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TOM TAT

Bai béao tap trung nghién cttu khéi nigm vé nghiém yéu va nghiém tich phan (mild solutions) ctia phuong
trinh vi phan ngdu nhién phi tuyén trén khong gian Hilbert véi hé cdc todn i phu thude thai gian, khong bi
chin. Ching toi dua ra mot diéu kién dé hai khai niéem nghiém tich phan va nghiém yéu & trén la tring nhau
va dong thoi nghién ctu théc trién lien tuc nghiém tich phan trén cac khong gian Hilbert. Dang phuong trinh

va cac khai niém vé nghiém chiing t6i nghién citu bat ngudn trong linh vitc todn cong nghiép.

T khéa: Nghiém yéu phuong trinh vi phan ngau nhién, hé tién hod khong thuan nhdat phu thudc thoi gian,

nghiem gidi tich yéu.
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ABSTRACT

We study about mild solutions and weak solutions of non-linear stochastic differential equations (SDEs) in

Hilbert spaces for the case of family of time-dependent and unbounded operators and get some conditions that

weak solutions to become mild solutions and vice versa. We also study continuously extension of mild solutions

on Hilbert spaces. Our equation and concept of solutions are arisen as a stochastic partial differential equation

(SPDE) in industrial mathematics.

Keywords: Weak solution of SDE, non-time homogencous evolution systems, analytically weak solutions.

1. INTRODUCTION

Let us denote by (92, F,P) a probability space
where the family F of subsets of Q is a o-
algebra, and P is a probability measure on
(2, F). It is always assumed that G, H are sepa-
rable Hilbert spaces; the Q-Wiener process W =
(W(#t))ejo.r)0 < T < o0, is defined on (2, F,P)
together with a normal filtration (F)¢>o and is
valued in G. Consider the following stochastic
differential equation

dX (t) = (L)X (t) + F(t))dt + AdW (¢),
X(to)=¢ 0<tg<t<T,

where for all ¢ € [0, 7] the linear operator L(t) :
D(L(t)) ¢ H — H is closed and densely de-
fined on H; the operator A : G — H is linear
and continuous, F' is an H-valued process, path-
wise Bochner integrable on [0, T, and the initial
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value £ is an JFj,-measurable random variable
getting values in H.

There are many mathematician studying on
the equation (1). DaPrato and Zabczyk! stud-
ied the case operators are independent in time.
Instead of separable Hilbert sapces, Manthey

2 constructed mild solutions

and Zausinger, see,
to (1) in weighted LP spaces. In,3 Prevot and
Roeckner considered for L(t) coercive varia-
tional solutions to (1). Veraar and Zimmer-
schied® considered the case of the family L(t)
is uniformly sectorial in [to, T]. Baur, Grothaus,
and Mai, see,” give some conditions for existence
and uniqueness of analytically weak solution to
(1) and apply these results to linearized versions
of a non-linear stochastic partial differential al-
gebraic equation arising in industrial mathemat-
ics, that leads to the time-dependent case with
the state space is some Sobolev space.
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In this paper, we continue to study on solu-
tions in® and give some conditions that weak so-
lutions become mild solutions and vice versa and
study continuously extended (mild) solutions on
some Hilbert spaces.

2. PRELIMINARIES

From now on, we always assume that (G, (-,)a)
and (H, (-,-)g) are separable Hilbert spaces and
I+l = v/T>a and || i = /T Ja ave
the corresponding norms generated by the in-
ner products, and 0 < T' < oo. Let (L(G, H), || -
[ (G,m)) be the space of all bounded linear op-
erators from G to H together with the oper-
ator norm || - [|q,m); and L(H) = L(H, H).
Assume that the linear operator L : D(L) C
G — H is densely defined on G. We also de-
note (L*, D(L*)) the Hilbert adjoint operator
of unbounded operator (L, D(L)) for the case
G = H, see.5 In the application, we shall use
concepts e.g. stable family of operators, part of
an operator in some subspace, invariant and ad-
missible subspaces as in.”-? The measurability
of L(G, H)-valued functions will be considered
as in.!

