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TOM TAT

Trong bai bio nay, chiing t6i nghién ctru tinh én dinh va én dinh hoa ciia cac hé tuyén tinh timg phan hai mé hinh cé
tr& thoi gian bing cach st dung cac phiém ham Lyapunov-Krasovskii tron. Nhitng déng gép méi ciia bai béao bao gdbm: (1)
thiét 1ap mot tiéu chuén én dinh méi dua trén phiém ham Lyapunov-Krasovskii tron dé dam bao tinh dn dinh tiém cén cua
hé diéu khién trong truong hop khong co diéu khién dau vao va (2) dé xuit mot didu kién du cho sy tén tai mot diéu khién
nguoc tuyén tinh trang thai dé bn dinh tiém can hé théng khi c6 diéu khién ddu vao. Cudi cung, mot s6 vi du sb duoc chon

loc dé minh hoa cho tinh hiéu qué ciia phuong phap da dé xuit.

T khéa: Hé tuyén tinh timg phan cé té thoi gian, phiém ham Lyapunov-Krasovskii bdc hai timg phan, én dinh héa hé

hai mé hinh.

*Tac gia lién hé chinh.
Email: lequangthuan@gnu.edu.vn

https://doi.org/10.52111/qnjs.2025.19102
Tap chi Khoa hoc Truong Pai hoc Quy Nhon, 2025, 19(1), 17-27 | 17



QUY NHON UNIVERSITY

I SCIENCE

New stabilization criteria for time-delayed
bimodal piecewise linear systems

Nguyen Hoang Tuong Vy', Le Quang Thuan®*

Lnformation Technology Division, FPT University, Quy Nhon Campus, Vietnam

2Department of Mathematics and Statistics, Quy Nhon University, Vietnam

Received: 24/07/2024; Revised: 31/10/2024;
Accepted: 04/11/2024; Pubished: 28/02/2025;

ABSTRACT

In this paper, we study the stability and stabilization of time-delayed bimodal piecewise linear systems via smooth

Lyapunov-Krasovskii functionals. The main contributions of the paper are twofold: (1) a new stability criterion based on

the proposed smooth Lyapunov-Krasovskii functional is derived to guarantee asymptotic stability in the case of zero inputs

and (2) an interesting condition is proposed to design linear state feedback controllers to stabilize the system which is less

conservative than those previously reported in the literature. Finally, some numerical examples illustrate the effectiveness

of proposed methods.

Keywords: Time-delayed piecewise linear systems, piecewise quadratic Lyapunov-Krasovskii functionals, bimodal system

stabilization.

1. INTRODUCTION

In recent decades, piecewise affine (PWA) systems
have received much attention in the field of system
and control theory. Each PWA system can be seen
as a switching one that is characterized by a finite
collection of affine time-invariant dynamics together
with a state-dependent switching law that is ruled by
a polyhedral partition of the state space.! PWA sys-
tems also form an important subclass of hybrid sys-
tems and they can be found in several engineering ap-
plications: power converters, robotics, relay control
systems, etc. PWA systems are also interesting mod-
els to be used for approximating complex nonlinear
dynamics. Analysis and design of PWA systems are
therefore important as a first step to establish hybrid
control theory.

Among the fundamental problems of system the-
ory, the issues concerning stability and stabilization
of PWA systems have been intensively studied for
both cases: without and with time delays. For the first
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case, these problems are well-studied such as for gen-
eral vector fields in the papers, >3 and for continuous
ones in the papers.*°® With the appearance of time
delays, there have been also existed many works de-
veloped over the past years, for instance, in the pa-
pers.”® In the paper,’ the authors investigated a class
of piecewise time-delayed systems by using piece-
wise quadratic functions to derive stability criteria in
term of LMIs and matrix equations. However, with
these employed results, one can not solve the issue of
state feedback controllers design to stabilize the sys-
tems. The paper® has proposed a method to design
a piecewise linear state feedback controller to make
the closed-loop system asymptotically stable. In this
research direction, there are some restrictions. The
first one is that from the LMIs combined with matrix
equations that guarantees the continuity of Lyapunov
functions for stability it is difficult to develop results
about feedback controller designs. The second one
is that the system under consideration requires non-
Zeno behaviors. Note that the non-Zeno property has
been established for continuous piecewise affine sys-
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tems without time-delays in the papers.®~'! However,
one can not obtain similar results for the case of time-
delayed PWA systems. Therefore, checking for non-
Zenoness of time-delayed PWA systems becomes an
impossible task.

