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TOM TAT

Céc gié tri lich sir cua cong sudt phat dién gi6 thuong duoc sir dung trong hau hét cac mé hinh va phuong
phap du bao dién gi6 trong cac tai liéu. Tuy nhién, cac thong s van hanh c6 thé anh huong dén két qua du béao
chang han nhu tdc do gio, goc pitch, nhiét d6 méi trudng, vi tri nacelle, va hudng gié chwa duoc xem xét trong cac
phuong phap hién tai. Do d6, myc tiéu co ban cta bai bao nay la dé xuit cac mé hinh mang no ron hdi quy ding
cho dy béo cong suat phat dién gié c6 xem xét cic tham sd van hanh nay. Nghién ctru nay xem xét dir liéu cong
suét phat dién gi6 va cac tham sé van hanh twong tng tir may phat tuabin gi6 s6 5 cua 1 trang trai gio. Dit liéu tir
ngdy 01 thang 7 nam 2024 dén 31 thang 7 nim 2024 dwoc thu thap tir hé thong SCADA. Pau tién, m6 hinh mang
no ron tu hdi quy phi tuyén c6 cac diu vao duoc ap dung dé dy bio cong sudt phat dién gio. Thir hai, mo hinh
mang hdi quy 16p dugce sir dung dé du bao cong suét phat dién gi6. Thir ba, mo hinh mang no ron tr& phan tan dugc
ding dé du béo cong suat phat dién gié. Thir tu, mé hinh mang no ron tré thoi gian dugc huén luyén dé ude luong
dién gi6. Cudi cing, cic mé hinh mang no ron hdi quy nay duogc so sanh dé xac dinh mé hinh du béo cong suit
phat dién gio tét hon khi xét theo cac tiéu chi sai sb tuyét dbi trung binh, sai s6 phan trim tuyét déi trung binh va

sai s binh phuong trung binh.

Tir khéa: Dy bdo dién gié, mang no ron tw hoi quy phi tuyén c¢é cdc dau vao, mang no ron hoi quy I6p, mang no

ron tré phan tan, mang no' ron tré thoi gian.
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ABSTRACT

The historical values of wind power generation are generally utilized in most forecasting models and methods
in the literature. Unfortunately, the operational parameters such as wind speed, pitch angle, ambient temperature,
nacelle position, and wind direction may affect the forecasting results. Therefore, the primary objective of this
paper is to propose recurrent neural network models for wind power generation forecasting considering these
operational parameters. In this study, the wind power generation data and the associated operational parameters
from the wind turbine generator 05 of a wind farm are investigated. The data from July 1%, 2024 to July 31, 2024
is collected from the SCADA system. Firstly, the nonlinear autoregressive neural network with external input
is applied to make the wind power generation prediction. Secondly, the layer recurrent neural network model is
employed to forecast wind power generation. Thirdly, the distributed delay neural network model is implemented
to predict wind power generation. Fourthly, the time delay neural network model is trained to estimate the wind
power. Finally, these recurrent neural network models are compared to determine the better wind power generation

forecasting model in terms of mean absolute error, mean absolute percent error, and root mean square error.

Keywords: Wind power forecasting, nonlinear autoregressive neural network with external input, layer recurrent

neural network, distributed delay neural network, time delay neural network.

1. INTRODUCTION installations by 2030. Actually, wind power

The rapid increase in energy demand has driven generation plays a significant role in electricity

the search for alternative energy sources, in
addition to traditional ones that are depleting
and causing pollution issues. Wind power is a
clean and renewable source. According to the

Global Wind Report 2024 (by Global Wind penetration into the electricity grid, the need for
accurate predictions of wind power generation

supply. However, wind energy integration into
power systems presents inherent unpredictability
because of the intermittent nature of wind
energy.! As wind energy makes significant

Energy Council), it is shown that 2023 recorded
the highest number of new installations in
history for onshore wind (over 100 GW) and the
second highest for offshore wind (11 GW). Wind
energy installations will increase from a level of
117 GW in 2023 to at least 320 GW of annual

becomes critical and urgent.>* To address these
challenges, wind power forecasting (WPF) has
emerged as a valuable solution. Consequently,
numerous WPF models and methods have been
proposed and implemented in the literature.