Definition 2.1. Let H be a Banach space and
L(H) be the space of linear bounded operators
in H. A family (S(t))i>0 C L(H) is called a
semi-group on H if

(1) 5(0) = Id;
(ii) S(t+7r)=S(t)S(r) forallt,r>0.

One concerns about a property of the family
(S(t))e>0 at the “origin” t = 0 that S(t) “con-
verges” to Id as t decreases to 0. If the con-
vergence is in the uniform topology on L(H),
ie., limy o [|S(t) — Id| () = 0, then the family
(S(t))t>0 is called a uniformly continuous semi-
group. If it happens with the strong topology on
L(H),i.e. forallu e H, lim g ||S(t)u—ullg =0,

then (S(t))i>0 is called a strongly continuous
semi-group; or is called shortly as a “semi-group
of class Cy” or “Cy-semi-group”. Of course, uni-
formly continuous semi-groups are also Cy-semi-
groups.

Definition 2.2. A map ¢ : Q — L(G,H) is
called strongly measurable if for arbitrary v € G
the function ®v : (Q,F) — (H,B(H)) is mea-
surable. And ® : Q — L(G, H) is said to be
Bochner integrable if for all v € G, the (H-
valued) function ®v is Bochner integrable and

there exists a linear bounded operator ¥ €
L(G, H) such that

/ O (w)vP(dw) = Vv, v € G.
Q

The operator W is called the Bochner integral of
® and is denoted by [, ®(w)P(dw) or [, PdP.

3. CONTINUOUSLY EXTENDED SOLU-
TIONS OF SPDEs

In this section, we continue to study the con-
cepts mild and weak solutions as in® for nonlin-
ear equations and will give conditions that weak
solutions become mild solutions and vice versa.
Moreover, we also study continuously extended
mild solutions on Hilbert spaces.

We consider again the following equation on
a separable Hilbert space H

dX(t) = (LoX(t) + L1(t) X (t) + F(t, X (¢)))dt+
FAL X)W (L), T<t<T
X(r)=¢€H,

(2)
where W := (W (t))s>, is an H-valued Q-Wiener
process on a probability space (2, F,P) together
with a normal filtration (F)¢>-.

Assumption 3.1. We assume that

(i) (Lo.D(Ly)) is the generator of a Cy-semi-
group (S(t))>0 on a Hilbert space H,

(i) Li(t) € L(H), Y t € [, T),
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(iii) The function F : [0,T]xQx H — H is a
measurable function on measurable spaces
(Qr x H Pp x B(H)) and (H,B(H)).

(iv) The function A : [0,T] x Q@ x H — LY
is measurable on spaces (Qr x H, Pr X
B(H)) and (LY, B(LY)), respectively.

(v) There exists a positive constant C' such
that Yu, uy,us € H,t € [0,T], and Yw € Q
we have

||F(t7w;u1) - F(tvw;u2)||+
FII AR wsu1) = At wiug) gy < Cllur — uo

and

1E(t i w) [P +IA w; )7y < C*+ul?).

(vi) and the initial value { is Fr-measurable
H-valued random variable.

Definition 3.1. Suppose that (X())r<i<r
is a random process getting values in H.
(X (t))r<i<r is a mild solution of (2) if it is pre-
dictable with square integrable trajectories sat-
isfying

X(t)=S{t—1)¢+ /t S(t—r)Li(r) X (r)+
+ St —r)F(r,X(r))dr+
+ / S(t— ) A(r, X ()W (r) P-as.
(3)

Remark 1. Since the trajectories of process
(X(t))r<t<T are Bochner square integrable P-
a.s., together with Assumption 3.1, the integrals
in (3) do exist.

