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TOM TAT

Trong bai bdo nay, ching toi nghién cttu mot bat ding thiic kiéu Morrey cho cac ham Sobolev ¢6 gia tri
trung binh bang 0. Hang sé duge dan ra & trong bai bdo nay 1a tot hon so v6i hang s hién c6 trong mot sé
tai lieu. Sau d6, ching t6i nghién ctiu sau hon vé mot ing dung clia bat déng thitc kiéu Morrey nay doi véi

sy hoi ty yéu ciia diy nghiém clia phiong trinh p-Laplace véi diéu kién bién Neumann khi p — oc.
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ABSTRACT

In the present article, we study a Morrey-type inequality for Sobolev functions of mean value zero. The

constant in our paper is smaller than the existing one in the literature. Then we study further an application

of the Morrey-type inequality for the weak convergence of solutions to p-Laplace equations with a Neumann

boundary condition as p — oo.
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1. INTRODUCTION

Let © be a bounded, smooth domain of R™. This
paper is concerned with a Morrey-type inequality
for Sobolev functions of mean value zero in Sobolev
space WLP(Q). As usual, Sobolev spaces consist
of LP functions whose weak derivatives belong to
Lebesgue spaces LP. These spaces provide one of the
most useful settings for the analysis of partial dif-
ferential equations. It is known that Sobolev spaces
equipped with the norm

lullwre@) = lullp, + 1Vl

are Banach spaces, where [|F||, := ([, |F|pdm)1/p.
For more details on Lebesgue and Sobolev spaces,
we refer to the books. ™

The well-known Morrey inequality in R™ (see,
for example, 1'3:5:6) states that if p > n then for all

v € WELP(R") and all z,y € R"
1
— P
0(0) = 0] < Tl == ([ vopar)”.
]R'n,

B (1)
where C,, is a positive constant depending only on
p and n.

Now, let dg denote the distance function to the
boundary 912, that is

da(z) :== yg%)fg |z —y|, v €Q.
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Taking an arbitrary y € 9 in (1) one arrives at
the following pointwise inequality, for all (z,v) €
Q x Wy P(Q),

v(2)] < Cpon (da(@) 7 |Voll,,  (2)

where ||-||, stands for the standard norm of LP(£2).
Passing to the maximum value in the left-hand side
of (2) we arrive at the well-known Morrey-Sobolev
inequality

Iolloo < CpnallVollp, Yo € WyP(Q),  (3)

where the constant Up,,m depends only on p,n
and 2. The above inequality is devoted to Sobolev
functions vanishing on the boundary and useful for
studying partial differential equations involving a
Dirichlet boundary condition. The counterpart for
the Morrey-Sobolev inequality (3) for Sobolev func-
tions of mean value zero can be written as

||U||oo < Cp,n,Q”vunpa (4)

for all Sobolev function u € W1?(Q) of mean value

zero, that is, it satisfies [udz = 0.
Q
In7, the authors make use of this inequality (for

a smooth and convex domain ) in studying lim-
its as p — oo of solutions to p-Laplace equations
coupled with a Neumann boundary condition.
Such a constant Cj, ,, o has been implicitly men-
tioned in® and explicitly given in® Lemma B.1.16
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(see also”). Finding a smaller constant for the
Morrey-type inequality (4) is an interesting issue.

In this short paper, we provide a better estimate
for the Morrey-type inequality (4) compared with
the constant given in® Lemma B.1.16. Furthermore,
its application in studying the weak convergence of
solutions to p-Laplace equations with a Neumann
boundary condition as p — oo is also considered in
detail.

The article is organized as follows. In section 2,
we give a new constant C' of the Morrey-type in-
equality (4) for Sobolev functions of mean value
zero. Then, in section 3, we derive the key bound
of the gradients of solutions to p-Laplace equations
coupled with a Neumann boundary condition. As
a consequence, we obtain the weak convergence of
solutions in Sobolev spaces as p — oc.

2. MORREY-TYPE INEQUALITY
FOR SOBOLEV FUNCTIONS OF
MEAN VALUE ZERO

Theorem 1. Let §) be a Lipschitz and convex do-
main of R™ and p > n. Then every Sobolev function
u € WHP() of mean value zero, i.e. [,udzr =0,
obeys the following inequality

dn+1—n/p .y p—1 1-1/p
wllroo < - WP = \% s
HUHL = |Q|(n+1—n/p)wn p—n ” 'U,”Lp
(5)
o n/2 |
where w, = lf("’n/;> is the surface area of the

unit sphere in R™, T' is the gamma function, |Q|
is Lebesgue measure of  and d = diam(Q) is the

diameter of 2.
Proof. Set

m+1—n 1-1/p
qnti-n/p w}f”p p—1 -
n+1l—n/p p—n

We divide the proof into three steps.

