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TÓM TẮT

Trong nghiên cứu này, Co3O4 dạng tinh thể có cấu trúc xốp được tổng hợp bằng cách nung ZIF-67 trong 
môi trường không khí. Đặc trưng vật liệu Co3O4 được nghiên cứu bằng XRD, BET, SEM và EDS. Điện cực biến 
tính Co3O4-GPE dùng phát hiện điện hóa acid ascorbic thể hiện khoảng tuyến tính từ 2 µM đến 15 µM với giới 
hạn phát hiện là 0,48 µM. Kết quả độ thu hồi dao động từ 97,82% đến 99,5% đối với acid ascorbic xác định trong 
viên thuốc thương mại.

Từ khoá: Co3O4, ZIF-67, acid ascorbic. 
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ABSTRACT

The Co3O4 porous crystalline material was synthesized by calcining ZIF-67 sample in air. The Co3O4 material 
was characterized by XRD, BET, SEM, and EDS. The electrode modified with Co3O4 was used to determine 
ascorbic acid. The proposed Co3O4-GPE electrode exhibited a linear range of 2 µM to 15 µM with a detection 
limit of 0.48 µM. Recovery results, ranging from 97.82% to 99.5%. for ascorbic acid in pharmaceutical tablet.

Keywords: Co3O4 , ZIF-67, ascorbic acid.
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1. INTRODUCTION

Ascorbic acid (AA), the common name 
for Vitamin C, is a common multivitamin 
component and occurs naturally in various 
foods.It is important for a healthy diet and acts as 
an antioxidant. However, an overdose of vitamin 
C can lead to side effects such as stomach upset, 
headache, difficulty sleeping, and skin flushing.1,2 
Therefore, the rapid and accurate determination 
of AA has attracted scientific attention.

Many analytical methods exist for 
determining ascorbic acid (AA), including 
techniques such as spectrofluorometry,3,4 

chromatography,5,6 spectrophotometry,7,8 

capillary zone electrophoresis,9,10 and 
electrochemistry.11,12 Among these, 
electrochemical methods employing modified 
electrodes have received considerable interest 
owing to their inherent simplicity, high 
sensitivity, and economic viability.

Cobalt oxide is a semiconductor with wide 
applications in many fields, including catalysis, 

electrode materials, gas sensing, and drug 
delivery.13-15 Numerous studies have explored 
the diverse applications of Co3O4; however, 
its potential use in electrode modification for 
pharmaceutical analysis remains relatively 
underexplored. To date, various porous 
nanostructures of Co3O4 have been synthesized, 
including spherical, tubular, rod-like, and 
flower-like morphologies. Most synthesis 
methods utilize cobalt carbonate or hydroxide 
salts as precursors, often yielding materials with 
relatively low surface areas.16,17

Recent, the application of metal-organic 
frameworks (MOFs; ZIFs) as precursors in the 
synthesis of inorganic materials is a growing area 
of research.18-25 Studies show that heat treatment 
of ZIF-67 can pyrolyze their ligands and lead 
to the formation of metal oxide nanoparticles. 
Therefore, the metal-centered organic framework 
material Co (ZIF-67) has appeared as a potential 
precursor to synthesize cobalt oxide (Co3O4) 
while still inheriting the structural characteristics 
of ZIF-67 and improving its catalytic activity. 
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In this work, an electrode modified with 
the Co3O4 porous crystalline material derived 
from ZIF-67 is investigated. The obtained 
electrode was used for the electrochemical 
determination of  AA.

2. EXPERIMENT

2.1. Chemicals

2-methylimidazol  (2-Hmim, 98%), ascorbic acid, 
graphite powder and parafin oil were received 
from Sigma Aldrich. Cobalt nitrate hexahydrate 
[Co(NO3)2·6H2O, 99%] was purchased from 
Macklin (China). Phosphoric acid (H3PO4, 
85%), potassium dihydrogen phosphate 
(KH2PO4, 99%), boric acid (H3BO3, 99%)   and 
potassium hydroxide (KOH)  were received from 
Guangdong-Guanghua Co. Ltd (China).