*Corresponding author.
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Based on the forecasting time horizon, WPF can
be categorized into ultra short-term, short-term,
medium-term, and long-term. Various types of
forecasting models and methods are developed
for wind power generation time series. The
traditional statistical models and methods are
usually applied by using the previous historical
data to perform a forecast. In WPF, the statistical
models are commonly applied as exponential
smoothing approach,*?
autoregressive moving average (ARMA),”®

autoregressive,®

autoregressive  integrated moving average
(ARIMA).*! Statistical models are more user-
friendly and cost-effective to develop than other
types of models. Statistical methods primarily rely
on historical wind data to forecast the upcoming
few hours, making them suitable for short-term
predictions. While statistical forecasting models
such as ARIMA and exponential smoothing
are simple and interpretable, they suffer from
limitations such as linearity assumptions,
difficulty
variables, and poor scalability to nonlinear or
high-dimensional problems. Besides, artificial
intelligence (Al)-based models are another

incorporating multiple  external

research direction in WPF. Fundamentally, Al-
based models, when adequately trained, have
the potential to outperform traditional statistical
models in forecasting accuracy. Depending on
the structure of neural networks (NNs), various
models are proposed in wind power generation
forecasting. Feed-forward NN models are used
to make the wind power prediction such as
multi-layer perceptron'' and back-propagation
(BP) NN.!2 Another kind of NN model with
feedback known as the recurrent NN (RNN)
model is also widely applied in this research
direction. The RNN model-based WPF methods
are Elman NN,” layer RNN.," nonlinear
autoregressive NN,'* long short-term memory
(LSTM),'¢ bidirectional LSTM,!” gated recurrent
unit,'’® and echo state network.! Deep learning
models such as LSTM, bidirectional LSTM,
gated recurrent unit, and echo state network have
demonstrated improved forecasting performance
compared to earlier NN architectures. Moreover,

support vector machine,” gradient boosting
regression tree algorithms,?! and ensemble
model?? belonging to machine learning are also
implemented in WPF. These machine learning
models have also been shown to outperform NN
models in specific research cases. Other attempts
have been made to combine different models
or methods in various ways to improve the
forecasting results. These include combinations
such as autoregressive fractionally integrated
moving average and least square support vector
machine,”? boosting algorithm and ARMA
model,” hybrid CEEMDAN-EWT deep learning
method,?* and neuro wavelet and LSTM models.?
These combined models have also demonstrated
improved forecasting performance compared
to each individual model. In these existing
studies, most WPF models address the wind
power generation time series data issues without
taking the operational parameters into account.
These operating parameters have a direct impact
on the power output of wind turbines in real-
world conditions; therefore, they influence the
accuracy of forecasting results. Some significant
operational parameters can be considered wind
speed, pitch angle, ambient temperature, nacelle
position, and wind direction. Therefore, in this
paper, one of the six turbines of a wind farm,
located on the south-central coast, Vietnam
with a 114-metre height and a 132-metre rotor
is considered. These operational parameters
and wind power generation time series data
are collected at 10-minute intervals from the
SCADA system. The dataset spans from July
01+, 2024 to July 31%, 2024. This data is divided
into three different case studies. Subsequently,
numerous RNN models are proposed for
wind power forecasting, including nonlinear
autoregressive NN with external input (Narxnet),
layer RNN (Layrecnet), distributed delay NN
(Distdelaynet), and time delay neural network
(Timedelaynet). These models incorporate
both operational parameters and wind power
generation data. To evaluate the performance
of WPF models, evaluation criteria such as
mean absolute error (MAE), mean absolute
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percent error (MAPE), and root mean square
error (RMSE) are employed. Based on the final
results, the most effective forecasting model
can be determined. An overview of wind power
generation forecasting using RNN models can
be represented in Figure 1.