Motivated by the above mentioned challenges,
we study the stabilization of time-delayed bimodal
piecewise linear systems in this paper. Our approach
also uses piecewise quadratic Lyapunov-Krasovskii
functionals. However, the functionals are developed
such that asymptotic stability works for more general
solution concepts, i.e., Carathéodory solutions, and
the obtained LMIs can be employed to design a linear
state feedback controller to stabilize the system. The
main contributions are that by employing the special
structure of such a functional, stability criteria will be
derived for continuous bimodal time-delayed piece-
wise linear systems. Moreover, the derived LMIs can
be employed to design a linear state feedback con-
troller preserving continuity and stabilizing the sys-
tem. It is worth to mention that there are only a few
papers studying the stabilization of PWA systems by
linear state feedback controllers taking quadratic Lya-
punov function.* Finally, our approach is therefore
hopefully generalize for more general multi-modal
piecewise affine systems.

The rest of this paper is organized as follows. Sec-
tion 2 introduces notations and preliminaries. In Sec-
tion 3, we introduce time-delayed bimodal piecewise
linear systems and present related preliminaries. This
will be followed by stating and proving the main re-
sults of stability issue and stabilization of continuous
time-delayed PWL systems in Section 4. The pro-
posed theoretical results are validated by numerical
examples in Section 5, before concluding the paper
in Section 6.

2. NOTATIONS AND PRELIMINARIES

Denoted by R the set of all real numbers, R the set
of all non-negative real numbers, and R"} the set of
all n-tuple non-negative real numbers. The notation
R™ ™ denotes the set of all real n x m matrices and
the transpose of a real matrix M € R™*™ is denoted
by MT. The notation He(M) stands for the matrix
M + MT. A symmetric matrix Q € R™*" is said to
be positive definite, writing Q > 0, if 27 Qx > 0 for
all non-zero x € R™. We write Q@ < 0 if —Q > 0.
For a positive definite matrix (), the notation A(Q)
stands for its the maximum eigenvalue. For 7 > 0,

C([—,0],R™) denotes the normed space of continu-
ous functions from [—7, 0] to R™ endowed with the
norm

I¢llc = max{p(s) | s € [-7,0]}.
Also, C!([—7,0],R") denotes the space of continu-
ously differentiable functions from [—7, 0] to R™.

Next, we introduce the following auxiliary re-
sults.
Lemma 2.1. Let Py, P, € R"™*"™ be symmetric ma-
trices. The piecewise quadratic function

Fla) = {wTPlx ichw <0,
2T Pyx g'ch:U >0
is
a) continuous if and only if there exist h € R such

that
Py = Py + hel + ch?. (1)

b) continuously differentiable if and only if there exist
v € R such that

Py =P, + el 2)

Proof. a) On the one hand, the function F' is contin-
uous if and only if the following implication holds

r=0= 27(P, - P)x=0.

On the other hand, this implication is equivalent to
the existence of & € R™ such that

2T(Py — Pz =2(cTz)(hT )
=27 (he” + ch Tz

forall z € R™, ie, P, — Py = he? + ¢hT. There-
fore, F' is continuous if and only if (1) holds for some
h € R™.

b) It can be seen that F' continuously differentiable if
and only if

e =0 = Pux=Pu. (3)

Thus, it suffices to show the equivalence between (3)
and (2). The implication ”(2) = (3)” is obvious. To
prove its converse, the condition (3) implies the exis-
tence of p € R™ such that

P1 - P2 = pCT.
Then, due to the symmetry of P, P, we further get
pcl = ¢p” and hence

epDe  e(pTe Te
(cpT)e _clp'c) pc
cT'c cTe cTcC =e

T

c
wherevszeR. O

cl'e
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Lemma 2.2. For any vectors x,y € R™ and positive
definite matrix P € R"*"™, one has

20Ty < 2T Px +yT P~ Yy,

Lemma 2.3. Let X, Y € R™*". Let F € R"™*"™ be
a symmetric positive definite matrix. Then, one has

XTFYy + YTFX <AXTFX +4 YTFY
forany v > 0.

