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TOM TAT

Bai bao nghién ctu tinh 6n dinh ctia anh xa da tri chinh quy* Milyutin bi nhiéu bdi mot 4nh xa Lipschitz
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ABSTRACT

The paper investigates the stability of a star Milyutin regular set-valued mapping perturbed by a Lipschitz
mapping in the context of the concepts of Milyutin regularity and star Milyutin regularity that have been

adapted to be suitable for some practical situations.

Keywords: Metric reqularity, star metric reqularity, strong slope, perturbation stability, star pseudo-Lipschitz.

1. INTRODUCTION

First discovered from classical results: Lyusternik-
Graves Theorem, which is formed from two
independent results by L. A. Lyusternik and L.
M. Graves, Open Mapping Theorem by Rudin,
and Implicit Function Theorem by Cauchy, Dini,...
until now, the local metric regularity for single-
valued mappings has been studied and expanded
by many mathematicians such as: Borwein, Ioffe,
Penot, Frankowska, Aubin,... to set-valued map-
pings in nonlinear case of high order or in non-

1 2

local forms in works by Arutyunov,” Gfrerer,

Frankowska and Quicampoix,® Mordukhovich and
Ouyang,* Penot,” Ioffe,%7 Ngai, Tron, and Théra,?
Ivanov and Zlateva,? etc. In the most recent paper
by Tron, Han, and Ngai,'® models of nonlocal
metric regularity of multivalued mappings are
considered on an arbitrary subset of product metric
space. And then, the infinitesimal characterization
for these models as well as the stability of Milyutin
regular under perturbation are also established.

*Corresponding author.
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Besides, in the process of expansion of Aubin
property to the fixed set situation, Ioffe® led to a
weak version of metric regularity which is called star
metric reqularity. Recall that star metric regularity
of a set-valued mapping on fixed subsets of the form
U x V is the metric regularity of the mapping whose
images are the ones of the original set-valued map-
ping truncated by V), i.e., a set-valued mapping T’
between metric spaces is said to be star metric reg-
ularity on U x V if there exists 7 > 0 such that

d(u, T (v)) < 7d(v, T(u) N V),

for all (u,v) e U xV and 0 < 7d(v,T(u)NV) < d(u),
where § is a gauge function that takes positive val-
ues on Y. In the researching, Ioffe has shown that
there exist set-valued mappings that satisfy star met-
ric regularity but are not metric regularity. And so,
star metric regularity is claimed to be weaker than
metric regularity. Then, for the such mappings, the
use of the Milyutin perturbation theorems as men-
tioned in'® with the metric regularity assumption of
the original set-valued mapping may not useful. Con-
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sequently, the purpose of this article is to consider the
stability of Milyutin regular when the initial mapping

just satisfies star Milyutin regularity.

The paper is organized as follows. In Section 2
we introduce some basic notations and preliminar-
ies. Further we recall the related results by Tron,
Han and Ngai.'? In Section 3 we prove stability theo-
rems of perturbed star Milyutin regularity set-valued

mappings.

2. PRELIMINARIES

Throughout the article, we shall mainly be working
in the setting of a metric space X, endowded with
a metric d. For u € X, we denote by d(u, A) the
distance from u to A C X, d(u, A) := inf{d(u,t) |
t € A}. By B(C,p), B(C, p) we denote respectively
an open and a closed neighborhood of C' with ra-
dius p € (0,400). A set-valued mapping (or a mul-
tifunction) between metric spaces X,Y denoted by
T : X = Y is a correspondence which associates
every u a set T(u), possibly empty. For every set-
valued mapping T : X = Y, we associate two
sets, the graph of T and the domain of T, are de-
fined by GraphT := {(u,v) € X xY | v € F(u)}
and Dom T := {u € X | T(u) # 0}. The inverse
of T is the mapping 77! : Y = X defined by
T 1(v) ={u€ X |ve F(u)}. Then,

(u,v) € Graph T <= (v,u) € Graph T~
2.1. Some basic notations and notions

In view of variational analysis, stability theory is
closely related to the basic notion of metric regu-
larity, The versions of this key property are recalled
below, and for more details and further references

readers refer to the works.!!-12

Let X,Y be metric spaces, T': X = Y be a
multifunction, (@,?) € GraphT.