Vitamin C tablet (Vitamin C, 500 mg AA, 
from Pharimexco Viet Nam) was purchased from 
a local pharmacy. All chemical reagents were 
used as received without any further purification.

Britton-Robinson (B-R) buffer solutions 
were made using 0.5 M solutions of H3BO3, 
H3PO4, and CH3COOH. The pH of the B-R 
buffer was adjusted to the desired value with 1 M  
KOH or 1M H3PO4 solutions.

2.2. Apparatus

All electrochemical analyses, including cyclic 
voltammetry and square wave voltammetry, 
were conducted using a DY2322 potentiostat, 
Digi-Ivy, Inc. Austin. A standard three-electrode 
cell was employed, consisting of a working 
electrode (Co3O4-GPE or bare GPE, 0.07 cm²), 
a counter electrode (Pt wire), and a reference 
electrode (Ag/AgCl, KClsat).

2.3. Synthesis of Co3O4 porous crystalline 
material from ZIF-67

The synthesis of ZIF-67 was conducted 
according to a previously established  method.26 

1.455 g of Co(NO3)2·6H2O was 
dissolved in 50 mL of ethanol, and 1.64 g of 
2-methylimidazole (Hmim) was dissolved in 
50mL of ethanol, resulting in a Co2+: Hmim molar 

ratio of 1 : 4. The Hmim solution was slowly 
added to   Co(NO3)2 solution under continuous 
stirring for 30 minutes at room temperature. The 
obtained mixture was allowed to stand at room 
temperature for 6 hours without stirring, leading 
to the formation of a colloidal dispersion. The 
solid product was collected by centrifugation 
(4000 rpm, 30 minutes), washed three times with 
ethanol, and dried at 80 oC, 12 hours.

The Co3O4 was obtained by calcining ZIF-
67 in air at a heating rate of 1 °C·min−1.

2.4. Preparation of Co3O4-GPE modified 
electrode

To prepare the Co3O4-GPE modified electrode, 
40 mg of graphite powder and 5 mg of Co3O4 
powder were thoroughly mixed with 10 μL of 
paraffin oil. The resulting paste was then packed 
into a Teflon holder, and its surface was smoothed 
using paper. To renew the electrode surface, the 
outer 2 mm of paste was removed and replaced 
with freshly prepared paste.

2.5. Characterization of the Co3O4 porous 
crystalline material

A Bruker-Axs D8 diffractometer (40 kV, 40 mA) 
was used for powder XRD analysis. Textural 
properties were determined from nitrogen 
adsorption-desorption isotherms at -196 °C with 
a Micromeritics Gemini VII 2390 V1.02. Sample 
morphology was examined by scanning electron 
microscopy (JEOL JSM-6700F, 15 kV, 10 mA), 
and elemental composition was analyzed using 
EDS with a JSM-5700 LV.

3. RESULTS AND DISCUSSION

3.1. Characterization of the synthesized Co3O4 
material

The XRD diffraction pattern of Co3O4 sample 
are shown in Fig. 1. The X-ray diffraction 
pattern exhibited reflections at 2θ values of 
approximately 31.5°, 36.8°, 38.0°, 44.6°, 55.8°, 
59.4°, 65.3° and 77.5°, corresponding to the 
(220), (311), (222), (400), (422), (511), (440) 
and (533) crystalline planes of the Co3O4 cubic 
structure (JCPDS No. 04-043-1003)25.
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Figure 1. XRD pattern of the Co3O4 porous crystalline 
material.

The nitrogen adsorption-desorption 
isotherms were employed to characterize the 
specific surface area and pore morphology of the 
Co3O4 sample. As depicted in Figure 2, the sample 
presented a Type IV isotherm, accompanied by 
an H3 hysteresis loop, suggesting a mesoporous 
structure. The BET surface area was determined 
to be 30.43 m²/g, and the pore size distribution 
was at 3 nm.