Proof. 1t follows from the fact that

T
(ﬁX - \/TlY) F (ﬁX - \/TlY) >0,
due to the positive definite property of matrix '. [

The last lemma is well-known in the field of lin-
ear control theory called S-lemma that provides a
characterization of symmetric positive definite ma-
trices using Schur complements.

Lemma 2.4 2, Let Q € R™*™ R € RF*F S ¢
R™*k The following statements are equivalent.

Q S

o) lgr g

> 0;

b) R>0andQ — SR™'ST > 0;
¢) @Q>0and R— STQ~1S > 0.

3. TIME-DELAYED BIMODAL PIECEWISE
LINEAR SYSTEMS

Consider the time-delayed bimodal piecewise linear
systems with inputs

Arx(t) + Agz(t — 7) + Bu(t)
a(t) = if Tz (t) <0, (4a)
Az (t) + Agx(t — 7) + Bul(t)
ifcl'x(t) >0,

x(s) = ¢(s),s € [-1,0] (4b)

where = € R" is the state and (¢) denotes its deriva-
tive with respect to time ¢, v € R™ is the input,
the positive number 7 is the time delay, the matri-
ces Ay, Ay, Ay € R™" B € R"™™ and ¢ € R"™ are
given. The initial function ¢(s) is in C([—7, 0], R™).
For this work, the right-hand side of (4a) is assumed
to be continuous; equivalently, there exists e € R”
such that

Ay — Ay =ecl. 5)

https://doi.org/10.52111/qnjs.2025.19102

Definition 3.1. Consider the system (4) for a given
continuous input v € C(R4,R™). A continuous
function x : [—7, 00) — R™ is said to be a solution of
system (4) for the initial function ¢ € C([—7, 0], R™)
if z(s) = ¢(s),Vs € [-7,0], z is differentiable on
(0, 00) and satisfies (4a) for all ¢t > 0.

Note that the existence and uniqueness of such a
solution follow from the theory of non-homogeneous
ordinary differential equations with continuous right-
hand-sides. The corresponding solution is denoted by
x"(t; ). In the case that u(t) = 0, it is simply de-
noted by z(t; ¢).

Remark 3.1. For 7 = 0, the system (4) boils down to
bimodal PWA systems that is the main object studied
in the paper* for stability and stabilization.

Definition 3.2. We consider the system (4) without
inputs, i.e., u(t) = 0. The system (4) is said to be

a) stable if for any € > 0, there exists § > 0 such
that ||ollc <0 = |lz(t)|| < eVt = 0.

b) asymptotically stable if it is stable and there is
a positive number §; such that

lelle <8 = lim [lz(6)] = 0.

To study the stability of system (4), we will em-
ploy continuous functionals as follows.

Definition 3.3. A continuous function w : R® — R
is said to be positive definite if w(0) = 0 and w(z) >
0 for all z € R™.

Definition 3.4. We say that a continuous functional
V. : C([-7,0,R") — R is positive definite if
V(0) = 0 and there exists a positive-definite function
w : R™ — R such that w(¢(0)) < V(¢) forall ¢ €
C([-r,0],R™).

The following proposition yields a sufficient con-
dition to ensure the asymptotic stability of system (4).

Proposition 3.2 ‘'3, Consider the system (4) with-
out inputs. The system (4) is asymptotically stable
if there exist a positive-definite functional V'(¢) and
a positive-definite function w(x) such that the value
of the functional along any selections z; of solution
x(t) of the system is differentiable by ¢, and its time
derivative satisfies the inequality

dt

where z4(s) := x(t + s),s € [-7,0].