Definition 1. 12 A multifunction T is called met-
rically regular around (u,v) € GraphT with modulus
k > 0 if there exists a neighborhood U x V' of (u,0)
such that

d(u, T~ (v)) < kd(v, T(u)), for all (u,v) €U x V.
We denoted by reg T(@,v) the infimum of all modu-

lus Kk above.

Toffe!' suggested a nonlocal regularity model
of set-valued mapping T : X = Y associated to a
gauge function v as follows. Let Y C X,V C Y and
v: X = RU{400} be positive on U.

Definition 2. %'2 A maultifunction T : X = Y is
called ~y-metrically reqular on U XV if there is a real

number k > 0 such that
d(u, T~ (v)) < kd(v, T(u)), (2.1)

provided that w € U, v € V, and 0 < kd(v,T(u)) <
Y(u). Denote by reg. T(U[V) the lower bound of
the k satisfying (2.1). If no such k exists, set
reg., T(U|V) = cc.

Furthermore, in the work'® by Tron, Han and
Ngai, a different version of y-metric regularity which
is extended to an arbitrary set W C X XY suggested

as follows.

Definition 3. '0 Let T : X = Y be a multifunction
and W be a subset of X xY . T is called v-metrically
reqular on W with constant k if there is a real number
r >0 such that

d(u, T (v)) < kd(v, T(u)), (2.2)

for all (u,v) € W with 0 < rd(v,T(u)) < v(u). The
lower bound reg ., T(W) of k in (2.3) is the modulus
of v-metric reqularity of T on W. If no such k exists,
set reg . T(W) = oc.

The above definition covers the case where the
parameters x and r coincide, which is known as the
concept of y-metric regularity in the sense of Ioffe,

as shown in the following definition.

Definition 4. 10 Let X, Y be metric spaces, W be a
subset of X xY and let T : X =Y be a set-valued
mapping. T is called ~y-metrically reqular on W if
there is k > 0 such that

d(u, T~ (v)) < kd(v, T(u))
for all (u,v) € W with 0 < rd(v, T(u)) < y(u).

Next, we recall a weaker version of metric regu-
larity, star metric regularity, introduced by Ioffe in
also.%
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Definition 5. ¢ Set T\, (u) = T(u)NV. A multifunc-
tion T is said to be y-reqular® (or star vy-regular) on
U XV if Ty is y-reqular on U x V. Specifically, T is
called ~y-reqular™ on U x V if there is a k > 0 such
that

d(u, T~ (v)) < kd(v, T(u) NV)
foralluelU,veV and 0 < kd(v,T(u)NV) < y(u).

In order to be convenient in some applications,
in this paper, we propose an improved version of the
above definition in which the parameters “£” in the
regularity inequality and the gauge condition could
be distinguished.

Definition 6. A multifunction T : X =Y is called
v-metrically reqular® onU XV C X XY with constant
k if there is a real number r > 0 such that

d(u, T (v)) < kd(v, T(u) N V), (2.3)

Jor all (u,v) € UXV with 0 < rd(v, T(u)NV) < y(u).
The lower bound reg” T(U[V) of & in (2.3) is the
modulus of v-metric reqularity” of T onU x V. If no

such k exists, set reg T(U[V) = oc.

Remark 7. In case of r = k, Definition 6 leads to
the version of y-metric reqularity* on U x V in the

sense of Ioffe as in Definition 5.

~v-openness® and ~-pseudo-Lipschitz* of set-
valued mappings are equivalent properties of the reg-

ularity* stated as follows.

Definition 8. A multifunction T : X = Y is -
open® on U X V with constant k if there is a real

number p > 0 such that
B(T(u)NV,pt)NV C T(Blu, s 'pt)),  (2.4)

whenever u € U, 0 < t < y(u). The upper bound
sur T(U|V) of k in (2.4) is the modulus of ~-
surjection™ of T on U X V. If no such k exists, set
sur’, T(U|V) = 0.

Definition 9. A multifunction T~ :Y = X is -
pseudo-Lipschitz* on V X U with constant k if there

is a real number p > 0 such that

A, T (v)) < wdl(v, w), (25)
provided that v € T~ (w) NU, v,w € V and 0 <
pd(v,w) < ~(z). The lower bound lip} T~'(U[V) of

https://doi.org/10.52111/qnjs.2024.18306

K in (2.5) is the y-pseudo-Lipschitz* modulus of T—*
on VxU. If no such & exists, set lip) T~ (U x V)
= 0.

The following propositon shows the equivalence

of the above three star regular concepts.