Operating parameters
(wind speed, pitch angle, ambient temperature,
nacelle position, wind direction)

Wind power generation

NARXNET | LAYRECNET | |DISTDELAYNET| | TIMEDELAYNET |

Better forecasting model

Figure 1. Overview of wind power generation

forecasting using RNN models.
2. METHODOLOGY

2.1. Nonlinear autoregressive neural network
with external input

Narxnet is a nonlinear autoregressive model with
exogenous inputs commonly used in time series
modeling. Narxnet is first formally proposed
and popularized in the mid-1990s by Lin et
al*® In this model, the current value of a time
series depends on both past values of the same
series and current and past values of exogenous
series. The Narxnet model, applied to time series
forecasting, can be mathematically represented
as follows:

yt :f(yt—l5yt—2,"‘,xtaxt_laxt_ZD'“) (1)

where f"denotes an unknown nonlinear function
(i.e., transfer function or activation function), y,
denotes the predicted value of the time series
data of y at a discrete time ¢, and x, denotes the
externally determined variable. The Narxnet
model can be illustrated in Figure 2.

Transfer Transfer
function ( : ) function y(©

Hidden layer

x(t)

y()

Input layer

Output layer

Figure 2. Narxnet model.
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2.2. Layer recurrent neural network

Layrecnet is another type of RNN models. The
concept of Layrecnet model is proposed by
Schmidhuber.?” In this architecture, the output of
the hidden layer is fed back to the input layer
with delays. As a result, the network is capable
of exhibiting an infinite dynamic response to
time series input data. The Layrecnet model can
be illustrated in Figure 3.

X(t)
Transfer Transfer
9 function ( :> function y®

Input layer

Hidden layer Output layer

Figure 3. Layrecnet model.
2.3. Distributed delay neural network

Distdelaynet is another type of RNN model. The
concept of Distdelaynet model is proposed by
Waibel et al.® The input and hidden layers have a
tap delay line associated with them. Therefore, the
network exhibits a finite dynamic response to time
series input data. The Distdelaynet model can be
illustrated in Figure 4.

Transfer Transfer
" ] b | O F gt

Input layer Hidden layer Output layer

Figure 4. Distdelaynet model.
2.4. Time delay neural network

Timedelaynet is another type of RNN model. The
concept of Distdelaynet model is also proposed by
Waibel et al.®® In this NN model, the input layer
has a tap delay line associated with it. Therefore,
the network exhibits a finite dynamic response to
time series input data. The Timedelaynet model
can be illustrated in Figure 5.

Transfer Transfer
x(t) 9 function _>@_' function >y

Input layer Hidden layer

Output layer

Figure 5. Timedelaynet model.
2.5. Transfer function

In NN models, transfer functions (also known
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as activation functions) play a crucial role in
introducing nonlinearity and determining the
output of each neuron. Commonly, three types of
transfer functions are employed, each serving a
specific purpose within the network architecture:

Linear (i.e., purelin):

f=x. (1)
Hyperbolic tangent sigmoid (i.e., tansig):

. 2

1+e—2x ) ( )
Log-sigmoid (i.e., logsig):
1

f=— 3)
I+e

2.6. Training algorithm

The training process of a NN begins with the
random initialization of connection weights,
which serve as the adjustable parameters
controlling how input signals are transformed
through the network layers. These weights
are then iteratively updated to minimize a
predefined cost (or loss) function, which
quantifies the discrepancy between the network's
predicted output and the actual target value.”
This minimization is typically performed using
gradient-based optimization algorithms that
adjust the weights in the direction that reduces
the error.

Several well-established training algorithms are
employed for this purpose, each with distinct
convergence characteristics and computational
requirements:

» Resilient BP (i.e, trainrp): Focuses on the
sign of the gradient rather than its magnitude to
achieve stable convergence, especially in noisy
or flat error surfaces.

» Bayesian regularization BP (i.e, trainbr):
Incorporates a regularization term into the cost
function to prevent overfitting by balancing
model complexity and data fitting.

» BFGS quasi-Newton BP (i.e., trainbfg):
Utilizes second-order derivative approximations
to speed up convergence, particularly effective
in medium-sized networks.

» Levenberg-Marquardt BP (i.e., trainlm):
Combines the advantages of the Gauss—Newton
algorithm and gradient descent, offering fast
convergence and high accuracy for smaller
datasets or networks.

The choice of training algorithm can significantly
affect the learning efficiency, generalization
ability, and computational cost of the neural
network model.