C(d,n,p) =

Step 1. Fix any 2 € R™. Let us prove that for any
R™-valued measurable function W € L*(R";R"),
we have for all p > n

1»

/ [W (z+t2)||z|dtdz < C(d,n, D)W || Lo (B(e,a))+
B(0,d) 0

(6)

where B(y,d) is the Euclidean ball of radius d and

center y in R™. To this aim, we make use of the
change of variables in polar coordinates by the bi-

jection @ : B(0,d)\ {0} — (0,d] x 9B(0, 1) defined

as ®(2) := (r,2) = <|z|7 |—§|) More precisely, one

has

g(rz,)dS(zl)dr. (7)

aB(0,1)

/> g(2)dz = O/d,.n—l

B(0,d

-

JIW (2 + tz)|]z|dt

Now applying (7) with g(z) :=

(=]

on B(0,d) for the second line below, and g(z) :=
[W(z + 2)||2]'=™ on B(0,r) for the fifth, we arrive

the following estimate

1
/ |[W (x4 tz)||z|dtdz
B(0.d) 0
1
= /r"”l / /|W(z+trz/)|rdtdS(zl)dr

0 9B(0,1) 0
d T
= /r"_l W (z+ TZ’)'deS(Z/)d’I’ (set T =rt)
0 9B(0,1) 0
d T
= /r"fl/Tnfl |W(Z+TZ/)|T17ndS(Z/)de’I‘
0 0 8B(0,1)
:/7’"‘1 / W (x + 2)||z|" " dzdr
0 B(0,r)
d 1/p 1/q
< /7‘"_1 W (z + 2)|Pdz |z\q<l_")dz dr.
0 B(0,r) B(0,r)

(3)

Here, for the last line, we used Holder’s inequality

with ¢ = ;_Ll.

By r < d, observe that
1/p

/ Wz + 2)Pd

B(0,r)

< AW lee(B(w.a)-

On the other hand, using again (7) with g(z) =

|2]90=7) we can compute explicitly

T

/ |Z|q(1—'rL)dZZ/Tn—1

T‘”l_")dS(zl)dT

B(0,r) 0 9B(0,1)
T
1—n
=wy, [ TP-rdr
0
Wy, lon_q p—1 p-n
=1 rr-1 = Wn re-
E +1 p—n
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It follows that
1

/ |W (z + tz)||z|dtdz

B(0,d) 0

d
1/4q
p—1 B p=n\1/q
S NWlLr(B(a.d) (wnL) /r" ! ('r P*l) dr
p—n
)
d
1/4q
- 1) /r"fn/pdr
—n
)

1 1-1/p dn+17n/p
n+1l-—n/p

= W llzo 5oy (wn®
p

p—n

Step 2. We are now in a position to show the as-
sertion of Theorem 1 for the case of smooth function
u. In this case, set

= [|WllLr (B(z.d)) (wn P

Vu(z) ifzef
W(x) :=
@:=10 if € R™\ Q.
Since [, u(y)dy = 0, we get for any z € 2

u(x) u(x ))dy
— 19l /

:ﬁ/glz/o (Vu(z +t(y — x)),z — y))dtdy

1 1
<L / / Vu(z + ty — o))l — yldidy
Q' QJ0
1
< / /|W<x+t<y—x>>||x—y|dtdy
B(z,d) 0

1 1
:ﬁ/B(o d)/o W (z + t2)||z|dtdz.

Following Step 1, we obtain
C(d,n,p)
lu(z)| < — 57—

€2

C(d,n
— LD [l

IWlLe(B(o.ay)

which completes the proof for smooth functions.
Step 3. For the general case, we make use a smooth
approximation. Fix any u € WYP(Q) satisfying
fQ udz = 0. Then there exists a sequence of smooth
functions u. of mean value zero such that u. con-
verges to u strongly in L™(Q) (1 < m < oo) and
u. converges to u strongly in W1?(Q) as ¢ — 0.
Passing to the limit as € — 0, from the inequality

luellLm )y < Q= |lucll L ()