Proposition 10. Let T : X =Y be set-valued map-
ping and U C X,V C Y. The following statements
are equivalent:

(i) T isy-open* onU xV with modulus not smaller
1.

than K™,

(ii) T is y-reqular® on U x V with modulus not
greater than k;

(iii) T~1 is y-pseudo-Lipschitz* on V xU with mod-

ulus not greater than k.

Proof. To show (i) = (ii), let (u,v) € U x V
be with 0 < pd(v, T(u) NV) < (u). Then, for all
e > 0, take 7 = p(d(v,T(u) N'V) + €) such that
0 < pd(v,T(u)NV) <7 < 7(u). Then, u € U,0 <
7 <7(u) and v € B(T(u)NV,p~tr)NV. By (i), v €
T(B(u,kp~'7)). So, there exists z € B(u,rp~'7)
such that v € T(2). It follows that d(u,T~1(v)) <
d(u,2) < kp~ 7 = Kk(d(v,T(u) NV) +¢€). Let € | 0,
one gets d(u, T~(v)) < kd(v, T(u) N V).

The implication (ii) = (i) is obvious. For
(iti) = (1). Let w € U, 0 < 7 < ~v(u), and let
v € B(T(u)NV,p~tr)NV. Then u € U and there
exists w € T(u) NV such that 0 < d(v,w) < p~17. It
follows u € T~ (w)NU, v,w € V and 0 < pd(v,w) <
7 < v(u). By (i), d(u, T~1(v)) < kd(v,w) < kp~ 7.
This means that there is z € T !(v) such that
d(u,z) < kp~'7, that is v € T(B(u, kp~17)). So,

B(T(u)nV,p~'1)nV C T(B(u,kp~'7)).
The proof is complete.
2.2. Auxiliary results

Now, we recall the concept of (strong) slope which is
considered as an infinitesimal tool in metric spaces,
first introduced in 1980 by De Giorgi, Marino, and

Tosques. '

Definition 11. > Let X be a metric space and
f: X = RU{+oo} be a given function. The symbol
[f(2)]+ stands for max(f(z),0) and Dom f:={x €
X | f(z) < +o0} denotes the domain of f.
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(i) The quantity defined by |V f|(z) =0 if x is a

local minimum of f; otherwise

: f(@) = f(u)
Vf|(z) = limsu .
IV£I(z) Hmsup =)
is called the local slope of the function f at
x € Dom f.

(ii) The quantity

ITf|(2) = sup —————"—
uts d(z,u)
is called the nonlocal slope of the function f at
x € Dom f.

For x ¢ Dom f, we set |Vf|(z) = [Tf|(z) = +oc0.
Obviously, |V f|(z) < |T'f|(x) for all x € X.

In case of X being a normed space and f being
Fréchet differentiable function at z then the slope of
f coincides with the norm of the derivative Vf at
the point. For a fuller treatment of strong slope, we

refer the reader to the researches.!?:15-18

To establish infinitesimal characterizations for
regularity, an effective tool that has been used is the
lower semicontinuous envelop of the distance func-
tion associated to a set-valued mapping T : X = YV
defined by
<p§(w) = (ulir)n_}(r;fy) d(v,T(u)) = lizanjilf d(y, T (u))-
The following theorem established by Tron, Han,
Ngai'® gives the necessary/ sufficient conditions for
the metric regularity via nonlocal slope of the func-
tion cpg. Now, let be given a subset W of X x Y,
we associate every v € Y to set W, = {u € X :
(u,v) € W}, and every u € X toset W, ={veY:
(u,v) € W}. Then, denoted by PxW := U,ey W,
and PyW := UucxW,. In particular, in the case
where the form of W is a box U x V, the sets W,
(with v € V), PxW are identical to U and the sets
W, (with u € U), PyW are identical to V.

Theorem 12. (Tron-Han-Ngail®) Given X is a
complete metric space, Y is a metric space and W C
X xY is a nonempty subset. Let T : X = Y be a
closed set-valued mapping and v : X — Ry U {+o0}
be a gauge function. Then,

(1) Suppose that ~y is lower semicontinuous. If W
1s open and T is y-metrically reqular on W
with constant k, i.e., there exists a real r > 0
such that for every (z,y) € W, with 0 <

rd(y, T(z)) < (),
d(z, T~ (y)) < kd(y,T(z)),

then for each (x,y) € W, with 0 < rgog(:r) <

v(x), one has
Dy |(2) > K71

(ii) Conversely, assume further that v : X — Ry is
a Lipschitz continuous function with constant

1. If there are a positive real K such that

%1&1 inf{|Co) |(z) : d(z,W,) < 07(x), y € Py W,

0< @Z(a?) < dy(z)} >kt

then T is y-metrically reqular on W with con-
stant K.