—w(x(t)) forall t > 0,
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4. MAIN RESULTS

In this section, we will provide a novel method to de-
sign state feedback controllers for stabilizing system
(4). To do so, a suitable class of smooth Lyapunov-
Krasovskii functionals (LKF) is first introduced and
discussed. By employing the proposed LKFs, a new
criterion on asymptotic stability is derived only in
term of linear matrix inequalities (LMIs). Then, these
LMIs are used to design a linear state feedback con-
troller to stabilize the system.

4.1. Lyapunov-Krasovskii functionals

In the literature of time-delayed piecewise affine sys-
tems, piecewise quadratic LKFs have been often used
to study the stability of systems.®® Such a functional
is basically composed from two parts: a piecewise
quadratic Lyapunov function and an integral func-
tional defined on the space C*([—7,0],R"), with 7

is the delay, as
V() = Vi((0)) + Va(p), ¥y € C'([~7,0, R"),
(6)
where the functional V5 : C!([-7,0],R") — R, is
defined as

/ / s)dsdn,

for some positive definite matrices @, R and the
quadratic piecewise Lyapunov function V; : R" —
R, is defined corresponding with a given polyhe-
dral subdivision {X;}%_, of R"; that is, Vi (z) =
2T Pz whenever z € X;. The matrices P; are often
chosen in such a way that V; is positive definite and
it is continuous across region boundaries®®. In our
point of view, the restriction when one uses this kind
of Lyapunov functions is that the stability of solutions
only can be applied for the systems whose trajectories
do not have Zeno property. To our best of knowledge,
checking for non-Zeno property of time-delayed bi-
modal pieceiwse linear systems is impossible since
there is no available paper about the non-Zenoness
of time-delayed piecewise linear systems. Therefore,
in this work, we develop Lyapunov-Krasovskii func-
tionals in two aspects: requirements that 1} is con-
tinuously differentiable and relaxation on the integral
functional that it has more general form of piecewise
quadratic one. It turns out that such requirements im-
pose certain relations on the involved matrices in the
literature of bimodal piecewise linear systems.

4.2. Stability analysis

By employing the proposed smooth piecewise
quadratic LKFs, we now establish a novel stability
criterion presented in term of linear matrix inequali-
ties.

Theorem 4.1. For system (4), suppose that there ex-
ist the symmetric positive definite matrices P,Q, R €
R™™ and h € R", v € R such that the following
statements hold

P+ et >0,Q+ hel +ch” >0, (7a)

2rA2TRA%Z - Q <0, (7b)
21 AZTRAZ — (he” + ch” + Q) <0
(I)l TP
<0, 7
TP —7TR (7¢)
P P T
A ] I O
T(P 4 yec') —-TR

where ®1 = He(P(A1+A44))+Q+27AT ATRA A
and ®; = He{(P + vec')(Ay + Ag)} + Q +
He(hel) + 27 AT AT RA Ao. Then, the system (4) is
asymptotically stable.

Proof. Let us consider the piecewise quadratic
Lyapunov-Krasovskii functional

V:CY[-7,0,R") = R
defined by

V(p) = Vi(»(0)) + Va(e),
where

TP zifclz 0,
Vi(z) = -

2T Pyzif e’z ,

with P, = P, P, = P + ~vcc! and

0
Va(p) = / F(p(s))ds

0 ;0
—I-/ 90
—Jy

(s) AT RA4p(s)dsdn.

where
T e T
2t Qizifct 2 <0,
F(z) = T o T
2t Qozifct 2z 2 0,
with Q1 = Q, Q2 = Q+ hc! +ch™ . Due to (7a) and

Lemma 2.1, V5 is continuous and positive. Thus, one

has
0

V(g) = Va(p(0)) + / Flp(s))ds

—T

https://doi.org/10.52111/qnjs.2025.19102
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0 0
+ / / o1 (s) AL RA4p(s)dsdn
Y

—T

> Vi(p(0)),Vp € C'(|-7, 0], R").
This inequality shows that the functional V" is positive
definite on C'([—7,0],R™).