Definition 3.2. Suppose that (X(t))-<i<7 is
a random process getting values in H. If
(X (t))r<t<r is predictable process, its trajec-
tories are square integrable and satisfying that

https://doi.org/10.52111/qnjs.2022.16303

Vv € D(L§) and Vit € [, T] we have

(X(t),0) = (& 0)+

+ /(X(s) Lyv) + (L1(s) X (s) + F(s, X(s)), v)ds+
-I—/ (A(s, X(s))dW (s),v) P—as;

then (X(t));<i<r is a weak solution of (2).

Remark 2. (i) Since (Lo, D(Lyg)) is the gen-
erator of a Cp-semi-group (S(t))i>0 on
Hilbert space H, the operator (Lg, D(L;))
generates the Cp-semi-group (S*(t))i>o0.
Hence, obviously that de domain D(Lg) of
Lg is dense in H.

(i) For the case of lincar equation with addi-
tive noise as in,” i.e. F = 0 and A does not
depend on time ¢ and process X, Defini-
tion 3.2 is really coincide to®[Def. 2.4]. In-
deed, since for every t € [0, T the operator
L;(t) is bounded and L(t) = Lo + L (t),
we have D(L*(t)) = D(Lj) and L*(t) =
Li+ Li(t) for all ¢t € [0,77]. Hence, for all
t €10,T],h € D(L§) we have

(X (@), L*(#)h) = (X(2), Loh)+{La () X (2), h).-

For the existence of mild solution of (2), we
recall the following result.

Theorem 3.1. Under the assumption 3.1, the
equation (2) has a unique mild solution. More-
over, it has a continuous modification.

Proof. See![Theo. 7.4]

As a condition that weak solutions and mild
solutions of (2) are equivalent, we have the fol-
lowing result.

Theorem 3.2. Under the assumption 5.1, a
predictable process (X (t))o<i<T getting values in
H is a weak solution of equation (2) if and only
if it is a mild solution.
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10" considered

Proof. Frieler and Knoche in
the time-independent non-linear stochastic dif-
ferential equations with multiplicative noises.
In'%[Prop. 2.10], the authors give some condi-
tions that weak solutions to become mild solu-
tions and vice versa. The proving Theorem 3.2

is followed by some following steps.

(i) Fix any ¢ € [0,7] in Assumption 3.1, i.e.
we reduce to the time-independent cases,
the assumptions in'?[Prop. 2.10] are satis-
fied.

(ii) We can repeat the proving of 1*[Prop. 2.10]
for Theorem 3.2 if the assumptions

/ (X

([ 1ACK@I gt < o) =1
0

t)||dt < oo) =1 and

are replaced by
T
]P’(/ IF (8, X (2))]|dt < oo) =1 and
0

T

B[ 14X W) gt <o) =1
(5)
Because, in the main calculation related to
F and A as in'® we just take derivatives
on the Cp-semi-group (S(t));>0. The con-
dition (4) just guarantees that the related
integrals do exist. Hence, the condition (5)

is required for the time-dependent cases.

Consider a general stochastic equation on a
separable Hilbert space H as following

dX (t) = (LoX (t) + L1 (t) X (t)+
+F(t, X () dt + A(t, X (1)dW (t),  (6)
X(r)=¢€H, 0<7<t<T.

together with Assumption 3.1. Let (H, (-,-) i)
be a Hilbert space and H be a densely and con-
tinuously embedded space in H. Denote || - | i

the Hilbert norm on H induced by the inner
product (-,-) 7.

Assumption 3.2. Assume that V¢ € [r,T] the
operators S(t) and Ly (t) are in L((H, ||-[| 5), lfI)
Moreover, for every t € [0,T] we assume that
F(t,-) and A(t, ) have extensions F(t,-) : H —
0 and A(t,-) : H — LY(H,H), respectively,
satisfying Assumption 3.1, (iii)-(v) on H.

Remark 3. Let (Lo, D(Lg )) be the generator of
semi-group (S(t))e>0 on H. Then due to the
uniqueness of the generator of an Cy-semi-group
we have EO’D(LO) = L.