Regarding Definition 4, the theorem below in the
work by Tron, Han, Ngai'® gives a suficient condition

for the ~-metric regularity via the nonlocal slope.

Theorem 13. (Tron-Han-Ngai'®) Let X be a com-
plete metric space and Y be a metric space, W C
X XY be a nonempty subset. Let T : X =Y be a
closed set-valued mapping. Suppose that v : X — R,
is a Lipschitz function with constant 1. If there exists
k >0 such that

Loy l(2) > w77,
Ve € Wy)y,y € PW,0 < ki (z) < 7(z), where
(Wy)y = Uzew, B(x,7(x)), then one has
d(z, T} (y)) < kd(y, T(x)),
for all (z,y) € W with 0 < kd(y, T(z)) < v(z).
3. PERTURBATION STABILITY OF

STAR MILYUTIN REGULARITY MULTI-
FUNCTIONS

Let X,Y be metric spaces and WV be a nonempty
subset of X x Y. Firstly, we recall the defintiton of
Milyutin regular on W given by Tron, Han and Ngai
in the research.!?

https://doi.org/10.52111/qnjs.2024.18306

Quy Nhon University Journal of Science, 2024, 18(3), 51-59 | 55



QUY NHON UNIVERSITY

I SCIENCE

Definition 14. (Tron-Han-Ngai*®) A multifunction
T: X =Y is called Milyutin regular on W with

constant k if there is a real number r > 0 such that
AT~ (y)) < wd(y,T(z)),

for all (x,y) € W with 0 < rd(y, T(z)) < mpyw(z).
The infimum of all above k denoted by reg,, T(W).

Next, we consider the definitions of Milyutin
regular® associated to the gauge function v =
Mpyw X — Ry defined by mpyw(z) =
d(z, X\PxW).

Definition 15. A multifunctionT : X =Y is called
Milyutin reqular® on W with constant k if there is a

real number r > 0 such that
d(T~(y)) < wd(y,T(z) N PxW),

for all (z,y) € W with 0 < rd(y,T(x) N PxW) <
mpyw(x). The infimum of all above k denoted by
reg = T(W) is the modulus of Milyutin regular® of T
on W. If the above constant k does not exists, set
reg’ T(W) = .

Remark 16. In the above definition, taking r = k
one obtains the definition of Milyutin reqular® on W
in the sense of Ioffe.

It is easily seen that mp,yy(z) is positive on
PxW if and only if PxW is an open set, which fol-
lows from W is open. And then, the results of Theo-
rem 12 and Theorem 13 are also applied to the func-
tion mp,yy due to Lipschitz property with constant

1 of this one.

In this part, we shall investigate the stability of
Milyutin regular under perturbation by single-valued
mappings and the original set-valued mapping is as-

sumed to be Milyutin regular®.

Theorem 17. Let X be a complete metric space and
Y be a Banach space. Let U C X,V C Y be open
sets. Let a closed set-valued mapping T : X = Y
and a single-valued mapping h + X — Y be Lips-
chitz on U with constant A € (0,57 1). If T is Mi-
lyutin reqular® on U x V with constant K, i.e, there
exists v > 0 such that for all (x,y) € U x V with
0<rd(y, T(x)NV) < my(z),

d(z, T~} (y)) < kd(y, T(z) N V).

https://doi.org/10.52111/qnjs.2024.18306

Then, for every n > 0, T + h is Milyutin regular on
WA with reg (T + h) (W) < (k=1 = X\)~L, where

WA = {(z,y) € X xY | z €U,
B(y - h(l’), A777’1?/{(30)) C V}
Proof. Let 1 > 0 be given. According to Theorem

12, we only need to prove that

léiﬁ} inf{|F<,9;‘/F+h|(:r) : d(x,W?;\”) < OMpy (),

y € PyWM 0 < <p5+h(a:) < dmp oy (@)} >K71 = A
(3.1)

)
Indeed, choose ¢ such that 1

5 < min{l,n}, 0 <

(A +1)d

rd <1, s

< M.