Figure 2. Nitrogen adsorption−desorption isotherms 
(A) and pore size distribution (B) of the Co3O4 porous 
crystalline material.

Figure 3. SEM image of the Co3O4 porous crystalline 
material, Inset: SEM image of ZIF-67 material.

The SEM images of Co3O4 (Figure 3) 
revealed that the calcined particles retained a 
cubic morphology, consistent with the original 
ZIF-67 crystal template, characterized by an 
internal hollow structure and a surface exhibiting 
porosity. However, thermal treatment resulted 
in the observation of some collapsed hollow 
structures.

Figure 4. EDS spectra of the Co3O4 porous crystalline 
material.

The EDS analysis was conducted on 
the Co3O4 sample (Figure 4). Cobalt (Co) and 
oxygen (O) were confirmed to be present on 
the sample's surface based on the results. The 
elemental analysis of the Co3O4 yielded 41.62% 
cobalt and 58.38% oxygen.

A comprehensive morpho-structural 
analysis of the Co3O4 material, utilizing results 
of XRD, SEM, EDS and BET, validated the 
successful synthesis of the Co3O4 porous 
crystalline material.

3.2. Electrochemical characterization

The electrochemical behavior of ascorbic acid 
(AA) was investigated using cyclic voltammetry 
(CV) and square wave voltammetry (SWV). 

Figure 5. Cyclic voltammograms (A) and square 
wave voltammograms (B) at GPE and Co3O4-GPE 
modified electrode in 0.2 M B-R buffer solution  
pH = 4 containing of 10-4 M AA.
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	 A peak of AA at 0.08 V was observed in 
the CV and SWV curves obtained at both the 
bare GPE and the Co3O4-GPE, as illustrated 
in Figure 5. The Co3O4-GPE exhibited a lower 
peak potential and higher current. The oxidation 
peak current for AA at the Co3O4-GPE was 
approximately fifteen-fold greater than that 
observed at the bare GPE (Figure 5B) . 

The reaction mechanism of ascorbic acid 
onto the Co3O4 nanostructure takes place by the 
transfer of two electrons and protons, as shown 
in Figure 6, and it has been generally represented 
in the literature [27, 28].

Figure 6. The electro-oxidation reaction of ascorbic 
acid.

Co3O4 showed catalytic activity for ascorbic 
acid electro-oxidation due to its unique redox 
properties, containing both Co2+ and Co3+ states. 
The catalytic process involves an electrochemical 
mechanism: surface Co3+ is electrochemically 
oxidized to a highly reactive Co4+, which then 
chemically oxidizes ascorbic acid back to 
dehydroascorbic acid, regenerating Co3+. This 
continuous regeneration ensures sustained 
catalytic activity. The porosity of Co3O4 derived 
from ZIF-67 further enhances its electrocatalytic 
performance. Its porous structure provides a 
large surface area with numerous active sites and 
facilitates efficient mass transport. This structure 
also improves the electrode-electrolyte interface 
and prevents nanoparticle agglomeration, 
significantly increasing the overall reaction rate 
and electrode efficiency.29,30

3.3. The effect of pH

The square wave voltammetry (SWV) was 
employed to examine the impact of pH (within 
the range of 3 to 6) on the voltammetric signals 
of AA. The pH of the electrolyte significantly 
affects the AA oxidation on the modified 
electrode. Figure 7 displays the current responses 

recorded on the Co3O4-GPE under different pH 
conditions.

A substantial increase in peak current was 
observed as tacc increased from 0 to 90 seconds, 
suggesting a corresponding enhancement of AA 
accumulation at the electrode surface. Beyond 
90 seconds, however, the peak current exhibited 
negligible increase, indicative of the electrode 
surface approaching adsorption equilibrium. 
Based on this observation, 90 seconds was 
selected as the optimal tacc.

3.4. Accommulation

The effect of accumulation time (tacc) on electrode 
response was investigated across a range of 0 to 
150 seconds in a 0.2 M B-R buffer (pH 4) with 
10-4 M AA (Figure 8).