1 C(d,n,p)
< |Q|m ——7
< 10F S [Vl
we obtain
(d n,p)

el o 2y < 197 == il IVl ooy -

Letting m — oo we arrive to

C(d,n,p)
o < _— 7
[[ullz Q) = Q]

which completes the proof. O

||VU||LP(Q) )
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Remark 2. The above Morrey-type inequality is in-
spired by the estimate (B.1.3) of® p. 556 for smooth
functions of mean value zero. However, it is worth
noting that the inequality given in Theorem 1 is a
little bit sharper than the one in® p. 556, where the
constant is explicitly stated by

3. APPLICATIONS

Give a Liypschitz and convex domain  of R", we
consider limits as p — oo of solutions u, to the p-
Laplace problems coupled with a Neumann bound-
ary condition

—div (|Vu(z)[P~2Vu(z)) = f(z) inQ

,0u ©)
[Vu(x)|P~ 8_7] =0 on Of).

For a fixed p > n, the equation (9) has unique so-
lution u, of mean value zero, that is [ w,dz = 0.
This is a standard result in the field ofs'zcalculus of
variations and partial differential equations. In fact,
consider the variational problem

p
min {/ [Vul? dr — / uf dm}, (10)
ueSy Q p Q

where S, 1= {u e Whr(Q): /
Q
functional in (10) is lower semi-continuous, coercive

udxr = 0}. The cost

and strictly convex on the non-empty convex set
Sp. Therefore, there exists a unique minimizer w,
o (10), which is also a weak solution of problem
(9), that is, it verifies

/ |V, [P~ Vu,.Vodr = / fodz, Vo € C=(Q).
Q Q (11)

In this section, we are interested in studying the be-
havior of solutions u, as p — co. More precisely, we
will show that the sequence {u,} converges weakly
in Sobolev spaces to a 1-Lipschitz function us, as
p — 0.

3.1. Bound of the gradients

Our aim is to prove that the LP-norm of the gra-
dients Vu,, is bounded independently of all p > n+-1.

Lemma 3. Let u, be a unique solution to (9) with
fsz updx = 0. Then there ewists a positive constant
C independent of p > n + 1 such that

V|l (o) < C5 1 forall p>n+1. (12)
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Proof. As a consequence of Theorem 1, there exists
a positive constant Cq independent of p > n + 1
such that

lullze o) < Co IVl e (13)
for all p > n + 1 and all Sobolev functions u €

WHP(Q) of mean value zero, ie., [oudz = 0. In
particular, applying for u = u, we get

upllz= (@) < CallVup| e, for all p = n+ 1.
(14)
On the other hand, using (11) with ¢ = u,, Holder’s

inequality and (14), we obtain

/Q IVl de = /Q Fuy dz < Loy oo

< CallfllLv@) | Vupl L) -
It follows that

(IVup |l ey < C7 for all p>n+1,

with C' := Cqllfll11(q) being independent of all
p>n+1. (|
3.2. Weak convergence

As a consequence of the previous bound of the
gradients, we obtain uniform convergence of u, and
weak convergence of the gradients Vu,,.
Proposition 4. Let u, be a unique solution to
(9) with fQ updr = 0. Then, up to a subsequence,
u, converges uniformly on Q to a limit function
Uoo € WEX(Q) and Vu, — Vue, weakly in L™ ()
as p — oo for any 1 < m < oo. Moreover, the limit
function uso is 1-Lipschitz, that is,
|[Vus(z)] <1 for a.e. in Q.
Proof. Fix any m > n. Let p* = L Using Holder’s
m

1 1
inequality with p* and ¢* satisfying — +— =1 and
p q

Lemma 3, we obtain

IVl ( / |Vup|mdw)
1 i
< (/ |Vup|mp*dl') </ d;n)
Q Q

= [ Vupll oo Q177
<o
(15)
for all p > max{n + 1,m}, where C is a con-
stant independent of p from Lemma 3. Observe that
|Q
quence of gradients Vu, is bounded in L™(Q2) and

11 1 L
m (-1 — |Qm as p — oo. Hence, the se-

so is {up} in W™ (Q) (u, is of mean value zero).

Therefore, up to a subsequence, u, converges uni-
formly on Q to a limit function u and Vu, = Vi
weakly in L™() as p — oo. Obviously, the weak
convergence of Vu, also holds true in L™ () for
any 1 < m < n. Finally, taking the limit as p — oo

in (15), we arrive to

| Vttoo|| L) < |97 (16)

Letting m — oo we obtain ||Vu30||L>o(“) <1, which
completes the proof.
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