For any initial function ¢ € C([—7,0],R"), let
x(t; ) be the corresponding trajectory of system (4)
and define x(s) = x(t + s;¢),s € [—7,0]. Then,
x; € CY([—7,0],R") for each t > 7 and by simple
transformations we get

Vi) = Vile(to) + [ Flalsso)ds
[ e iy

for all t >
can verify that

7. Using Newton-Leibnitz formula, one

i) = GGt~ Aa [ ilsods, ©

where

Observe that by Lemma 2.1 and due to (7a), V; is
continuously differentiable with respect to z. On the
other hand, z(t) := z(t; ¢) is continuously differen-
tiable with respect to ¢. Therefore, V'(x;) is continu-
ously differentiable as a function of variable ¢ defined
on |7, 00) and its derivative is computed as

Vi) = 5 v +

S L

For the first term on the right-hand side of (9), by
taking the derivative and employing (8), one gets

o) = (52.0)

= ()T Pi(t) + 2T (t) Pii(t)

t—7

s)ATRA 2:(s )dsdn}. 9)

t

= 22T (t)Pi(A; + Ag)x(t) — QxT(t)RAd/ z(s)ds.

t—1
On the other hand, due to Lemma 2.2, we can estimate
the following term

t
—2]}T(t)PiAd/ z(s)ds
t—1
t
_ / 22T () P Agi(s)ds
t—7

https://doi.org/10.52111/qnjs.2025.19102
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¢
< 72T () PRI Pix(t) +/ i (s) AT RAqi(s)ds
t—T1

2T () {(Ai + A)T P, + Pi(A; + Ag)

+ 7P R'P}a(t) + /t T (s)AY RAi(s)ds.
o (10)
For the second term on the right-hand side of (9), we
have
d t

a ), F(x(s))ds = F(x(t)) — F(a(t — 7))

= 2" (1)Qix(t) — 2" (t — 7)Qu(t — 1) (11)

forsome i, j € {1,2}. For the third term on the right-
hand side of (9), we note that

il L
B /_T{dt /tt T(s) A7 RAqi(s)d }dn

_ / YT () AT R A (1)

-7

(s) AT RAqi(s)dsdn

0
_ / (¢ + ) AT RAgi(t + n)dn

-7

t
— T () AT RAZ(t) — / i (5) AT RAgi(s)ds
t—T1

and

T (t) AT RA (1)
= (Ajz(t) + Agz(t — 7)TATR
X Ag(Ax(t) + Agz(t — 1))
= 2T (t)AT ATRAG Az (t)
+ 2l (t — 1) AT RAZ2(t — 1)
2T () AT ATRA Aq(t — 1)
+ 2T (t — 1) ATATRA A (t)
< 22T () AT ATRA A x(t) + 227 (t — 7)
x AXTRA%x(t — 1)
where the last inequality is due to Lemma 2.2. There-
fore, one obtains

il L

<212l (1) AT AT RAG A (t) + 27T (t — 1) A2T

s)AT RAi(s)dsdn

t
x RA%x(t — 1) — / i (s) AT RAqi(s)ds
Jt—T1
(12)
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A combination of (10), (11) and (12) yields

x(t)
x(t—7)
where Hgg = -Q; + 2TA§TRA3 and
IIY, = He(P(A + Ag) + TPR'P +
Qi + 2TAiTAdTRAdAi. By Schur complement

(Lemma 2.4) and the assumptions (7b)-(7d), we fur-
ther obtain

Tr .
I, 0

d x(t)
0 It

%V(%) s x(t—7)

w(z) = 2" max{-A(Il};), —A(ITf) }.

This fact together with Proposition 3.2 yields the
asymptotic stability of system (4). O

4.3. Linear state feedback stabilization

An interesting application of stability conditions de-
rived in Theorem 4.1 is that they can be employed to
design a linear state feedback controller

u(t) = Kz(t) (13)

that makes the following closed-loop system is
asymptotically stable

(A1 + BK)x(t) + Agz(t — 1),
i) = ifc’x(t) <0 (14a)
(Ao + BK)x(t) + Agx(t — 1),
ichx(t) >0

x(s) = p(s),s € [-1,0]. (14b)

Theorem 4.2. Consider the system (4). Suppose
that there exist symmetric positive definite matrices
P,Q,R € R™™ g matrix U € R™ " and scalars
v > 0,1 > 0 such that

-yR  R?