Figure 7. Square wave voltammograms of Co3O4-GPE 
in 0.2 M B–R buffer (pH 4) containing 10−4 M AA (A); 
Influence of pH on Ip (B); Plot of Ep vs. pH (C).

Figure 8. Dependence of Ip for AA in 0.2M B-R 
buffer solution pH 4 on accummulation time.
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3.5. Calibration

The calibration curves for the AA detection with 
varying concentrations of AA was constructed 
by recording SWV in 0.2 M B-R  buffer solution 
at pH = 4 (Figure 9A).  Accordingly, a calibration 
curve was shown in Figure 9B.  The electrode 
exhibited a linear response for AA concentrations 
between 2 µM and 15 µM.

Figure 9. Square wave voltammograms recorded at 
Co3O4-GPE increasing concentration of AA (A) and 
the corresponding calibration curve (B).

Electrode Method
Detection 
limit, µM

References

CL-TiN/GCE DPV 1.52 31

NiCoO2/C Amperometry 0.5 32

AgNP-Psi Amperometry 0.83 33

GO-XDA-
Mn2O3

DPV 0.6 34

rGO/Au/GCE DPV 0.51 35

Co3O4-GPE SWV 0.48 This work

For ascorbic acid (AA) detection, the Co3O4-
GPE electrode exhibited a 0.48 µM detection 
limit and a sensitivity of 1.19, which are lower 
compared to some published results (Table 1).

The continuous regeneration of the Co2+/Co3+ 
redox couple in the investigated electrode 
increases the reaction rate, leading a larger 
current signal due to enhanced electron transfer. 
The resulting improved signal directly increases 
the electrode's sensitivity, allowing for the 
detection of even minor changes in analyte 
concentration. Consequently, the limit of 
detection (LOD) decreases, as a superior signal-
to-noise ratio facilitates the reliable detection of 
very low analyte concentrations.

Table 1. Summary of electrode performance in this 
work and literature.

Ipa/μA = (-3.56335 ± 0.19192) + (1.19706 ± 
0.02218) [AA]/μM, (R = 0.99726)

The  resulting linear regression equation was:

3.6. Long-term stability and reproducibility

To assess the long-term stability, the electrode 
was stored at 4 °C in a refrigerator for 7 days, 
and the peak oxidation currents of 5µM AA 
in a 0.2 M B-R buffer solution were recorded. 
Measurements were conducted at various times. 
After 7 days of storage, the peak oxidation 
current of 5µM AA at the modified electrode 
retained 97.1% of its initial activity.

The reproducibility of the electrode's 
performance was determined. Three Co3O4-
GPE electrodes were prepared independently 
following the same method. The measurements 
of their peak oxidation currents at 5µM AA 
showed consistent results, with a low RSD of 
4.93%. This demonstrates that the Co3O4-GPE 
electrode has good reproducibility.

4. REAL SAMPLE ANALYSIS

The Co3O4-GPE electrode was used to analyze 
AA in Vitamin C tablets (Pharimexco Viet Nam) 
via the standard addition method to assess its 
applicability. Table 2 summarizes the results, 
confirming the electrode's effectiveness for AA 
determination in pharmaceuticals The measured 
mean AA concentration demonstrated agreement 
with the labeled value, and recovery rates ranged 
from 97.82% to 99.5%.
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Table 2. Results from the analysis of AA in a 
real Vitamin C tablet sample.

Sample
Added 
(µM)

Found 
(µM)

Recovery 
(%)

RSD 
(%)

Vitamin C  
(500 mg)

3
2.96 ± 
0.02

98.66 ± 
0.84

0.85

5. CONCLUSION

The synthesis of Co3O4 porous crystalline 
material was performed using the ZIF-67 material 
as a precursor. The resulting Co3O4 possesses an 
internal hollow structure and a surface exhibiting 
porosity. The modified electrode developed with 
Co3O4 porous crystalline material offers high 
sensitivity and a low detection limit, making 
it promising for AA detection. It has also been 
successfully used to determine AA in real 
samples.
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