Let (z,5y) € X x Y such that d(z, W)") <

dmpwan(x), y € PxWM and 0 < ol t'(z) <

Smpyyrn (). Then there exists u € WA such that
d(x,u) < dmpyyan(x) < dmy(x).

So, u € U, B(y — h(u), \pmy(x)) C V, and since mus
is Lipschitz with constant 1, it follows that

d(z,u) < omy(u) + dd(z,u).

By the choice of d, one has

d(z,u) < %mu(u) < my(u) (3.2)

which gives x € U.
Let now {u,} C X be such that u,, — = and
d(y7 (T + h)(un)) — @Z+h(l’) as n — oQ.

Thus, there exists ng € N such that for all n > ny,

0 <d(y, (T +h)(un)) < dmy(un)  (3.3)

and, as u, — = € U, we have u, € U due to the
openness of Y. And then, by the choice of § when n

is sufficiently large, we have
0 <d(y, (T+h)(un)) <r~'my(un).  (34)

Furthermore, for n large enough, we find that
A(Yn, T(uy)) = d(yn, T(uy) NV). Indeed, fixing n €
N*, we take a sequence {ay} C T'(uy) such that

d(y — h(uy),ar) = d(y — h(uy), T(uy,)), k = oc.
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By (3.2), (3.3) and the continuity of distance func-
tion, we conclude that

d(y - h(un)7 ak) < 5mu(un)
< §m1,{(u) + (Sd(una u)
52

1-4§

< dmy(u) + (3:5)

d

my(u)

From (3.2), (3.5) and the choice of 0, it follows that
for n > nyg,

d(akay h( )) d(akay h( ))

+d(y = h(un),y = h(u))

which gives ap € By — h(u), \gmy(u)) C V,
and thus ap € T(uy,) NV
h(up),ar) > d(y — h(uy), T(u,) N'V), So, d(y —
h(un), T(un)) < d(y — huy), (u") NV). And then,
d(y = h(un), T(un)) = d(y = h(uy), T (un) NV) when

n is sufficiently large.

. Consequently, d(y —

Then from (3.4), we see that

0 < d(y — h(u), T(us) NV) = d(y — h(u), T(un))

<ty (uy).

Moreover, by (3.2), for n is large enough, we conclude

from the continuity of distance function that
d(y — h(uy),y — h(u)) < Ad(un,uw) < Nd(z,u)
)
< Anmy(u),

where the last inequality is followed from the choice

of 9. Consequently,

y — h(u,) € By — h(u), \gpmy(u)) C V.

Then from the fact that T is Milyutin regular® on

U x V with constant k, we obtain

d(un, Tﬁl(y = h(un))) < kd(y — h(un), T(un) NV)
= d(y — h(un), T(

un)), Yn > ng.

Now we choose some z, € T 'y — h(u,)) (ie.,
y — h(u,) € T(z,)) such that

d(un, z,) < (k+n"")d(y = h(un), T(un)).  (3.6)

From (3.3) and the choice of 4, for all n > ng, one
has

d(un.z,) < (K +n"Yomy(un) < my(uy).

This yields z,, € U, and thus from the Lipschitz prop-
erty of h on U, we have

d(h(un), h(zy)) < Ad(tp, ). (3.7)

Since @I*(z) > 0, the closeness of T, and
lim,, 00 u,, = x, we see that liminf,, . d(un, z,) >
0. Note that d(y—h(uy), T(z,)) = 0 since y—h(u,,) €
T(zy), and from (3.6), (3.7), we conclude that

T+h
. @ — 0, T"(2n)
I‘ T+h >1 Y Y
T, ™|(x) > im sup 1)

sty 020 =l (7))
— lim sup d(y — h(un), T(uyn)) — d(y — h(2,), T(2))
n—00 d(tn, 2n)

> lim sup d(y — h(un)7 T(un))
n—00 d(una Zn)

-

—A=r"1o N\

> limsup

n—oo K+ n=1

This finishes the proof.

The next theorem is a version of the above one in
which the definition of Milyutin regular® is replaced
by the definition of Milyutin regular® in the sense of
Toffe.

Theorem 18. Given X is a complete metric space,
Y is a Banach space and Y C X,V C Y are open
sets. Let a closed set-valued mapping T : X =Y and
a single-valued mapping h : X —'Y be Lipschitz on U
Y. If T is Milyutin regular®
on U x V with constant k, i.e, for all (x,y) €U XV

with constant A € (0,5~

with 0 < kd(y, T(x) NV) < my(x),
d(z, T~ (y)) < wd(y, T(x) N V).

