

Về một phương trình ma trận

Nguyễn Duy Ái Nhân^{1,*}, Dương Thị Hòa Bình²

¹ Khoa Toán, Trường Đại học Khoa học, Đại học Huế, Huế, Việt Nam

² Khoa Quản trị Kinh doanh và Du lịch, Trường Đại học Hà Nội, Hà Nội, Việt Nam

Ngày nhận bài: 29/03/2021; Ngày nhận đăng: 26/04/2021

TÓM TẮT

Trong bài báo này, chúng tôi chỉ ra rằng với A, B là các ma trận xác định dương và M_1, M_2, \dots, M_m là các ma trận không suy biến thì phương trình ma trận

$$X^p = A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i$$

có nghiệm xác định dương duy nhất X^* . Ngoài ra, bằng cách sử dụng phương pháp lặp, chúng tôi cũng chỉ ra dây các ma trận hội tụ về nghiệm X^* của phương trình trên.

Từ khóa: Ma trận xác định dương, phương trình ma trận, định lý điểm bất động, phương pháp lặp.

*Tác giả liên hệ chính.
Email: nguyenduyainhan@husc.edu.vn

On a matrix equation

Nguyen Duy Ai Nhan^{1*}, Du Thi Hoa Binh²

¹ Department of Mathematics, University of Sciences, Hue University, Hue, Vietnam

² Faculty of Management and Tourism, Hanoi University, Hanoi, Vietnam

Received: 29/03/2021; Accepted: 26/04/2021

ABSTRACT

In this paper, we consider one matrix equation that involves a matrix generalization of the weighted geometric mean. More precisely, for positive definite matrices A and B , for nonsingular matrices M_1, M_2, \dots, M_m , we show that the following equation

$$X^p = A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i$$

has a unique positive definite solution. We also study the multi-step stationary iterative method for this equation and prove the corresponding convergence.

Keywords: Positive definite matrix, matrix equation, fixed point theorem, multi-step stationary iterative method.

1. INTRODUCTION

Let \mathbb{M}_n stand for the algebra of $n \times n$ complex matrices and let \mathcal{P}_n denote the normal cone of positive definite matrices in \mathbb{M}_n . Let f be a real-valued function which is well-defined on the set of eigenvalues of a Hermitian matrix A . Then the matrix $f(A)$ can be defined by means of the functional calculus.

Let A, B be positive definite matrices, it is well-known that the matrix geometric mean $A \sharp B = A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$ was firstly defined¹ by Pusz and Woronowicz. They showed that the geometric mean is the unique positive definite solution of the Riccati equation

$$XA^{-1}X = B. \quad (1)$$

In 2005, Lim² studied the inverse means problem for the geometric mean and the contraharmonic mean. Using the Riccati equation (1) as a lemma, for positive definite matrices $A \leq B$ he studied the following equation

$$X = A + 2BX^{-1}B.$$

He showed that the last equation has a unique positive solution of the form $X = \frac{1}{2}(A + A \sharp (A + 4BA^{-1}B))$. Lim and co-authors³ studied the non-linear equation

$$X = B \sharp (A + X).$$

They proved that this equation has a unique positive definite solution $X = \frac{1}{2}(B + B \sharp (B + 4A))$. Interestingly, both results were based on elementary approach by solving the corresponding quadratic equations. Recently, Lee and co-authors⁴ studied the following matrix equation

$$X^p = A + M^T (X \sharp B) M.$$

Similar to the approach⁵ of Lim and Palfia, they used the Thompson metric and Banach fixed point theorem to show that the equation has a unique positive definite solution. Recently, Zhai and Jin⁶ generalized the last equation for m non-singular matrices. More precisely, they studied two non-linear matrix equations as follows

*Corresponding author.

Email: nguyenduyainhan@husc.edu.vn

$$X^p = A + \sum_{i=1}^m M_i^T (X \sharp B) M_i$$

and

$$\begin{aligned} X^p = A + \sum_{i=1}^j M_i^T (X \sharp B) M_i \\ + \sum_{i=j+1}^m M_i^T (X^{-1} \sharp B) M_i, \end{aligned}$$

where p, m, j are positive integers such that $1 \leq j \leq m$, A, B are positive definite matrices and M_1, M_2, \dots, M_m are nonsingular real matrices.

Recently, Dinh and co-authors studied a more general case of these two equations. They considered similar matrix equations for the weighted matrix geometric mean

$$A \sharp_t B = A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^t A^{1/2}.$$

Namely, they studied the following matrix equations

$$X^p = A + \sum_{i=1}^m M_i^T (X \sharp_t B) M_i,$$

and

$$\begin{aligned} X^p = A + \sum_{i=1}^j M_i^T (X \sharp_t B) M_i \\ + \sum_{i=j+1}^m M_i^T (X^{-1} \sharp_t B) M_i, \end{aligned}$$

where p, m are positive integers, A, B are $n \times n$ positive definite matrices and M_1, M_2, \dots, M_m are $n \times n$ nonsingular real matrices. At the end of the paper, they not only mentioned that the weighted geometric mean $A \sharp_t B$ is a matrix generalization of $a^{1-t} b^t$ for two non-negative numbers a and b but also noticed that there is another symmetric generalization such as $\left(A^{\frac{1-t}{2t}} B A^{\frac{1-t}{2t}} \right)^t$ which appears in the definition of the sandwiched quasi-relative entropy⁷ $Tr \left(A^{\frac{1-t}{2t}} B A^{\frac{1-t}{2t}} \right)^t$.