2.7. Evaluation criteria

In this study, three evaluation criteria are
employed to assess the performance of the
forecasting models. These criteria are widely
adopted in time series forecasting tasks, as they
provide comprehensive insights into prediction
accuracy and error distribution. Specifically, the
evaluation metrics used are as follows:

MAE:
1 n
MAE = Z|A, ~F| (4)
t=1

n

where 4 is the actual value, F is the forecasted
value, and » is the number of observations.

WAPE:
ZlAr —F,|
WAPE == )
D4
t=1
RMSE:

posE= LS (4-RY . ()

3. CASE STUDIES

The time-series data from the wind turbine no. 05
(3.5 MW, 114-meter hub height, 132-meter rotor
diameter) in a wind farm were collected from July
01+, 2024 to July 31%, 2024 (i.e., case study 3)
with 10-minute intervals. Two investigated
sub-periods during this timeframe are from July
01%, 2024 to July 07", 2024 (i.e., case study 1)
and from July 25%, 2024 to July 31%, 2024 (i.e.,
case study 2). The total number of observations
in the three case studies is provided in Table 1.
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Table 1. Number of observations. The wind speed, pitch angle, ambient
temperature, nacelle position, and wind
Case Case Case
Data study 1 | study 2 | study 3 direction from July 01%, 2024 to July 31%, 2024
Number of are illustrated in Figures 6, 7, 8, 9, and 10,
Hmber o 1008 | 1008 | 4464 tivel
observations respecuvely.
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Figure 6. Wind speed.
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Figure 7. Pitch angle.
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Figure 8. Ambient temperature.
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Figure 9. Nacelle position.
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Figure 10. Wind direction.
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All the recurrent NN models with one hidden layer
have been implemented. Moreover, these models,
each configured with one feedback delay in their
respective structures, are coded and trained in
Matlab software. The transfer function, training
algorithms, and number of hidden neurons of all
the trained Narxnet, Layrecnet, Distdelaynet, and
Timedelaynet models for case studies 1, 2, and 3
are represented in Tables 2, 3, and 4, respectively.

Table 2. Information of the recurrent NN models in

case study 1.

Model Trans.fer Tran?mg Hidden
function | algorithm | neurons

Narxnet Tansig Trainbr |47

Layrecnet Tansig Trainbr |30

Distdelaynet Tansig Trainbr | 143

Timedelaynet Logsig Trainbr |253

Table 3. Information of the recurrent NN models in

case study 2.

Transfer | Training | Hidden
Model . .

function | algorithm | neurons
Narxnet Logsig Trainbr |21
Layrecnet Tansig Trainbr |79
Distdelaynet Tansig Trainlm |232
Timedelaynet Tansig Trainbr |301

Table 4. Information of the recurrent NN models in

case study 3.

oat | ot | trag [ fidde
Narxnet Tansig Trainlm |32
Layrecnet Tansig | Trainbr 48

Distdelaynet Logsig Trainlm |372

Timedelaynet Tansig Trainbr |180

The performance evaluation results of all RNN
forecasting models across the three case studies
are presented in Tables 5, 6, and 7, respectively.
These tables provide a
comparison based on multiple error metrics,
allowing for a thorough assessment of each
model's forecasting accuracy and consistency

comprehensive

under varying data conditions. By analyzing
these evaluation values, the relative effectiveness
of each RNN architecture can be quantitatively
compared across different time periods.

Table 5. Evaluation criteria of the proposed

forecasting models in case study 1.

Model MAE | WAPE(%) | RMSE

Narxnet 56.0914 | 22.3584 | 87.4324
Layrecnet 18.6198 7.4220 | 24.9867
Distdelaynet 659784 | 26.2994 |130.9846
Timedelaynet 49.9778 | 19.9215 | 98.3547

Table 6. Evaluation criteria of the proposed

forecasting models in case study 2.

Model MAE | WAPE(%) | RMSE

Narxnet 269.7987 | 17.0885 |382.9613
Layrecnet 80.9957 5.1301 | 104.7831
Distdelaynet 341.8460 | 21.6519 [490.9236
Timedelaynet | 207.4276 | 13.1381 |289.5628

Table 7. Evaluation criteria of the proposed

forecasting models in case study 3.