2 _ap <0 (15)

and the following statements hold
-Q Pc

4 <0, 16
R (16a)

—Q \/iTﬁ)A?iT Pe
V2rA2P 1R 0| <0, (16b)
P 0 —

W, V2rrTAl

~ 0 16
\/§TAdF1 —TR <% ( C)

Wy \/iTFgAdT rPccl A
\/§TAdF2 —TR 0 0
iy ~ <0,
cc' P 0 —TR 0
AT 0 0 z
(16d)

where U; = He{(Ai—i—Ad)Is—&—BU}—FQ—i—TR, ;=
A;P + BU, ¥ = diag(—~I, —41, -5, —77), and

A= |P(Ay+ A)T + UTBT Pec” TRe 7TPc|.

Then, there exists a linear state feedback controller
u(t) = Kx(t) such that the closed-loop system (14)
is asymptotically stable.

Proof. Define P :== P~1 > 0,Q := P 1QP! >
0,R:=R'>0,K:=UP 'and h := —c/(2p).
We prove that the matrices P, ), R, h together with

the scalar ! fulfill the conditions of Theorem 4.1,
in the framework of closed-loop system (14).

1) First, it is obvious that P + 5 'ec” > 0 since
P > 0and 4 > 0. Next, one has

Q+hel +cht =Q — ptec”
— PGP -y telT
=P HQ - p ' Pec’ P)P7E >0
due to (16a) and Schur complement.
2) To verify the claim (7b), note that it follows from
(16b)
— Q — [ﬂrlz’AgT ]50}
- -1
—-TR 0
0 —n

~ - 1T
x [VarPaz Pe| <o

or equivalently
—Q +2rPATRTVA2P 4 w1 PecT P < 0.
By pre-multiplying and post-multiplying by P~lin
the above inequality, one gets
2rPAZ’RTIA2P — Q — hel' — ch”
= 27PA2TRYA2P — Q + ptec! <.
Note that = tec” > 0, the above inequality also im-

plies that 27 PA2" R~1 A2 P — @ < 0. The claim (7b)
is verified.

3) Next, we verify the claim (7c). Due to (16c), we
have

He{(A, + A)P+ BU} +Q + 7R
+27(A P+ BU)TATR™Y A4(A1 P + BU) < 0

https://doi.org/10.52111/qnjs.2025.19102
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Substituting /' = K P and then pre-multiplying and
post-multiplying by P~ in the obtained inequality,
one gets

P(Ay + BK + Ay) + (A, + BK + A)TP +Q
+27(A+BK)T AT RA4(A1+BK)+7PR™'P < 0.

This is equivalent to (7¢) in the context of closed-loop
system. The claim (7¢) is verified.

4) Finally, we verify the claim (7d). Note that the
(16d) implies

TR0 0
o [V2rTf AL rhec” Al | 0 7R 0
0 0 %

N T
X {\/iTFgAg 7Pcc” A} <0
or equivalently

He{(A; + Ag)P + BU} +Q + TR
+ 27T AT R ATy + 7Pec’ R™1 Pec”
+(P(As + Ag)" + UTB")77 (A2 + Ag) P+ BU)
+ ﬁccT’y_lccTP + Téc’y_lcR + Tpcﬁ_lcp < 0.
(17)

Note that in the context of closed-loop system, the
LMI

Dy (P47 tecT)

< 0, 18
(P +7 tech) —TR (18)

is equivalent to

He{(P+7 'ech)(Ay+ BK 4+ Ag)} +Q—p tec”
+27(As + BK)T ATRA4(Ay + BK)
+7(P+7 tec ) RTI (P + 347 ec!) < 0.