In this note, we give a detail proof of next theorem:

Theorem. Let $A, B \in \mathcal{P}_n$, m be positive integers greater than 2, and $p \geq 1$. Then, for nonsingular matrices M_1, M_2, \dots, M_m in \mathbb{M}_n , the following matrix equation

$$X^p = A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i$$

has a unique positive definite solution X^* in \mathcal{P}_n . We also study the multi-step stationary iterative method for this equation and prove the corresponding convergence.

2. MAIN RESULTS

Definition 1. ^(8 [Definition 2.1.1]) An operator $T : \mathcal{P}_n \rightarrow \mathcal{P}_n$ is said to be increasing if $0 < x \leq y$ implies $Tx \leq Ty$.

The following lemma is crucial for us to prove the main results in this paper.

Lemma 2. ^(8 [Theorem 2.1.6]) Let $T : \mathcal{P}_n \rightarrow \mathcal{P}_n$ be an increasing operator, and suppose that there exists $r \in (0, 1)$ for which

$$T(sx) \geq s^r T(x), \quad x \in \mathcal{P}_n, \quad s \in (0, 1).$$

Then T has a unique fixed point $x^* \in \mathcal{P}_n$.

Theorem 3. Let $A, B \in \mathcal{P}_n$, m be positive integers greater than 2, and $p \geq 1$. Then, for nonsingular matrices M_1, M_2, \dots, M_m in \mathbb{M}_n , the following matrix equation

$$X^p = A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \quad (2)$$

has a unique positive definite solution X^* in \mathcal{P}_n .

Proof. Let consider the function

$$T(X) = \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \right)^{\frac{1}{p}}.$$

We show that $T(X)$ satisfies the conditions of Lemma 2, so it has a unique fixed point X^* in \mathcal{P}_n . That leads to the fact that Equation (2) has a unique positive definite solution X^* in \mathcal{P}_n .

Let $0 < X_1 \leq X_2$ and $0 < t < 1$, we have $\left(B^{\frac{1-t}{2t}} X_1 B^{\frac{1-t}{2t}} \right)^t \leq \left(B^{\frac{1-t}{2t}} X_2 B^{\frac{1-t}{2t}} \right)^t$. Consequently,

$$\begin{aligned} M_i^T \left(B^{\frac{1-t}{2t}} X_1 B^{\frac{1-t}{2t}} \right)^t M_i \\ \leq M_i^T \left(B^{\frac{1-t}{2t}} X_2 B^{\frac{1-t}{2t}} \right)^t M_i, \quad i = 1, 2, \dots, m. \end{aligned}$$

Therefore,

$$\begin{aligned} A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X_1 B^{\frac{1-t}{2t}} \right)^t M_i \\ \leq A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X_2 B^{\frac{1-t}{2t}} \right)^t M_i. \end{aligned}$$

Since $p \geq 1$, the function $x^{\frac{1}{p}}$ is a monotone operator on $(0, +\infty)$. We have

$$\begin{aligned} T(X_1) &= \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X_1 B^{\frac{1-t}{2t}} \right)^t M_i \right)^{\frac{1}{p}} \\ &\leq \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X_2 B^{\frac{1-t}{2t}} \right)^t M_i \right)^{\frac{1}{p}} \\ &= T(X_2), \end{aligned}$$

so the function $T(X)$ is increasing.

Let $X \in \mathcal{P}_n$. For $t \in (0, 1)$ and $p \geq 1$, there exists a constant $r \in (0, 1)$ such that $r \geq \frac{t}{p}$. It is obvious that

$$\left(B^{\frac{1-t}{2t}} (sX) B^{\frac{1-t}{2t}} \right)^t = s^t \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t,$$

for any $s \in (0, 1)$.