We consider the equation on H

Theorem 3.3. Let Assumption 3.1 and As-
sumption 3.2 hold. Then each equation (6) and
(7) has a unique mild solution with a con-
tinuous modification named (X(t))o<i<T and
(X (t))o<t<t, respectively, satisfying

SF%]E(||X(t,T;U)—X(t7T;U)”%—]) < Or|lu—vll
te|r,

and

sup E(”X(t*Taﬁ)_X(tTaﬁ)Hi}) S CN’T”ﬂ_T)”%[?
te[r,T]
for some nonnegative constants Cp,Cr and
Yu,v € H and Yu,v0 € H. Moreover,
(X (t,7;6))o<t<r 45 an extension process of
(X (t,7;6))o<t<r on H; ie. ¥Vt € [1,T)], € € H,
we have
X(t,m:6)=X(t, 7€) P-as.

As a consequence, we obtain the reqularity of so-
lution (X (t,7;€))o<i<r of (7) on H.

https://doi.org/10.52111/qnjs.2022.16303
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Proof. Under the above assumptions, the ex-
istence and uniqueness of mild solution is ob-
tained, see![Theo. 7.4]. The two inequalities fol-
low by![Theo. 9.1]. We prove now the remain-
ing task. The mild solution of equation (6) and
equation (7), respectively, are

X(t,7:8) =St —T1)é+

+ / (S(t—r)Li(r)X(r)+ St —r)F(r, X(r)))dr

-I-/ S(t—r)A(r, X (r))dW (r),
(8)
and

X(t,7:€) = S(t = 7)é+

+ / (S(t —r)La(r)X (r) + S(t = r)F(r, X (r)))dr

+ / St —r)A(r, X (r))dW (r).
9)

Let ¢ € H. Following the continuous extension
of linear operators as in Assumption 3.2, the
mild solution (X (¢, 7;€))r<t<7 as in (8) also sat-
isfies (9). Note that the uniqueness of mild solu-
tions of (7) is up to an equivalence, among the
processes satisfying

IP(/OT 1X ()% dr < oo) -1 (10)

However, as in!, if two mild solution
(X2(O)rcrer and (Xa(t))esrar of (6) satisfy-
ing (10) then V¢ € [r,T] we have P(X;(t) =
X(t)) = 1. Hence, for arbitrary £ € H and
teR:7<t<T we have

X(t,7;6) = X(t,7;6) P-as.

Definition 3.3. We called (X(t))o<;<7 a con-
tinuously extended (mild) solution of (6) on H.

We consider the transition semi-groups cor-
responding to equations (6) and (7). Let Cy(H)

https://doi.org/10.52111/qnjs.2022.16303

and Cy(H) be the space of bounded and con-
tinuous functionals on H and H , respectively.
Let ¢ € Cy(H),p € Cy(H) and = € H,i € H.
Denote

Pryp(x) == E(p(X(t,7;2)))

and
Pr (%) == E(G(X(t, 75 2))).

Definition 3.4. The family (P;;)o<r<i<r I8
called a Feller evolution systems on Cy(H) if for
all p € Cy(H) we have

(i) Prep € Cp(H) forall 0 <7<t <T and

(ii) Py, (nga)(a:) = Pryp(x) for all 0 < 7 <
r<t<Tandforall zeH.

If the two items as above satisfy for all ¢ €
By(H), the space of bounded and measurable
functionals on H, then the family (Pr+)o<r<t<T
is called a strong Feller evolution systems.

Theorem 3.4. Let Assumption 3.1 and
Assumption 8.2 hold. Then the families

(Pri)o<r<t<T and (Pri)o<r<i<T are Feller evo-
lution systems on Cy(H) and Cy(H ) respectively.

Proof. The Feller property is followed The-
orem 3.3 and “semi-group” property is proved
by *[Cor. 9.9].
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