Model MAE | WAPE(%) | RMSE

Narxnet 168.6443 | 18.3242 |263.3885
Layrecnet 41.3159 4.4892 58.1676
Distdelaynet 248.0907 | 26.9565 |388.8692
Timedelaynet | 164.6041 | 17.8852 |256.3703

https://doi.org/10.52111/qn;js.2025.19505
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Based on the results presented in Table 5, the
Narxnet model yields improved forecasting
performance over the Distdelaynet model, with
lower error values across all three metrics (MAE
=56.0914, WAPE = 22.3584%, RMSE = 87.4324
vs. MAE = 65.9784, WAPE = 26.2994%, RMSE
130.9846). Furthermore, the Timedelaynet
model demonstrates superior predictive accuracy
compared to Narxnet, achieving a lower MAE
of 49.9778, WAPE of 19.9215%, and RMSE of
98.3547. Among all models, the Layrecnet model
achieves the best performance in this case study,
with significantly lower errors (MAE = 18.6198,
WAPE = 7.4220%, RMSE = 24.9867), indicating
its strong capability in capturing the temporal
dynamics of wind power data.

Similarly, Table 6 shows that the Layrecnet
model (MAE = 80.9957, WAPE = 5.1301%,
RMSE = 104.7831) continues to outperform
the Timedelaynet (MAE = 207.4276, WAPE =
13.1381%, RMSE = 289.5628), Narxnet (MAE =
269.7987, WAPE=17.0885%, RMSE =382.9613),

and Distdelaynet models (MAE 341.8460,
WAPE = 21.6519%, RMSE = 490.9236), further
confirming its robustness across different time
periods.

In Table 7, the evaluation results also confirm the
superiority of the Layrecnet model in the third case
study. It achieves the lowest error values (MAE =
41.3159, WAPE = 4.4892%, RMSE = 58.1676),
outperforming Timedelaynet (MAE = 164.6041,
WAPE = 17.8852%, RMSE = 256.3703), Narxnet
(MAE = 168.6443, WAPE = 18.3242%, RMSE =
263.3885), and Distdelaynet (MAE = 248.0907,
WAPE =26.9565%, RMSE = 388.8692).

Figures 11, 12, and 13 illustrate the comparison
between the actual wind power generation data and
the forecasting results from the four models across

case studies 1, 2, and 3, respectively. The actual
wind power values are shown as solid blue lines,
while the predicted values generated by the Narxnet,
Layrecnet, Distdelaynet, and Timedelaynet models
are represented by dashed lines in red, blue, purple,
and light blue, respectively.

1050

1000

1500

1000

527 528

P “ %"ﬁ\w&m&// M« \ *«M MMM

wer (kW)

p

529

\
3 \\

-1500 - - -
200 300 400

1 | 1
700 800 900

Figure 11. The forecasted results of wind power generation in case study 1.

5000

4000
i

3000 I
3

W
2000

er (kW)

1000 !

Active pows

-1000

-2000

23000 | 351 352

3?3 354 355‘ 356

0 100 200

300

400

Number of observations

600 700

Figure 12. The forecasted results of wind power generation in case study 2.
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Figure 13. The forecasted results of wind power generation in case study 3.

4. CONCLUSION

In this paper, operational parameters such as
wind speed, pitch angle, ambient temperature,
nacelle position, and wind direction are taken into
account for wind power generation forecasting.
A wind farm comprising six turbines, each with a
capacity of 3.5 MW, a hub height of 114 meters,
and a rotor diameter of 132 meters, is considered.
The time series data of turbine no. 05 from July
01%, 2024 to July 31*, 2024 is collected. Several
RNN
Layrecnet, Distdelaynet, and Timedelaynet are

architectures consisting of Narxnet,
proposed as alternative approaches for wind
power generation forecasting. Among these
models, the Layrecnet model demonstrates
superior performance WPF results compared to
these other models in terms of MAE, WAPE, and
RMSE. For further study, the optimal structures
of these models can be identified to provide
better solutions. Moreover, to improve model
reliability, anomalous data points and outliers
are identified and filtered out prior to training the
forecasting models.
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