Since $rp \geq t$, we have $s^{rp} \leq s^t < 1$ for all $s \in (0, 1)$. Therefore,

$$\begin{aligned} A + s^t \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \\ \geq s^{rp} \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \right). \end{aligned}$$

By the monotonicity of the function $x^{\frac{1}{p}}$, we have

$$\begin{aligned} T(sX) &= \left(A + s^t \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \right)^{\frac{1}{p}} \\ &\geq \left(s^{rp} \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \right) \right)^{\frac{1}{p}} \\ &= s^r \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X B^{\frac{1-t}{2t}} \right)^t M_i \right)^{\frac{1}{p}} \\ &= s^r T(X). \end{aligned}$$

Thus, $T(X)$ satisfies all conditions of Lemma 2. In other words, Equation (2) has a unique positive solution $X^* \in \mathcal{P}_n$. \square

Now, let X_1, X_2, \dots, X_m be initial matrices in \mathcal{P}_n and consider the multi-step stationary iterative method for the equation (2) as following

$$\begin{aligned} X_{lm+j} \\ = \left(A + \sum_{i=1}^m M_i^T \left(B^{\frac{1-t}{2t}} X_{(l-1)m+j} B^{\frac{1-t}{2t}} \right)^t M_i \right)^{\frac{1}{p}} \end{aligned} \quad (3)$$

for $l = 1, 2, 3, \dots$ and $j = 1, 2, \dots, m$.

In the following theorem, we show that the matrix sequence $\{X_k\}$ generated by (3) converges to X^* .

Theorem 4. *For any $X_1, X_2, \dots, X_m \in \mathcal{P}_n$, the sequence of matrices $\{X_k\}$ generated by (3) converges to the unique positive definite solution X^* of the equation (2).*

Proof. For matrices X_1, X_2, \dots, X_m and X^* , there exists $a \in (0, 1)$ such that

$$aX^* \leq X_j \leq a^{-1}X^*, \quad j = 1, 2, \dots, m. \quad (4)$$

We show that for any $b \in \mathbb{N}$ we have

$$a^{r^b} X^* \leq X_k \leq a^{-r^b}, \quad k = bm+j \quad (j = 1, 2, \dots, m) \quad (5)$$

for some $r \in (0, 1)$ and $r \geq \frac{t}{p}$. Then, according to the fact that $\lim_{b \rightarrow \infty} a^{r^b} = \lim_{b \rightarrow \infty} a^{-r^b} = 1$ and the Squeeze theorem in the normal cone \mathcal{P}_n , it implies that $\{X_k\}$ converges to X^* .

Now, we prove (5) by using the method of mathematical induction. For $b = 0$, the inequality (5) reduces to the case of (4). Assume that (5) is true for $b = q-1$ for some positive integer q , it means

$$a^{r^{q-1}} X^* \leq X_{(q-1)m+j} \leq a^{-r^{q-1}} X^* \quad (6)$$

for $k = (q-1)m + j$ and $j = 1, 2, \dots, m$.

Since $X_{qm+j} = T(X_{(q-1)m+j})$ and $T(X)$ is increasing, it implies from (6) that

$$\begin{aligned} T(a^{r^{q-1}} X^*) &\leq T(X_{(q-1)m+j}) \\ &= X_{qm+j} \leq T(a^{-r^{q-1}} X^*). \end{aligned}$$

Moreover, $T(sX) \geq s^r T(X)$ in the case $s \in (0, 1)$ and $T(sX) \leq s^r T(X)$ in the case $s > 1$. Therefore,

$$\begin{aligned} T(a^{r^{q-1}} X^*) &\geq \left(a^{r^{q-1}} \right)^r T(X^*) \\ &= a^{r^q} T(X^*) = a^{r^q} X^* \end{aligned}$$

and

$$T\left(a^{-r^{q-1}}X^*\right) \leq a^{-r^q}T(X^*) = a^{-r^q}X^*.$$

So, we have

$$a^{r^q}X^* \leq X_{qm+j} \leq a^{-r^q}X^*.$$

Thus, (5) is true, and $\{X_k\}$ converges to X^* . \square

REFERENCES

1. W. Pusz, S.L. Woronowicz. Functional calculus for sesquilinear forms and the purification map, *Reports on Mathematical Physics*, **1975**, 8(2), 159-170.
2. Y. Lim. Inverse mean problem of geometric and contraharmonic means, *Linear Algebra Appl.*, **2005**, 408, 221-229.
3. C. Jung, H.M. Kim, Y. Lim. On the solution of the nonlinear matrix equation $X^n = f(X)$, *Linear Algebra Appl.*, **2009**, 430, 2042-2052.
4. H. Lee, H.M. Kim, J. Meng. On the nonlinear matrix equation $X^p = A + M^T(X \sharp B)M$, *Journal of Computational Analysis and Applications*, **2020**, 373, 112380.
5. Y. Lim, M. Palfia. Matrix power means and the Karcher mean, *Journal of Functional Analysis*, **2012**, 262, 1498-1514.
6. C. Zhai, Z. Jin. Solvability for two forms of nonlinear matrix equations, *Bulletin of the Iranian Mathematical Society*, **2020**, <https://doi.org/10.1007/s41980-020-00431-4>.
7. M. Wilde, A. Winter, D. Yang. Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy, *Communications in Mathematical Physics*, **2014**, 331, 593-622.
8. D. Guo, V. Lakshmikantham. *Nonlinear Problems in Abstract Cones*, Academic Press, New York, 1988.