By pre- and post-multiplying by P!, the above in-
equality is equivalent to

(A2 + BK + Ag)P~' + P~ (Ay + BK + Ay)”

+77 P lec (Ay + BK 4 Ag) Pt

+ 3P YAy + BK + Ag)Tec' P~ + P7IQP!
+27P AL + KTBT)AYRA4(Ay + BK)P™!

—u P led P rRT 4 T P e R

+ 73 'R e PY

+ 7P tec’3 2R e P < 0. (19)

On the other hand, applying Lemma 2.3, we have
P lec”(Ay + BK + Ag)P7?

https://doi.org/10.52111/qnjs.2025.19102

+ P YAy + BK + Ag)Tect P71
< P leclccl p1t
+ P YAy + BK + Ad)T(AQ + BK + Aq) P71,
and
P lec’ R+ Rtect PY
< P lee" P+ R e RN
Moreover, the LMI (15) yields ¥~2R~! < R. There-

fore, the inequality (19) holds if the following one ful-
fills

(As + BK + Ag)P™' + P~ (Ay + BK + Ag)"

+57 1P el e’ P4 PIQPY — P e P
+ 4 P YAy + BK + Ag)T(Ay + BK 4+ Ag) P!
+27P (AT + KTBTYATRA4(Ay + BK)P !

+ 7R Y437 P e P 4 13t R e R

+ 7P e’ Rec’ P7Y < 0.

Note that the later inequality is followed from (17)
where P = P71 > 0,R = R! >0, Q =
P~1QP~! > 0. The proof of claim (7d) is done. [J

Without time-delays, we get the corollary.

Corollary 4.3. Consider system (4) with T = 0. Sup-
pose that there exist a positive definite symmetric ma-
trix P € R™", a matrix U € R™" and scalar
5y > 0 such that

He((A; + Aq)P + BU) < 0,

and R

LG A Pect

AT AT 0 <0,

cc™P 0 —A~1

where U = He((Ay + Ag)P + BU), and A =
P(Ay + Ag)T + UT BT Then, there exists a linear
state feedback controller u(t) = Kx(t) such that the
closed-loop system (14) is asymptotically stable.

Remark 4.4. Our developed results can be applied to
discontinuous time-delayed bimodal piecewise linear
systems with inputs. In fact, for such systems, we may
employ a state feedback controller as

u(t) = Ka(t) + {

Kyz(t) néu c"z(t) <
Kox(t) néu clz(t) >
where the gains K7, K are first designed in such a

way that the closed-loop system is continuous, i.e.,
satisfying

(A] — As) + B(K; — K3) = he®
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for some i € R™ and the gain K is designed to stabi-
lize the system

(/Nh + BK)xz(t) + Agz(t — 1)
if Tx(t) <0
(Ay + BER)x(t) + Agze(t — 1)

ifc’z(t) >0
(20)

@(t) =

with 4; :== A, + BK;, i = 1,2.

5. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
illustrate the effectiveness of the proposed stabiliza-
tion conditions for both cases: with and without time
delays. The first example is considered as a bimodal
piecewise linear system with time delays. In the sec-
ond example, we collect a bimodal piecewise linear
system without time delays.

Example 5.1. Consider the planar time-delayed bi-
modal piecewise linear system

Arz(t) + Age(t — 1) + bu(t),
clx(t) <0

Asx(t) + Ag(t — 7) + bu(t),
clz(t) >0

() =

1)
where ¢T = [—1 2} T = {0.3 0} and

Ay =

Foru(t) = 0and 7 = 0, the system (21) is not asymp-
totically stable as shown in Fig. 1,

4 x10"

ro
[l
—

state trajectories

o 0.5 1 15 2 25 3 35 4 45 5
times

Figure 1. Trajectories of system (21) for 7 = 0, u(t) =0
and starting at 20 = (—3,3)7.