Then, T+ h is Milyutin regular on W with reg ,,, (T +

R)YW) < (k71 = N)~L, where

W={(z,y) e X xY | z€l,

By — h(z), (26~ = Nmy(x)) € V}.
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Proof. Set Wy )m := Uuew, B(u, mpyw(u)). Ac-
cording to Theorem 13, now we shall show that
for any @ € Wy)m, y € PyW with 0 < (k71 —

Ny (@) < mpew (),

| F(pg*'h () > K7t =\

Indeed, take (z,y) € X x Y such that z € (Wy)m,
y € PyW with 0 < (k71 =X)L oI™(z) < mpyy(x).
Then, there is v € W, such that
d(z,u) < mpyew(u) < my(u). (3.8)
So, u € U, B(y — h(u), \my/(u)) C V, and = € U.
Now, we take {u,} C X such that u, — = and
d(y, (T +h)(uy,)) = @I *h(z) as n — oo. Thus, there

y
exists ng € N such that for all n > ng,

0 < d(y, (T +h)(up)) < (k7" = Nmpyew(x)

< (k71 = Nmy()

< (k71 = Nmy(uy)  (3.9)
& my (), (3.10)

A

and that u,, € U follows from the openness of U and
U, — x €U.

Furthermore, d(y — h(u,),T(u,)) = d(y —
h(uy), T(uy,) N'V) for n large enough. Indeed, fix-
ing n € N*, we choose a sequence {ay} C T'(u,) such
that d(y—h(uy), ar) = d(y—h(u,), T(uy)), k — occ.
By (3.8), (3.9), and the continuity of the distance

function, we conclude that

d(y — h(un), ar) < (K71 = N)my(un)
< (k7= Nmy(u) + (571 = N)d(up, u))
< (2671 = N)ymy(u),

(3.11)

which yields ay € B(y — h(uy,), (2671 = XN)ymy(u)) C
V, and thus a; € T(u,) NV. Consequently, d(y —
h(up),ar) > d(y — h(uy), T(u,) N'V). So, d(y —
h(un), T(un)) > d(y — h(un), T (un) N V).

This giVGS d(y - h(un)a T(un)) = d(y -
h(uy), T(uy,) N'V) when n is sufficiently large.

Then from (3.10), we see that
0 < d(y = h(un), T(un) N V) = d(y — h(ug), T(un))

< K my(uy).

https://doi.org/10.52111/qnjs.2024.18306

Otherwise, by (3.8) and for n large enough, one also
have
d(y = M(un),y — h(u)) < Ad(un,u)
< A(up, ) + Md(z,u)
< Amyy(u)

< (2/(1 — Nmy(u)

which leads to y—h(u,) € B(y—h(u), Amy(u)) C V.

So, due to the Milyutin regularity* of T'on U x V

with constant x, one obtains
d(uanil(y = h(un))) < kd(y — h(un), T(un) NV)

We now choose z, € T~ (y—h(uy,)) (i-e., y—h(u,) €
T(z,)) such that

d(un, z,) < (5 +n"d(y = h(un), T(us) N V)
= (k+n"Yd(y — h(u,), T(u,)) (3.12)
< (k4R my(ug)
< my(uy,),

where the last inequality is obtained when n is large
enough. It follows that z, € U, and thus from the
Lipschitz property of h on U, we have

d(y — h(un),y — h(zn)) < Ad(un, 2n). (3.13)

Since apzurh(x) > 0, the closeness of T, and
lim,, 00 u,, = @, we have liminf, o d(uy,, z,) > 0.
From (3.12), (3.13), and note that y—h(u,) € T(2,),
similar as in the proof of Theorem 17, one concludes
that
| Fap5+h | () > hyrbn—ilip # -
=rT=\

The proof is completed.

4. CONCLUSIONS

This artical suggests the models of star regularity
on an any subset of product metric spaces as well
as established the equivalence of star regular con-
cepts: star openness, star metrically regular and star
pseudo-Lipschitz in the literature. Regarding the star
Milyutin regularity, we have proved that the stabil-
ity of Milyutin regularity under small Lipschitz per-
turbation also attains when the assumption of star
Milyutin regularity is imposed on the original set-

valued mapping.
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