 
01st, 2024 to July 31st, 2024 (i.e., case study 3)  
with 10-minute intervals. Two investigated  
sub-periods during this timeframe are from July 
01st, 2024 to July 07th, 2024 (i.e., case study 1) 
and from July 25th, 2024 to July 31st, 2024 (i.e., 
case study 2). The total number of observations 
in the three case studies is provided in Table 1. 
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 Table 1. Number of observations.

Data Case 
study 1

Case 
study 2

Case 
study 3

Number of 
observations 1008 1008 4464

The wind speed, pitch angle, ambient 
temperature, nacelle position, and wind 
direction from July 01st, 2024 to July 31st, 2024 
are illustrated in Figures 6, 7, 8, 9, and 10, 
respectively. 

Figure 6. Wind speed.

Figure 7. Pitch angle.
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Figure 8. Ambient temperature.

Figure 9. Nacelle position.

Figure 10. Wind direction.
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All the recurrent NN models with one hidden layer 
have been implemented. Moreover, these models, 
each configured with one feedback delay in their 
respective structures, are coded and trained in 
Matlab software. The transfer function, training 
algorithms, and number of hidden neurons of all 
the trained Narxnet, Layrecnet, Distdelaynet, and 
Timedelaynet models for case studies 1, 2, and 3 
are represented in Tables 2, 3, and 4, respectively. 

Table 2. Information of the recurrent NN models in 
case study 1.

Model Transfer 
function

Training 
algorithm

Hidden 
neurons

Narxnet Tansig Trainbr 47

Layrecnet Tansig Trainbr 30

Distdelaynet Tansig Trainbr 143

Timedelaynet Logsig Trainbr 253

Table 3. Information of the recurrent NN models in 
case study 2.

Model Transfer 
function

Training 
algorithm

Hidden 
neurons

Narxnet Logsig Trainbr 21

Layrecnet Tansig Trainbr 79

Distdelaynet Tansig Trainlm 232

Timedelaynet Tansig Trainbr 301

Model MAE WAPE(%) RMSE

Narxnet 56.0914 22.3584 87.4324

Layrecnet 18.6198 7.4220 24.9867

Distdelaynet 65.9784 26.2994 130.9846

Timedelaynet 49.9778 19.9215 98.3547

Model Transfer 
function

Training 
algorithm

Hidden 
neurons

Narxnet Tansig Trainlm 32

Layrecnet Tansig Trainbr 48

Distdelaynet Logsig Trainlm 372

Timedelaynet Tansig Trainbr 180

Model MAE WAPE(%) RMSE

Narxnet 269.7987 17.0885 382.9613

Layrecnet 80.9957 5.1301 104.7831

Distdelaynet 341.8460 21.6519 490.9236

Timedelaynet 207.4276 13.1381 289.5628

Model MAE WAPE(%) RMSE

Narxnet 168.6443 18.3242 263.3885

Layrecnet 41.3159 4.4892 58.1676

Distdelaynet 248.0907 26.9565 388.8692

Timedelaynet 164.6041 17.8852 256.3703

Table 4. Information of the recurrent NN models in 
case study 3.

Table 6. Evaluation criteria of the proposed 
forecasting models in case study 2.

Table 7. Evaluation criteria of the proposed 
forecasting models in case study 3.

The performance evaluation results of all RNN 
forecasting models across the three case studies 
are presented in Tables 5, 6, and 7, respectively. 
These tables provide a comprehensive 
comparison based on multiple error metrics, 
allowing for a thorough assessment of each 
model's forecasting accuracy and consistency 
under varying data conditions. By analyzing 
these evaluation values, the relative effectiveness 
of each RNN architecture can be quantitatively 
compared across different time periods.

Table 5. Evaluation criteria of the proposed 
forecasting models in case study 1.
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Based on the results presented in Table 5, the 
Narxnet model yields improved forecasting 
performance over the Distdelaynet model, with 
lower error values across all three metrics (MAE 
= 56.0914, WAPE = 22.3584%, RMSE = 87.4324 
vs. MAE = 65.9784, WAPE = 26.2994%, RMSE 
= 130.9846). Furthermore, the Timedelaynet 
model demonstrates superior predictive accuracy 
compared to Narxnet, achieving a lower MAE 
of 49.9778, WAPE of 19.9215%, and RMSE of 
98.3547. Among all models, the Layrecnet model 
achieves the best performance in this case study, 
with significantly lower errors (MAE = 18.6198, 
WAPE = 7.4220%, RMSE = 24.9867), indicating 
its strong capability in capturing the temporal 
dynamics of wind power data.
Similarly, Table 6 shows that the Layrecnet 
model (MAE = 80.9957, WAPE = 5.1301%, 
RMSE = 104.7831) continues to outperform 
the Timedelaynet (MAE = 207.4276, WAPE = 
13.1381%, RMSE = 289.5628), Narxnet (MAE = 
269.7987, WAPE = 17.0885%, RMSE = 382.9613), 

and Distdelaynet models (MAE = 341.8460, 
WAPE = 21.6519%, RMSE = 490.9236), further 
confirming its robustness across different time 
periods.
In Table 7, the evaluation results also confirm the 
superiority of the Layrecnet model in the third case 
study. It achieves the lowest error values (MAE = 
41.3159, WAPE = 4.4892%, RMSE = 58.1676), 
outperforming Timedelaynet (MAE = 164.6041, 
WAPE = 17.8852%, RMSE = 256.3703), Narxnet 
(MAE = 168.6443, WAPE = 18.3242%, RMSE = 
263.3885), and Distdelaynet (MAE = 248.0907, 
WAPE = 26.9565%, RMSE = 388.8692).
Figures 11, 12, and 13 illustrate the comparison 
between the actual wind power generation data and 
the forecasting results from the four models across 
case studies 1, 2, and 3, respectively. The actual 
wind power values are shown as solid blue lines, 
while the predicted values generated by the Narxnet, 
Layrecnet, Distdelaynet, and Timedelaynet models 
are represented by dashed lines in red, blue, purple, 
and light blue, respectively.

Figure 11. The forecasted results of wind power generation in case study 1.

Figure 12. The forecasted results of wind power generation in case study 2.
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Figure 13. The forecasted results of wind power generation in case study 3.

4. CONCLUSION

In this paper, operational parameters such as 
wind speed, pitch angle, ambient temperature, 
nacelle position, and wind direction are taken into 
account for wind power generation forecasting. 
A wind farm comprising six turbines, each with a 
capacity of 3.5 MW, a hub height of 114 meters, 
and a rotor diameter of 132 meters, is considered. 
The time series data of turbine no. 05 from July 
01st, 2024 to July 31st, 2024 is collected. Several 
RNN architectures consisting of Narxnet, 
Layrecnet, Distdelaynet, and Timedelaynet are 
proposed as alternative approaches for wind 
power generation forecasting. Among these 
models, the Layrecnet model demonstrates 
superior performance WPF results compared to 
these other models in terms of MAE, WAPE, and 
RMSE. For further study, the optimal structures 
of these models can be identified to provide 
better solutions. Moreover, to improve model 
reliability, anomalous data points and outliers 
are identified and filtered out prior to training the 
forecasting models.
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