For 7 = 0.025, we would stabilize the system by us-
ing linear state feedback controller. To do so, we find

-2 _4,A2: ) _4,Ad= 1 3.
2 3 -1 -2 -5 2

the matrices P, Q, R, the numbers 7, x satisfying (15)
and LMIs (16a), (16b), (16¢), (16d) of Theorem 4.2.
Note that condition (15) is not an LMI. However, we
can take R = 51. Then, it is an LMI in . Solving the
LMIs, we get K = UP~! = [—1513.4 5681.6] .

20

EA ]
X5t}

=
=

state trajectories
o
~
P

=01 0 0.1 0.2 0.3 0.4 0.5 0.6

times

Figure 2. Trajectories of the closed-loop system between

system (21) and controller (13).

Figure 2 shows the trajectories of the closed-loop sys-

tem that is composed from the system (21) and

the state feedback controller u(t) = Kz(t) =
—15134 5681.6} x(t) for initial function

—3 +sint

, t € 1—0.025,0],
2+ cost [ ]

o(t) =

This trajectory asymptotically converges to the ori-
gin.

In the rest of this paper, we validate our method
to stabilize a practical bimodal piecewise linear sys-
tem without time-delays that appeared in the work, '
Example 21, and compare our achievements with the
available methods in'4.

4

Figure 3. Three water tanks system, source in.'

https://doi.org/10.52111/qnjs.2025.19102
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Example 5.2 "%, Consider a three water tanks sys-
tem as illustrated in Fig. 3 that is taken from the pa-
per.'* Let z; be the water level of tank i, (i = 1, 2, 3),
and u be the volume of water discharged into tank 1.
The valve at tank 2 is open if x5 > 0 and closed if
9 < 0. For simplicity, all coefficients are normal-
ized to 1. Then, dynamic equation of the system in
the neighborhood of origin is

i(t) = Ayz(t) + bu(t) if T a(t
| As(t) + bu(t) if Ta(t

) <0
) =0 @
where ¢! = [0 -1 0} bl = [1 0 0} and

-1 0 O -1
Ai=1 -1 0],4=]1

—
I
—_
o o o
E==)
—_

Without input, i.e., u(t) = 0, the origin is not asymp-
totically stable.'* Based on the theory developed in, !4
a state feedback controller has been derived to sta-
bilize the system using piecewise linear functions as
follows

{le(t) it Ta(t) <0
u(t) =

Koz (t) ifcl'z(t) > 0

with Ky = [-1 =2 0] . Kz = [0 —2 0].In
fact, such controller transforms a continuous bimodal
system into a discontinuous closed-loop one, but it
is still well-posed in the sense of Carathéodory solu-
tions. !> It worth to mention that one does not get such
lucky in general.

Taking our proposed approach, we solve the in-
volved LMIs of Corollary 4.3 and get the matrices
U= [-02548 —0.4668 —0.0143] and

0.2690 —0.2156 —0.0517
P=1-0.2156 0.3749  0.0513
—0.0517 0.0513  0.6138

Then, the gain K of linear state feedback controller
is

K=UP'= [73.6140 ~3.3159  —0.0504] .

https://doi.org/10.52111/qnjs.2025.19102
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Figure 4. Trajectories of the closed-loop three tanks system

with two kinds of controllers.

Figure 4 shows the trajectories of closed-loop systems
for the initial state x(0) = col(—1,—1,1) that is
composed from system (22) and state feedback con-
trollers: the linear state feedback controller u(t) =
Kux(t) (solid lines) and piecewise linear state feed-
back controller (dash lines)

(t) = Kiz(t)ifclz(t) <0
T Kon@) it Ta(t) > 0.

Our controller yields a better stabilization.

6. CONCLUSIONS

In this paper, we studied the stability and stabi-
lization of time-delayed bimodal piecewise linear
systems via smooth Lyapunov-Krasovskii function-
als. The main contributions of the paper are in-
cluding: (1) new stability criteria based on the pro-
posed smooth Lyapunov-Krasovskii functional were
derived to guarantee asymptotic stability in the zero
inputs and (2) an interesting condition was estab-
lished to design a linear state feedback controller to
stabilize the system which is less conservative than
before in the literature. Finally, some numerical ex-
amples illustrate the effectiveness of proposed meth-
ods.
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